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Abstract— This paper demonstrates the use of discrete time
portfolio optimization as a mechanism for introducing stu-
dents to key problems in systems theory: control, system
identification, model reduction, and verification. Too often
students are not introduced to systems theory until very late
in their programs, frequently after they have already decided
on majors and generated momentum toward specific career
plans. One reason for this late introduction is the prerequisite
material demanded by our systems courses, typically involving
a chain of math, physics, and engineering courses. Using
portfolio optimization as the vehicle for introducing systems
theory, however, can provide an early introduction to some
of the central issues in the field. In particular, the open-
loop nature of portfolio optimization simplifies the decision-
making context sufficiently to make these problems accessible to
younger students. Moreover, the familiarity of financial decision
making, regardless of technical background, allows a broad
range of students to appreciate the importance and nature of
these problems. Here we illustrate these ideas, using portfolio
optimization to show how the presence of uncertainty and
complexity in decision problems interconnect control, system
identification, model reduction, and verification in the design
of practical decision systems.

I. INTRODUCTION

Learning platforms are frequently used in education in

order to give students a place to experiment with concepts

that can be more difficult to learn in a traditional discussion

setting. Being able to “try it and see” allows students the

opportunity to solve problems and then verify the quality of

their solutions. Platforms also play a role in motivating the

student, by making learning fun.

For these reasons learning platforms are commonly used in

control education. Some common learning platforms include

the following: inverted pendula [1], ball and beam systems

[2], robotic arms [3], and other mechanical devices. A grow-

ing interest in multi-agent systems has likewise motivated

team systems such as robot soccer [4] and other “bot”

systems [5] that can execute various cooperation strategies

to orchestrate efforts to accomplish a common goal. These

systems can be powerful platforms for students to solidify

their understanding of control and decision processes.

One drawback to these common control platforms is that

they require the students to have a mastery of concepts from

physics before they can explore the important problems in

control. Because of this, students typically are not introduced

to systems theory or control before their junior or senior year.
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Our view is that the central ideas from systems theory

should be introduced to students much earlier in their educ-

tion. This view is motivated by the observation that systems

theory and control inform any decision making process,

thereby playing a foundational role in a broad range of

applications and fields. With earlier exposure, students will

be able to decide sooner if they like the study of controls

and get a jump start on preparing for the rigors of the field.

To accomplish this, we suggest introducing various learn-

ing platforms in areas accessible to younger students. The

goal is to simplify the context for discussing central issues

in systems theory, providing jumping off points for students

to appreciate and explore the depths of the field. Our point of

view is that control is fundamentally about making provably

good decisions in the face of uncertainty and complexity

constraints, and the central problems are 1) the control

problem, 2) the system identification problem, 3) the model

reduction problem, and 4) the verification problem.

In this paper we introduce portfolio management as a

learning platform and illustrate how it can be used to

introduce students to each of these four central problems. The

area is accessible enough that even students without strong

technical backgrounds can appreciate the role of rigor and the

importance of systems theory in decision making. Moreover,

the area is deep enough that those with strong backgrounds

can glean a preview of core research questions involving

the interactions between control, system identification, model

reduction, and verification problems.

The next section introduces portfolio management as a

simple decision problem. Sections three through seven dis-

cuss how the portfolio optimization problem guides students

through the four previously mentioned problems in control.

II. PORTFOLIO MANAGEMENT

The portfolio management question deals with choosing

how to allocate money into different securities with the

objective to maximize total wealth at some future time. We

have chosen portfolio management as a learning platform

because it is conceptually simple and because the objective is

clearly parameterized in terms of equity returns. In this way,

all questions of information and uncertainty can be posed

in terms of what is known about the equity returns. This

characterization allows us to reconsider the decision problem

repeatedly as we peel back different levels of information and

study the impact of uncertainty on our problem.

Moreover, since this problem is open loop, in that in-

vestment decisions do not affect future equity returns of the

assets, key concepts from systems theory can be introduced
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without the complexity of feedback interactions. The hope

is that students will be motivated to engage the rigors of the

discipline necessary to master feedback control if they first

appreciate some of the central problems arising from the in-

teraction of uncertainty and complexity in decision problems.

Next we describe the portfolio management problem.

Suppose an investor has a choice between holding his

money in a risk free cash account with a fixed, positive rate

of return, or purchasing any of n−1 securities having varying

(positive and negative) rates of return. Any of these securities

may be purchased at any time, and all that is known about

them is their historical price over a finite period of time,

pi(t), i = 1, . . . ,n. The goal is to make as much money as

possible at time T, by purchasing shares in these securities

with a fixed initial investment. The following definitions will

help make this objective precise.

