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Abstract— This paper proposes a swinging-up and stabiliza-
tion method for inverted pendulums based on a pendulum
oscillation model. A normalized oscillation model is derived
by using only one model parameter, i.e., the natural frequency
of a pendulum. As a control strategy, energy-based control with
a normalized energy model is utilized for the swinging-up from
the pendant position. For the stabilization of the pendulum
at the upright position, variable structure system (VSS) type
adaptive control is designed through the linearized oscillation
model. Validity of the proposed method has been confirmed
by simulation of an inverted pendulum on a cart. Swinging-
up and stabilization control was realized by using only the
natural frequency of the pendulum, and the proposed method
was also confirmed to be robust against parameter perturbation
for the natural frequency. Stability of the designed controller
was proven for a given condition that angular velocity of the
pendulum has an upper bound.

I. INTRODUCTION

It is known that an inverted pendulum system, which
is a typical underactuated mechanical system, is suitable
for verifying new control theories. Usually control purpose
of an inverted pendulum is to stabilize it at the upright
position. For swinging-up control of the pendulum from
the pendant position to the upright position, nonlinearity
should be considered. To design controllers for swinging-
up and stabilization, a dynamic model of the pendulum is
usually required, and it is necessary to know the model
parameters. In designing advanced controllers, it is desirable
to reduce the number of model parameters to be identified
from a viewpoint of reducing affect of the identification
and modeling errors. Adaptive control is known to be an
alternative to solve the modeling error problem [1][2]. For
the swinging-up of the inverted pendulum, energy-based
control, which is one of the effective strategies to handle
nonlinearities, was proposed by Astrom and Furuta [3], and
many results for underactuated systems have been reported
[4][5][6][7]. This method focuses on energy of the pendulum
oscillation model. In [3], it is also shown that the oscillation
model and energy of the pendulum are derived as functions
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TABLE I

PARAMETERS OF PENDULUM MODEL

m [kg] mass of pendulum
l [m] length from join to COG
J [kg·m2] moment of inertia on joint
g [rad/s2] gravity acceleration

of only the natural frequency. Hamiltonian approach and
controlled Lagrangian method are similar to energy-based
control.

In this paper, a swinging-up and stabilization method
of inverted pendulums is proposed using the pendulum
oscillation model. The pendulum’s natural frequency can be
easily derived from the pendulum oscillation period. This
oscillation model is used to design controllers for both the
swinging-up and stabilization of the pendulum. By using the
pendulum oscillation model derived only from the natural
frequency, the proposed method can stabilize the whole states
of the pendulum system. The proposed method essentially
uses two controllers. One is an energy-based controller using
a normalized energy to swing up the pendulum. The other
is a variable structure system (VSS) type adaptive controller
for the linearized oscillation model to stabilize the pendulum
system near the upright position. Stability of the proposed
method is analyzed for the inverted pendulum on a cart, and
the effectiveness is confirmed by simulation.

In Section II, a normalized oscillation model and an energy
model are defined. An inverted pendulum system is modeled
in Section III. Section IV proposes a controller design based
on the oscillation model for swinging-up and stabilization.
In Section V, the proposed controller design is validated by
simulation. In Section VI, the stability of designed controllers
is analyzed.

II. NORMALIZED OSCILLATION MODEL AND

NORMALIZED ENERGY MODEL

In this section a normalized oscillation model and a
normalized energy model are defined by using the natural
frequency of a pendulum. Figure 1 shows the pendulum
model and Table I lists the model parameters.
The equation of motion of the pendulum-link shown in Fig.
1 is given by

Jθ̈ = mgl sin θ − mlua cos θ (1)

where ua is the input acceleration. Hereinafter, this equation
of motion (1) is referred to the oscillation model of pendu-
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Fig. 1. Pendulum model
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Fig. 2. Inverted pendulum on a cart

lum. The energy of the pendulum (1) is

E =
1

2
Jθ̇2 + mgl(cos θ − 1). (2)

Note that the potential energy becomes zero at the upright
position (θ = 0).

