
A Scalable Robust Stability Criterion for Systems with Heterogeneous LTI

Components

U. T. Jönsson

Royal Institute of Technology

ulfj@math.kth.se

C.-Y. Kao

National Sun Yat-Sen University

cykao@mail.nsysu.edu.tw

Abstract— A scalable robust stability criterion for net-
worked interconnected systems with heterogeneous linear time-
invariant components is presented in this paper. The criterion
involves only the properties of individual components and the
spectrum of the interconnection matrix, which can be verified
with relatively low computational effort, and more importantly
maintains scalability of the analysis. Moreover, if the compo-
nents are single-input-single-output (SISO), the criterion has an
appealing graphical interpretation which resembles the classical
Nyquist criterion.

I. INTRODUCTION

Many large-scale network interconnected systems have

structure that can be explored in analysis and design. It is

desirable to find conditions that ensure system-wide robust

stability based on easily verifiable conditions on the local

dynamics and the interconnection structure. The resulting

analysis and design tools will then scale gracefully as the

network size grows. Several such results have appeared

recently for linear homogeneous systems in e.g. [1], [2] and

for systems with heterogeneous dynamics in e.g. [3], [4], [5],

[6], [7].

In this paper we consider a class of heterogeneous lin-

ear time-invariant dynamical systems interconnected over a

network interconnection matrix that can be unitarily diago-

nalized. The resulting stability criterion involves only the

eigenvalue distribution of the interconnection matrix and

the dynamics of individual subsystems. This decentralization

feature allows the stability criterion to be checked with

relatively low computational effort, and more importantly,

maintains the scalability of the network. Under a fur-

ther assumption that all subsystems are single-input-single-

output (SISO), the stability criterion has a graphical inter-

pretation which resembles the classical Nyquist criterion: the

convex combination of frequency responses of the individual

subsystems should avoid a polyhedral region (referred to as

the “instability region”) that may be constructed from the

characteristics of the network. More specifically, suppose that

the eigenvalues of the interconnection matrix are contained

in a given closed convex polytope. Then the convex duality

theory can be used to derive a systematic procedure for

constructing the instability region from the vertices of this

polytope. Moreover, to justify the term “instability region”
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we show that if the stability criterion is violated, a destabiliz-

ing interconnection matrix with eigenvalues residing in the

given convex polytope can be constructed using the solution

of a linear program.

The result presented here is an extension of our previous

work in [8], which relaxes a certain condition imposed on

the eigenvalue distribution of the interconnection matrix.

More specifically, the result presented in [8] requires the

eigenvalues of the interconnection matrix to be within a

convex region generated by intersection of circles which have

the origin on their boundaries. This condition is sometimes

too restrictive and makes the result less applicable in practice.

The generalization done in this paper relaxes this restriction

and allows one to consider interconnection matrices with

eigenvalues within any convex polytope. As such, the result

presented in this paper is applicable to any interconnection

matrix that satisfies the unitary diagonalization assumption.

Due to the length limitation, the proofs of our results are

omitted. They can be found in the report [9].

A. Notation and Preliminaries

In the paper we consider the following functional spaces

Am×m: The space of transfer functions obtained as the

Laplace transform of the impulse response functions

h(t) = hc(t)θ(t) + h0δ(t)

where hc ∈ L
m×m
1 [0,∞), h0 ∈ R

m×m, θ(·) and δ(·)
denote the unit step function and the Dirac delta function,

respectively.

Sm×m
A : The space of transfer functions obtained as the

(double sided) Laplace transform of the impulse response

functions of the form

h(t) = hc(t) + h0δ(t)

where hc(t) = hc(−t)
T ∈ L

m×m
1 (−∞,∞) and

h0 = hT
0 ∈ R

m×m. Any H(s) from Sm×m
A satisfies

H(s) = H(−s)T in its domain of definition, which includes

the imaginary axis.

Sm×m
C

: The set of matrices {M ∈ C
m×m : M = M∗}.

Any H(s) ∈ Am×m defines a bounded linear operator on

L2[0,∞), which can be defined by a convolution integral

in the time domain and as a multiplication operator in the

frequency domain.