A portfolio is a distribution of wealth invested in these

assets, characterized by (s1(t), . . . ,sn(t)), where si(t) is the

number of shares of security i owned at time t. We denote the

value of the shares of security i owned at time t by xi(t) =
pi(t)si(t). The value of a portfolio at any particular time is

the sum of the value of the securities, x1(t)+ . . .+xn(t). We

let x1(t) correspond to the value of the risk free cash account.

The total return of a security is the price change ratio of the

security, given by ri(t) = pi(t)
pi(t−1) . This quantity characterizes

how the value of a fixed number of shares changes over time.

The resulting dynamics of the value of a portfolio over time

are given by

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Nevertheless, the investor does not have to keep a fixed

number of shares in each security. Instead, s/he can change

the distribution of wealth between the securities at each time

step. This decision is represented by a set of numbers, ui, i =
1, . . . ,n−1 that indicates the dollar amount that the investor

wishes to be moved from the cash account to the ith risky

asset. A negative value of ui represents a dollar amount to be

moved from the ith risky asset to the cash account. We will

assume there are no transaction costs. The portfolio dynamics

incorporating this investor decision then become:

x(t +1) = R(t +1)x(t)+R(t +1)Bu(t) (2)

where x(t) ≥ 0 ∀t, R(t +1) = diag(r1(t +1), . . . ,rn(t +1)),
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The dynamics in (2) describe how the value of a portfolio

changes as a function of the investor’s reallocation decisions,

u(k). In this expression, the return matrix, R(t +1), represents

the future impact of an external variable over which the

investor has no control, while the input, u(t), represents the

change in the portfolio distribution over which the investor

has complete control. Note that the positivity constraints on

x restrict admissible decisions u, allowing the purchase of

securities only if you have the money to pay for them. This

simple context then motivates a very basic decision problem.

III. THE CONTROL PROBLEM

The control problem is to decide which input best im-

proves the performance of the system being controlled. In

order to discuss making good decisions we must know the

consequences of our decisions and we must have an objective

function which ranks the consequences by what is most desir-

able. Optimal decision making is just computing the choice

with the “best” consequence as defined by the objective

function. With perfect information about the consequences

of our decisions, the control problem becomes a search over

possible choices to select the one that best supports the

objective. For an in-depth treatment on control see [6].

The control problem naturally surfaces in any discussion

of portfolio optimization when we consider the decision to

be made by the investor. At some initial time, t = 0, the

investor has an initial amount of cash on hand and no money

invested in other securities. Thus his initial portfolio is x(0) =
[

x1(0) 0 . . . 0
]T

. The investor’s objective is to allocate

his money into different securities at each time step in order

to maximize at some future time, T , the total value of the

portfolio, ‖x(T )‖1 = x1(T )+ . . .+ xn(T ). Stated formally,

max
ui(1,...,T )

‖x(T )‖1

subject to x(t +1) = R(t +1)x(t)+R(t +1)Bu(t)

x(0) =
[

x1(0) 0 . . . 0
]′

x(t) ≥ 0 ∀t
(3)

A student may easily discover that iteratively solving this

problem for one time step will yield an optimal solution to

the problem for multiple steps. This allows him/her to reduce

the problem to a sequence of one step problems.

Example 1: (Perfect Knowledge of Consequences) Con-

sider the problem where ri(t), i = 1, . . . ,n and t ∈ [0,T ] is

given. This problem corresponds to the situation where an

investor has perfect knowledge of the returns. To maximize

the value of the portfolio one needs to move all the money

to the security with the highest return at each time step.

Suppose we can invest in two different securities or keep

our money in a cash account. We will start out with $100,

and let x1 be the amount of money kept in the cash account

and x2 and x3 be the amount of money invested in the risky

securities. Figure 1a shows the value of the two securities

over a 110 day period. Figure 1b shows the composition of

the optimal portfolio over time as it switches all of the money

between the three funds.

Having perfect knowledge about the future has simplified

our problem and lets students consider important questions

about decision making. For example, can you characterize

the nature of optimal solutions to make this computation

tractable? How does computational complexity change when
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Fig. 1. Prices of two different securities shown above. Assuming perfect
knowledge of the future, the optimal policy switches all the money to the
security with the highest return at any given time.

considering a sequential decision process where making

choices that appear suboptimal now may result in a higher

future payoff?

Until now we have assumed perfect knowledge of the

future. When we do not have perfect information about the

consequences of our actions, we need to estimate a best guess

of what the consequences may be in order to make decisions

consistent with our objective. A model represents everything

we understand about the mapping between choices and con-

sequences. To determine a model for future consequences,

students must solve the system identification problem.