Divide (1) by mgl to get the normalized oscillation model

1

ω2
θ̈ − sin θ = −

1

g
ua cos θ. (3)

where ω =
√

mgl/J is the natural frequency of the pen-
dulum. The normalized energy model of (3) is also given
by

En :=
E

mgl
=

1

2ω2
θ̇2 + cos θ − 1. (4)

This paper presents a controller design method that is
focused on the normalized pendulum model (3) and the
normalized energy model (4).

III. MODEL OF INVERTED PENDULUM ON A CART

In this section, an equation of motion of an inverted
pendulum on a cart is derived by using Euler-Lagrange
method. The inverted pendulum on a cart is illustrated in Fig.
2. Table II lists the model parameters. Defining q = [x, θ]T ,
τ = [u, 0]T , the Lagrange equation is given by

TABLE II

PARAMETERS OF INVERTED PENDULUM ON THE CART

m [kg] mass of pendulum
l [m] length from joint to COG of pendulum
J̄ [kg·m2] moment of inertia on COG of pendulum
θ [rad] angle of pendulum
M [kg] mass of cart
x [m] displacement of cart
u [N] input to cart

Defining q = [x, θ]T , τ = [u, 0]T , the Lagrange equation
is given by

d

dt

∂L

∂q̇
−

∂L

∂q
= τ (5)

where L (= T − U) is the Lagrangian, T is summation of
the kinetic energy of the cart and the pendulum, and U is
summation of the potential energy. Using (5), the equation
of motion can be derived as follows:

M(θ)q̈ + h(θ, θ̇) + G(θ) =

[
u
0

]
(6)

M(θ) =

[
M + m ml cos θ
ml cos θ J

]

h(θ, θ̇) =

[
−mlθ̇2 sin θ

0

]

G(θ) =

[
0

−mgl sin θ

]

where J (= J̄ + ml2) is the moment of inertia around the
pivot, M(θ) is the inertia matrix, h(θ, θ̇) is the combination
term of centrifugal, Coliolis and frictional forces and G(θ)
is the gravity term.

If all the physical parameters are given, q̈ can be calculated
by

q̈ = −M−1 (h + G) + M−1

[
1
0

]
u (7)

Hence, the acceleration of the cart ẍ and the input force to
the cart u satisfy the following relation:

ẍ = f0 + g0u (8)

f0 = −fN/gD, g0 = J/gD

fN = Jmlθ̇2 sin θ − m2gl2 sin θ cos θ

gD = J(M + m) − m2l2 cos2 θ.

Note that g0 > 0 for all θ, θ̇. By deriving the nonlinear
feedback law u rewriting (8), it is possible to directly design
the acceleration input. This means that the controller can be
designed from the normalized oscillation model (3). How-
ever, it is difficult to exactly identify all the parameters. Thus,
this paper proposes a controller design method using only the
natural frequency of pendulum. The following section gives
a controller design using the normalized oscillation model.
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IV. CONTROLLER DESIGN

In this section, swinging up and stabilization controllers
based on the normalized oscillation model and normalized
energy model are designed. In the proposed design, around
the upright position, a stabilization controller based on
VSS type adaptive control is used, and in the other state
apart from the upright position, a swinging-up controller is
applied. Swinging-up and stabilization control are realized
by switching the above two controllers. Switching condition
is decided by the pendulum angle.

A. Swinging-Up Controller

From (3), the normalized oscillation model of the inverted
pendulum on a cart can be described as

1

ω2
θ̈ − sin θ = −

1

g
ẍ cos θ. (9)

where ω is the natural frequency. Similarly, the normalized
energy model is given by

En =
1

2ω2
θ̇2 + cos θ − 1. (10)

From (9) and (10), the derivative of En is

Ėn =

(
1

ω2
θ̈ − sin θ

)
θ̇

= −
1

g
θ̇ẍ cos θ. (11)

Consider the following Lyapunov function candidate (12) for
the normalized energy

Vp =
1

2
(En0 − En)2 (12)

where En0 is the desired energy. From (11) and (12), we
obtain

V̇p =
1

g
αẍ (13)

α = (En0 − En) θ̇ cos θ.