Any Υ ∈ Sm×m
A defines a bounded self-adjoint linear

operator on L2(−∞,∞). It is called positive semi-definite
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if and only if (iff) 〈v, Υv〉 ≥ 0, for all v ∈ L2(−∞,∞) and

(strictly) positive definite iff there exists some ǫ > 0 such that

〈v, Υv〉 ≥ ǫ‖v‖2, for all v ∈ L2(−∞,∞). It can be shown

that an operator Υ ∈ Sm×m
A is positive semi-definite if

Υ(jω) ≥ 0, ∀ω ∈ R∪{∞} and (strictly) positive definite if

Υ(jω) > 0, ∀ω ∈ R∪{∞}, which are denoted as Υ ≥ 0 and

Υ > 0, respectively. Here we used that functions in Sm×m
A

(and Am×m) are continuous on the extended imaginary axis.

Negative semi-definiteness and (strict) negative definiteness

are defined with opposite inequalities and are denoted as

Υ ≤ 0 and Υ < 0, respectively.

We use ⊗ to denote the Kronecker product. The direct

sum of ∆k, k = 1, · · · , n, is defined as

⊕n
k=1∆k = diag(∆1, . . . ,∆n).

Given a matrix Γ, eig(Γ) denotes the spectrum of Γ. Given

a set Λ, the notations co(Λ) and cone(Λ) (sometimes, the

parentheses are dropped for simplicity) denote the convex

hull of Λ and the convex cone generated by the elements of

Λ, respectively. For a complex number λ, the conjugate of

λ is denoted by λ̄.

II. A SCALABLE STABILITY RESULT

Let us consider the system

u = Γy

y = Hu+ e,
(1)

where H = ⊕n
k=1Hk with each Hk ∈ Am×m. The feedback

interconnection is modeled as Γ = Γ̂⊗Im, where Γ̂ ∈ An×n,

and the disturbance e ∈ L2[0,∞). Stability of this system

means that there exists a constant c > 0 such that ‖y‖ +
‖u‖ ≤ c‖e‖ for all e ∈ L2[0,∞).

The system can be viewed as a set of linear dynamics

{Hk, k = 1, . . . , n} interconnected over a graph described

by Γ̂. The k, l component of Γ̂ represents the gain from node

l to node k. We allow local feedback; i.e., γk,k is allowed

to be non-zero. By allowing Γ̂ ∈ An×n, the components

of Γ̂ may sometimes be used to model communication

channels with transmission delays and bandwidth limitations.

We say that Γ̂ is normal if1 Γ̂(jω)∗Γ̂(jω) = Γ̂(jω)Γ̂(jω)∗,

∀ω ∈ R∪{∞}. The system class includes linearized models

for Internets congestion control, vehicle platoon models, and

consensus problems.

The next result shows that the stability of (1) can be

characterized using only the individual transfer functions Hk

and the spectrum of Γ̂(jω). The result is proven in the same

way as the corresponding result in [8] and the result is also

related to earlier contributions in [4], [5].

Proposition 1: Consider the system (1), where H =
⊕n

k=1Hk with Hk ∈ Am×m and Γ = Γ̂ ⊗ Im, where

Γ̂ ∈ An×n is normal. The system is stable if there exists

Π ∈ S2m×2m
A of the form

Π =

[
Π11 Π12

Π∗
12 Π22

]

1For the sake of simplifying the notations, we often suppress the depen-

dence on ω and write Γ̂∗Γ̂ = Γ̂Γ̂∗.

with Π11 ∈ Sm×m
A and Π22 ∈ Sm×m

A satisfying

(i) Π11 ≥ 0 and Π22 ≤ 0,

(ii) |λ|2Π11 + λΠ12 + λΠ∗
12 + Π22 ≤ 0, ∀λ ∈ eig(Γ̂)

such that

(iii) Π11 + Π12Hk + H∗
kΠ∗

12 + H∗
kΠ22Hk > 0, ∀ k =

1, · · · , n.

Remark 1: The condition Π11 ≥ 0 in (i) implies that (ii)
is equivalent to

|λ|2Π11 + λΠ12 + λΠ∗
12 + Π22 ≤ 0, ∀ λ ∈ co

(
eig(Γ̂)

)
.

This provides a robustness interpretation of our results that

will be further elaborated in Section IV. Note that in many

applications the eigenvalues of Γ are easy to compute or

estimate. This is, for example, the case in circulant and

circular networks, in consensus problems involving the graph

Laplacian [10] and in Internet congestion control [6], [3].

In the next section, we will show that the stability criterion

also has a simple and illuminating graphical representation

when all Hk’s are single-input-single-output (SISO).

III. DUALITY AND GRAPHICAL REPRESENTATION

The next proposition provides a dual condition that holds

whenever the main stability condition (iii) in Proposition 1

fails to hold. The dual condition will be used to derive simple

graphical tests for stability.