IV. THE SYSTEM IDENTIFICATION PROBLEM

Formulating a system identification problem implicitly

assumes that something about the mapping of decisions to

consequences remains constant over time. This constancy is

captured in the choice of model class. The knowledge we

have about the true system’s behavior is acquired by running

experiments that collect input-output data. We use a quality

metric to evaluate each model in the class based this data.

Given a class of models, input-output data, and a quality

metric, the system identification problem is to select the

model from the class which best describes the observed

input-output data according to the quality metric, see [7]

A. Sources of Uncertainty

Once a model is selected it becomes the basis for predict-

ing consequences of various decisions. Inaccuracies in the

predictions of this chosen model can come from insufficient

TABLE I

Actual Estimated
sample size 5 15 50 100 1000

mean 1.1 1.155 .989 1.134 1.122 1.088
variance .1 .040 .148 .143 .109 .102

data, the model class, or the quality metric. These sources

of uncertainty are easily seen in portfolio management.

Example 2: (Uncertainty from Insufficient Data) Suppose

we have a risky security. We no longer assume that we have

perfect knowledge about the future returns but that they come

from a Gaussian distribution. We select our model class

to be the class of Gaussian distributions parameterized by

mean and variance. Our system identification algorithm is

to choose the model whose mean and variance most closely

match the sample mean and variance of the historical data.

Suppose the past returns from a risky security are truly

generated from a Gaussian distribution with mean, 1.10, and

variance, 0.10. By taking historical data as our sample we

can compute an estimated mean and variance. As shown in

Table I, the estimated mean and variance change depending

on how large a sample we use.

This example shows that with finite input-output data

the learned model will be different from the true system,

which introduces uncertainty into our predictions. Also, as

the available historical data increases, the sample mean and

variance, and thus the selected model, converge to the same

as the true system. This consistency is an indicator of a good

system identification algorithm.

Example 3: (Uncertainty Intrinsic to the Model Precision)

Considering the previous example, suppose we had enough

data that our system identification algorithm could select the

correct model from the model class. Would our predictions

of future returns necessarily be accurate? In this case, our

predictions of future returns are the mean of the Gaussian

model we choose as most descriptive of the historical data.

However, our model class emphasizes a level of uncer-

tainty in these predictions, characterized by the variance of

the Gaussian distribution; we expect our predictions to be

accurate, on average, but within a range specified by the

variance of our model. Thus, our particular choice of model

class builds in an estimate of the level of precision of our

predictions, and this precision defines uncertainty intrinsic to

our particular model.

Example 4: (Uncertainty Due to Inaccurate Choice of

Model Class) Another source of uncertainty is in the se-

lection of the model class itself. While we may choose to

represent returns as a Gaussian random variable, it may, in

fact, be generated by a completely different process for which

a Gaussian process is only an approximation.

Example 5: (Uncertainty Due to the Quality Metric) Sup-

pose we have enough data such that our sample mean is 1.1,

but we change our quality metric to choose the model which

weights more heavily the most recent week’s data. The model

selected will not be the same as the actual distribution mean,

as our choice of metric reveals our assumptions about the

predictive value of the model. Likewise, one may compute a
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“best fit” between model predictions and data using different

norms, and the minimizer in each case may be an entirely

different model from the chosen model class.
Frequently the choice of metric is used to guard against

uncertainty in the choice of model class. This is accom-

plished, for example, by ranking each model in the class

by the likelihood that it generated the observed data, and

then choosing the model that maximizes this likelihood.
Consideration of these uncertainties in modeling leads

students to a variety of important questions. How should

one characterize uncertainty in a model, and how should this

characterization change the control problem formulation?

How does one design tests that check whether the underlying

assumptions justifying a particular choice of model class,

metric, etc. are still consistent with the observed data?

B. Uncertainty’s Affect on System ID and Control Problems

Until now we have discussed the control problem and the

system ID problem separately. Because of uncertainty, it is

interesting to consider how these problems affect one an-

other. Given a predictive model, when does it make sense to

treat its predictions as the true future, leaving the formulation

of the control problem unchanged? When does it make sense

to modify the formulation of the control problem to account

for the fact that our estimates of the consequences of various

decisions are based on a model, not perfect knowledge?