Substituting (8) into (13), the derivative of V is rewritten as

V̇p =
1

g
α (f0 + g0u) . (14)

Thus, the control input is designed as

u = −Ksgn(α) (K > 0) (15)

where α is defined in (13) and K is a gain. In the control
law (15), the model parameter needed is only the natural
frequency of the pendulum. Substituting (15) into (13), V̇p

becomes

V̇p =
1

g
α {f0 − Kg0sgn(α)} . (16)

In (15), if the gain K satisfies the condition

K ≥ g−1

0 sgn(α)f0, (17)

V̇p becomes semi-negative definite. Since the horizontal po-
sitions of the pendulum at θ = ±π/2 are not an equilibrium
point, cos θ cannot be continuing to be zero. Then, the control
law (15) drives the normalized energy En to a desired value
En0, and this means that the pendulum is swung up.

B. Stabilization Controller

A stabilization controller based on VSS type adaptive
control, which is proposed by Yamakita and Furuta [2],
is applied for stabilizing the pendulum near the upright
position.

1) Stabilization of Pendulum: When the pendulum energy
is close to the desired energy by energy control, near
the upright position, the angle and angular velocity of the
pendulum θ, θ̇ can be assumed to be small enough. The
mass of cart is also assumed to be large enough, then the
terms of the dynamics of the pendulum in (8) is regarded to
be negligible small. Therefore, (8) is approximately rewritten
as ẍ = u/(M +m). Under the assumptions, (9) is linearized
at the upright position (θ = 0, θ̇ = 0). Then we can obtain

θ̈ = ω2θ −
1

a
ω2u (18)

where a = g(M + m). Define an estimation error ã by

ã = a − â (19)

where â denotes the estimate of a. Reference value for the
angle of the pendulum θ is denoted by r, then the tracking
error e is given by

e = θ − r. (20)

Define the switching function s as

s = ė + he. (h > 0) (21)

Then, the time derivative of s becomes

ṡ = θ̈ − θ̈r (22)

θ̈r = r̈ − hė.

Consider the following Lyapunov function candidate

Vu =
1

2
as2 +

1

2
Γã2. (Γ > 0) (23)

The time derivative of Vu is given by

V̇u = ω2s

{
a

(
θ −

1

ω2
θ̈r

)
− u

}
+ Γã ˙̃a. (24)

Choose the control law as

u = â

(
θ −

1

ω2
θ̈r

)
+ γsgn(s). (γ > 0) (25)

From (24) and (25), V̇u is

V̇u = −γω2|s| + ã

{
ω2s

(
θ −

1

ω2
θ̈r

)
+ Γ˙̃a

}
. (26)

The adaptive law that makes the second term of (26) to be
zero is given by

˙̂a = −Γ−1ω2s

(
θ −

1

ω2
θ̈r

)
. (27)

Then, V̇u becomes

V̇u = −γω2|s| ≤ 0. (28)

Consequently, the system states reach the sliding surface
(s = 0) in finite time. The tracking error e converges to
zero because the sliding surface is stable.
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2) Design of Reference: The stabilization controller de-
signed in the above section stabilizes only the pendulum
angle, then the displacement of the cart should be controlled
by another method. The reference r for the pendulum
angle that stabilizes the displacement and velocity of the
cart should be designed. While the controller makes the
pendulum angle track the reference r, the cart states can
be simultaneously stabilized. In this section, stable reference
angular acceleration r̈ that stabilizes the cart is designed.
When states of the controlled system track the reference, (3)
can be rewritten as

ẍ = −
g

ω2
r̈ + gr (29)

where the gravity acceleration g is assumed to be given.
Defining the state vector z = [x ẋ r ṙ]

T , which is
composed of the states of the cart and reference, the state
equation is given by

ż = Az + Br̈ (30)

where

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 g 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
− g

ω2

0
1

⎤
⎥⎥⎦ .