Proposition 2: Let Hk ∈ Am×m, for k = 1, · · · , n, and

let ΠΛ ⊂ S2m×2m
C

be a closed (in the topology defined by the

Frobenius norm) convex cone. Then either of the following

two statements holds

(a) There exists Π ∈ S2m×2m
A such that

(i) Π(jω) ∈ ΠΛ, ∀ω ∈ R ∪ {∞};

(ii) Π11 + Π12Hk +H∗
kΠ∗

12 +H∗
kΠ22Hk > 0, ∀ k =

1, . . . , n.

(b) There exists an ω ∈ R ∪ {∞} and a nonzero tuple

Z ∈ Z := {(Z1, . . . , Zn) : Zk ∈ Sm×m
C

, Zk ≥ 0},

such that
n∑

k=1

[
I

Hk(jω)

]
Zk

[
I

Hk(jω)

]∗
∈ Π⊖

Λ
,

where Π⊖
Λ

:=
{
W ∈ S2m×2m

C
: tr(ΠW ) ≤ 0,∀Π ∈ ΠΛ

}

is the polar cone of ΠΛ.

Let us now restrict the attention to the case where the Hk’s

are SISO. Suppose Λ ⊆ C is a closed convex polytope and

suppose we are given the following spectral characterization

of the interconnection matrix: eig(Γ)(jω) ∈ Λ for all ω ∈
R ∪ {∞}. The stability conditions in Proposition 1 lead us

to consider the following convex cone of multipliers

ΠΛ = {Π ∈ S2×2
C

: Π11 ≥ 0; Π22 ≤ 0;

|λ|2Π11 + λΠ12 + λΠ∗
12 + Π22 ≤ 0,∀λ ∈ Λ}.

(2)

We have the following simple characterization of the polar

cone Π⊖
Λ

when Λ is a convex polytope.

Lemma 1: Consider ΠΛ as defined in (2) and suppose

that Λ = co{λ1, . . . , λn}. Then the polar cone of ΠΛ is

characterized as follows

Π⊖
Λ

= cone
{
Wk ∈ S2×2

C
: k = 1, . . . , n+ 2

}
,

2899



where Wk = vkv
∗
k for k = 1, . . . , n + 1, Wn+2 =

−vn+2v
∗
n+2, and

vk =

[
λk

1

]
, k = 1, . . . , n, vn+1 =

[
0
1

]
, vn+2 =

[
1
0

]
.

A. Graphical Representation of Stability Condition

From Proposition 2 and Lemma 1 it follows that the

stability condition is violated if and only if there exists an

ω0 ∈ R∪{∞}, and a nonzero n-tuple z = (z1, . . . , zn) ≥ 0,

such that

n∑

k=1

zk

[
1

Hk(jω0)

] [
1

Hk(jω0)

]∗
=

n+2∑

k=1

ψkWk (3)

for some ψk ≥ 0. This gives rise to the equation system

n∑

k=1

zk =

n∑

k=1

ψk|λk|
2 − ψn+2 (4)

n∑

k=1

zkHk(jω0) =
n∑

k=1

ψkλ̄k (5)

n∑

k=1

zk|Hk(jω0)|
2 =

n∑

k=1

ψk + ψn+1. (6)

Since the equation system can be multiplied by a positive

scalar without changing any of the required conditions, it is

possible to normalize the coefficients such that
∑n

k=1
zk =

1. Let us introduce the Nyquist polytope of the system

matrices N [H1, . . . ,Hn](ω), parameterized by ω, to be

co{(ReHk(jω), ImHk(jω), |Hk(jω)|2) : k = 1, . . . , n} (7)

and the instability region

Ω =

{
n∑

k=1

ψk(Reλk,−Imλk, 1) + (0, 0, ψn+1) :

ψk ≥ 0, k = 1, . . . , n+ 1;

n∑

k=1

ψk|λk|
2 ≥ 1

}
.

(8)

We have the following graphical characterization of robust

stability of system (1).

Proposition 3: Consider system (1), where H =
⊕n

k=1Hk, each Hk ∈ A, and Γ ∈ An×n is normal. The

system is stable if

(i) eig(Γ(jω)) ∈ Λ := co{λ1, . . . , λn}, ∀ω ∈ R ∪ {∞},

(ii) N [H1, . . . ,Hn](ω)
⋂

Ω = ∅, ∀ω ∈ R ∪ {∞}.