Likewise, should knowing that our choice of a model will

be used as the basis for decision making alter the nature of

the identification problem? If so, how?
One approach to resolving these issues suggests that both

the system identification and control problems should be

modified to account for their impact on each other. For

example, some control-oriented system identification mod-

ifies system identification techniques to be compatible with

robust control methodologies [8]. Likewise, robust control

can be viewed naturally as identification-oriented control

because it modifies classical control techniques to account

for explicit uncertainty in the learned model. In the portfolio

management example, these issues arise naturally as the

objective function in the control problem is modified to

account for uncertainty in the predictions based on the

identified model. The degree to which the objective function

is modified to account for this uncertainty can be scaled by a

risk aversion parameter, facilitating an entire class of control

problems depending on the degree one is willing to believe

the predictions of the identified model.
Example 6: (Control Problem Accounting for Model Un-

certainty) Now we assume that we have uncertain predictions

of future returns and show how the decision problem is

different from the decision problem with perfect knowledge

of the future. We let J be our one step decision problem

without uncertainty and then consider how uncertainty in the

returns affects the solution.

J = max
ui(1,...,T )

‖x(t +1)‖1

subject to x(t +1) = R(t +1)x(t)+R(t +1)Bu(t)
x(t) ≥ 0 ∀t

(4)

This optimization requires predictions for the future re-

turns, ri(t + 1), i = 1, . . . ,n. Assuming that we solve an

identification problem to find a Gaussian distribution that

best explains the observed data, then we could use the mean

for each security as the predicted return for that security.

However, this would be assuming that our identified model

is perfectly accurate.

One way to formulate the control problem that accounts

for our uncertainty in the predictions of our model is to

say that each predicted return r̂i is never more than ε away

from the actual return, |r̂i − ri| ≤ εi. This gives us a range of

possible values for J ∈ [Jlo,Jhi]. Now we need to rethink our

objective function based on the ranges of J for each possible

combination of ui’s. We can think of protecting against the

worst case by maximizing the minimum value of J. We could

also maximize the maximum, the median, or some other

value of J; we could minimize the difference Jhi−Jlo, etc. In

each of these situations, considering the sense in which the

resulting investment strategy is “best” encourages students

to think deeply about the interaction between identification

and control.

Another way to formulate the control problem to account

for uncertainty in the identified model is to modify the

objective to not only maximize predicted returns, but also to

minimize the uncertainty intrinsic to these predictions. This

is easily accomplished in the case where we model returns

as Gaussian random processes, as we can simply modify the

original objective to account for the covariance of the random

process, given by

max
u1(t),...,un−1(t)

µJ −λσ2
J . (5)

This problem is the celebrated Markowitz model, which

is commonly used in portfolio optimization [9] [10].

Yet another approach may discount for uncertainty differ-

ently, by only considering the down-side risk of a particular

investment. One way of doing this would be to let µJ be the

expected value of J based on the expected returns r̂i, and

a fixed portfolio specified by u(t). Then for each previous

time, k = 1, . . . ,K, we compute y(k) = µJ −J(k), where J(k)
is how well our same portfolio would have performed at time

k. y(k) gives us a measure for how much our portfolio would

have underperformed our expectation in the past. We then let

our uncertainty be the average of the y(k)’s for all k. This

gives us,

max
u1,...,un−1

µJ −λ
1

K

K

∑
k=1

y(k), (6)

which essentially yields the Mean Absolute Deviation

(MAD) portfolio optimization model [11].

In both the Markowitz and MAD formulations, a risk

aversion parameter, λ , describes how much the control

objective should accommodate uncertainty in an identified

model. By increasing λ we penalize decisions which choose

stocks with higher uncertainty.

Using the same three securities that we had in Example 1,

but now with uncertainty, Figure 2 shows an optimal policy
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that allows a limited amount of risk. Unlike in Figure 1

when we had perfect knowledge of the future, this portfolio

is diversified, splitting money between multiple securities to

reduce risk. The return from Figure 2 is about 20% compared

to about 50% in the optimal portfolio over the same time.

It is also interesting to consider how uncertainty affects

the possible solution. For example, suppose that we have

an identification algorithm with uncertain predictions that

happens to predict the returns exactly. Since we do not

know ahead of time that they will be exact predictions, the

risk/reward decision strategy will diversify the portfolio more

or less depending on the uncertainy in the predictions. Figure

3 shows the loss in returns due to this diversification. In other

words, by limiting the incurred risk of a portfolio, the maxi-

mum potential is lowered as well. Viewing diversification as

a way to overcome uncertainty make portfolio optimization

an interesting platform to study control.

V. THE MODEL REDUCTION PROBLEM

Until now we have assumed that the true system was

contained in the model class chosen for system identification.