Consider a quadratic criterion function

J =

∫ ∞

0

(
zT Qz + Rr̈2

)
dt (31)

where Q and R are the weighting matrices. The optimal input
r̈ minimizing (31) is given by

r̈ = −Fz = −R−1BT Pz (32)

where F is a feedback gain vector. The matrix P in (32) is
the solution of the Riccati equation

PA + AT P − PBR−1BT P + Q = 0. (33)

C. Switching Condition of Two Controllers

The swinging-up and stabilization control is realized by
switching the above two controllers depending on the pen-
dulum angle. Because the VSS type adaptive controller is
designed for the linearized model, the effective area in the
phase plane is limited. On the other hand, energy control
works for all the state range while it is difficult to stabilize
the state. Thus, the switching condition is set as follows:

u =

{
â

(
θ − 1

ω2 θ̈r

)
+ γ s

|s|+μ
if |θ| < θsw

−K L
|L|+ε

otherwise
(34)

where θsw are the switching angle. To eliminate the chatter-
ing, small constant values μ and ε are added to the control
laws (15) and (25), respectively.

In the switching control law (34), only the pendulum’s
natural frequency ω is needed in designing the controllers.

TABLE III

SIMULATION PARAMETERS

m [kg] 0.2 J̄ [kg·m2] 2.67 ×10−3

l [m] 0.2 M [kg] 2.0
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Fig. 3. Angle of pendulum : θ

V. SIMULATION

The proposed controller is evaluated by simulation for an
inverted pendulum on a cart. Furthermore, in order to verify
a robustness for the parameter perturbation, this section
considers the case of using the controller with different
values from the true value of ω. Simulation parameters of the
inverted pendulum system are listed in Table III. The natural
frequency ω of the pendulum for the parameters in Table III
is 6.07[rad/s]. The sampling interval is 2[ms] and the input
force is limited within ±10[N]. The initial states are set to
be [x θ ẋ θ̇] = [0 π−0.1 0 0]. The design parameters are
chosen as follows: θsw = π/6, En0 = 0, K = 7, h = 10,
Γ = 100, γ = 10, μ = ε = 0.05, Q = diag(1, 1, 10, 1),
R = 1. The stability analysis for the gain K is discussed in
Section VI. The initial condition of estimation value â is set
to be 0.2a. It is assumed that all the states are assumed to
be measured in this simulation.

A. Nominal case

This section shows the case of the controller using the true
value of ω.

Figs. 3 to 7 show the simulation results. From Fig. 3,
the pendulum goes up to the upright position (θ = 0[rad]).
Fig. 4 shows that the normalized energy is pumped up until
the reference value, and the normalized energy is settled into
zero. Fig. 5 shows that the displacement of the cart converges
to zero after the pendulum angle is stabilized. The control
input becomes large when the pendulum swings up, and
after the pendulum reaches the upright position, the control
input converges to zero (Fig. 6). In Fig. 7, it is shown that
the reference acceleration r̈ is generated from 2.2[sec] after
the stabilizing controller is activated. Then the generated
reference acceleration r̈ converges to zero.

B. Perturbed case

To evaluate the proposed controller for parameter pertur-
bation, we now consider the situation that is using ω̂ that is
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Fig. 4. Normalized energy : En
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Fig. 5. Displacement of cart : x

different from the true value of ω. If ω > ω̂, the pendulum
does not reach the upright position, because the calculated
energy is larger than the true value of the energy. However,
by setting the reference energy En0 larger than the energy
of the upright position with the velocity of zero, i.e., zero,
the pendulum swings up until the upright position. On the
other hand, if ω < ω̂ and En0 = 0, the calculated energy is
smaller than the actual energy. Though the angular velocity
is not zero, when the controller switches stabilization from
swinging-up, the system states reach the stabilization area.