There are however, many problems associated with this

assumption. First, it is almost impossible to validate. At most

one can only show that the selected model is not invalidated

by the data from the true system. Second, models which can

actually describe the true system are usually too complex

to be efficiently identified or used in computing decisions.

Finally, complex models may require more data in order to

be identified than is available.
The model reduction problem centers around reducing

complexity while retaining as much accuracy as possible.

The problem states that given a complex system, G, find a

simpler system from a class of simple systems, Ĝ, such that

the difference between them is minimized in some norm.

inf
Ĝ∈Ĝ

∥

∥G− Ĝ
∥

∥

n
(7)

See [6] for more discussion on Model Reduction.
Another way to reduce complexity is to lower compu-

tational complexity by decreasing the size of the control

and system identification problems. An example of this for

portfolio management is to limit the number of stocks being

considered. This will avoid introducing the uncertainty that

comes from simplifying the model class, however, it may

lead to decreased performance because some of the previous

options are no longer available for the decision algorithm.

The next example shows many ways how approximation may

be done by students with portfolio optimization.
Example 7: (Reducing Complexity in Portfolio Choice)

Continuing previous examples where we have a simple

model for future returns, the Markowitz formulation for the

control problem requires a quadratic program to compute

the covariance of a portfolio. The solution can not be solved

quickly for a large number of securities. The literature is

rich with methods for approximating the Markowitz portfolio

[12], [13]. One might also consider simplifying the problem

by using an alternative formulation such as the MAD model

which can be computed with a linear, instead of a quadratic

program.
Another alternative for reducing complexity is to limit

the number of securities available for selection. One might

take the top n performers over the last period of time, or

the lowest valued in the Dow Jones Industrial Average, etc.

In our example, we limit the number of stocks under con-

sideration from a progressively smaller subset of securities

in the American Stock Exchange. Figure 4 shows how the

value of a MAD portfolio is affected when choosing subsets

of securities of different sizes. In particular showing it is

non trivial to restrict stocks to a subset. Choosing a good

restrictive subset this figure shows that choosing a subset of

securities from which the optimal portfolio performs as well

as the non restricted set is non trivial.
The portfolio optimization problem introduces students

to consider some important questions in approximation.

For example, what approximations can be made that keep

solutions close to non-approximated optimal solutions? How

does limiting the number of securities affect the computa-

tional complexity as well as the performance of the decision

algorithm?
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VI. THE VERIFICATION PROBLEM

Once the solution to a control problem has been for-

mulated and has been approximated where necessary to

ensure that a solution can actually be computed, some very

important questions remain. How do we know that the

approximated model is still precise? How do we know that

the control solution works as desired? How do we convince

non technical people that our methods are sound? These

questions motivate the final major problem in control that

our platform introduces to students.

The verification stage monitors the performance of a

complete solution, including the control, identification, and

reduction steps. We call such a complete solution an al-

gorithmic decision process. Verification determines whether

we observe any new evidence that the assumption justifying

many of the choices made in the design of the algorithmic

decision process have been violated, thereby motivating a

redesign of the solution. Note that we can never prove that

a particular design will always work, we simply look for

evidence that it begins to fail [14].

Over time verification has become an increasingly im-

portant field of research. As controllers are implemented in

software and hardware it becomes imperative to verify that

these controllers will work as designed. In designing system-

on-chip solutions, for example, 70% of the effort is spent on

verification [15]. Because of this effort, verification should be

considered early-on in the design of solutions to the control,

system identification, and model reduction problems.

Example 8: (Verifying Portfolio Optimization) In the port-

folio optimization problem we want to use verification to

determine whether our decision process is able to select

portfolios that are better than the competition. One first

attempt can be to run on past data to determine whether

the algorithm performes above a specified benchmark.

In addition to verification with past data, running algo-

rithms against others provides a useful means of verification.

Many virtual fund managements systems have a way to com-

pare algorithms against each other in hopes of determining

which is better. Brigham Young University’s Tour de Finance

is a platform that allows for student defined competition

dynamics as a particular verification method [16].

As students go through the control design process, the Tour

de Finance platform gives them a fun competition which will

also serve as a verification mechanism. Students can create

leagues where algorithms can compete against each other.

By seeing which algorithm performs better over time, they

can determine which algorithm is better.

VII. CONCLUSIONS

We have introduced portfolio management as a learn-

ing platform designed to teach students about the decision

making process and introduce them to important controls

problems earlier in their education. We walked through the

example of portfolio management, showing how questions

encountered by trying to select an optimal portfolio led to

deep questions in the problems of control, system identifi-

cation, model reduction, and verification. Moreover, classic

results in finance such as the Markowitz model lead to

exploring the interaction among these problems.
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