In this section, as a compromise the desired energy En0

is set to be 5, and the other design parameters are the same
as those of the above simulation. Under the above condition,
it is shown that swinging-up and stabilization control are
achieved for the parameter variation of ω̂ from 0.5ω to 4ω.
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Fig. 7. Reference acceleration : r̈
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Fig. 8. Angle of pendulum : θ (ω̂ = 0.5ω)
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Fig. 9. Normalized energy : En (ω̂ = 0.5ω)

The simulation results for the smallest value ω̂ = 0.5ω
and the largest one ω̂ = 4ω are shown in Figs. 8, 9 and
Figs. 10, 11, respectively. From Fig. 8, the pendulum angle
is confirmed to be settled into zero. In Fig. 9, it is found
that the normalized energy goes up to the desired value 5,
and after the pendulum stabilize at the upright position, the
normalized energy converges to zero. From Figs. 10 and
11, for ω̂ = 4ω the pendulum angle and the normalized
energy is also stabilized. We also confirmed that our method
successfully works for other value of ω̂ from 0.5ω to 4ω.
Due to the limitation of the space, however, these details in
other parameters are omitted.

Consequently, the proposed control designed by using only
the natural frequency has achieved both the swinging-up and
stabilization of the inverted pendulum system.
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Fig. 10. Angle of Pendulum : θ (ω̂ = 4ω)
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Fig. 11. Normalized energy : En (ω̂ = 4ω)

VI. ANALYSIS OF SWINGING-UP CONTROLLER

In Section VI, it is proven that the normalized energy
En can be converged to the desired value En0 if the gain
K satisfies the condition K ≥ g−1

0 sgn(α)f0. To show the
existence of K which satifies (17), the maximum value of
g−1

0 sgn(α)f0 is calculated. The model parameters used here
are the same as those of the above simulation.

Define the following function

f(θ, θ̇) := g−1

0 sgn(α)f0. (35)

Consider the case that the pendulum is swung up from the
pendant position to the upright position by pumping the
energy. When the normalized energy En converges to the
desired value En0, the absolute value of the angular velocity
of the pendulum is calculated as

|θ̇| = ω
√

2(En0 − cos θ + 1). (36)

From (36), the maximum amplitude of angular velocity is
12.13[rad/s] for En0 = 0 and θ = π. Therefore, it can
be considered that the function f varies within a range
calculated from θ ∈ [−π, π], θ̇ ∈ [−13, 13]. The time
derivative of θm as a function of the angular velocity that
maximizes the function f is given by

θ̇m(θ) = arg max
θ̇

{f(θ, θ̇)}. (37)

Fig. 12 shows θ̇m(θ) as a function of the pendulum angle θ
varying from −π to π.

Fig. 13 shows f(θ, θ̇m(θ)) derived from (37). From Fig.
13, the maximum value of g−1

0 sgn(α)f0 is 6.91. Thus, if

-15

-10

-5

0

5

10

15

20

-3 -2 -1 0 1 2 3

A
ng

ul
ar

V
el

oc
ity

 [r
ad

/s
]

Angle [rad]

Fig. 12. Value of θ̇m(θ)
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Fig. 13. Value of f(θ, θ̇m(θ))

K ≥ 6.91, the normalized energy converges the desired
value.

VII. CONCLUSION

A normalized oscillation model and an energy model that
are characterized by the natural frequency of the pendulum
were derived. A swinging-up controller based on the nor-
malized energy model was proposed for pendulum systems,
and stability of the control system was proven by numerical
analysis. Efficiency of the proposed method was shown by
simulation for an inverted pendulum on a cart. Additionally,
robustness for perturbation of the natural frequency was also
confirmed.
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Pendulum,” Proceedings of IEEE Conference on Control Applications,
1996, pp. 715-720.
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