Figure 1 illustrates the graphical test of the sta-

bility criterion in the case of two subsystems. Note

that the two three-dimensional Nyquist curves Ck :=
{(ReHk(jω), ImHk(jω), |Hk(ω)|2) : ω ∈ R ∪ {∞}}, k =
1, 2, reside on a parabolic surface. For stability, the Nyquist

polyhedron N [H1,H2](ω) must avoid the polyhedron region

Ω. Note that N [H1,H2](ω), illustrated by the dashed blue

lines in the figure, resides inside the parabolic surface.

It is easier to construct the region Ω using parameters

θk := ψk|λk|2, k = 1, · · · , n and θn+1 = ψn+1. To this

end, we first note that, any zero λk may be removed from (8)

without changing the set Ω. Hence, without loss of generality,

Re s

Im s

|s|2

Ω

N [H1, H2](ω)

C1

C2

Fig. 1. Illustration of three-dimensional graphical test for robust stability
in the case of two subsystems. Note that the three-dimensional Nyquist
curves C1 and C2 evolve on a parabolic surface. For stability, the Nyquist
polyhedron N [H1, H2](ω) (illustrated by the dashed blue lines) must avoid
the polyhedron region Ω.

we may assume all λk, k = 1, · · · , n, are nonzero. Then it is

easy to verify that the instability region Ω can be equivalently

expressed as

Ω =

{
α · co

{(
Re

1

λk

, Im
1

λk

,
1

|λk|2

)
: k = 1, · · · , n

}

+(0, 0, θn+1) : α ≥ 1, θn+1 ≥ 0} . (9)

To illustrate the implication of this graphical criterion,

we start with the special case where statement (ii) of

Proposition 3 simplifies to

co{H1(jω), . . . ,Hn(jω)}
⋂

Ω0 = ∅, ∀ω ∈ R ∪ {∞},

(10)

where

Ω0 :=

{
α · co

{
1

λ1

, · · · ,
1

λn

}
: α ≥ 1

}
(11)

is the projection of Ω to the complex plane. This case appears

when the members of the set ΠΛ defined in (2) are further

restricted to have only zero Π22. Then the parameter ψn+1

becomes a free variable, and therefore equation (6) is always

satisfied by some ψn+1. Thus equation (6) can be disregarded

and statement (ii) in Proposition 3 reduces to (10). Note that

this simplified stability test always is a sufficient condition

for stability but it may be conservative or even useless as we

will see in Example 1 and Example 2 below. The reason why

restricting Π22 to be zero generally leads to a conservative

criterion is somewhat revealed in the next proposition, which

shows that any closed convex polytope in the complex plane

that contains the origin can be exactly characterized using

quadratic forms with Π22 ≤ 0.

Proposition 4: Suppose 0 ∈ Λ = co{λ1, . . . , λn}. Let

Λcl =
⋂

Π∈ΠΛ

{
λ ∈ C : Π11|λ|

2 + 2Re Π12λ̄+ Π22 ≤ 0
}
.
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Re s

Re s

Im s

Im s

|s|2

Λ

Ω

Ω0

λ

−λ

1

|λ|2

1

λ

− 1

λ

Fig. 2. Figure in the left-hand side: the set Λ where eigenvalues of Γ
belongs. Figure in the right-hand side: the corresponding Ω.

Then Λ = Λcl.

Example 1: Suppose Λ = co{λ,−λ}, λ 6= 0. In this case,

it is easy to verify that the set Ω is equivalent to
{
α · co

{(
Re

1

λ
, Im

1

λ
,

1

|λ|2

)
,

(
−Re

1

λ
,−Im

1

λ
,

1

|λ|2

)}

: α ≥ 1} .

Figure 2 illustrates the region Ω. The set Ω0 corresponds to

the dashed line through the points −1/λ and 1/λ. For this

example, the simplified condition in (10) is conservative. One

may have co{H1(jω), · · · ,Hn(jω)} intersect the line seg-

ment co{−1/λ, 1/λ} while co{|H1(jω)|2, · · · , |Hn(jω)|2}
is below 1/|λ|2. In this case, condition (10) fails but the

stability condition still holds.

Example 2: Suppose Λ = co{λ,−λ, λ̄,−λ̄}, where

Reλ > 0 and Imλ > 0. In this case

Ω =

{
α · co

{(
Re

1

λ
, Im

1

λ
,

1

|λ|2

)
,

(
Re

1

λ̄
, Im

1

λ̄
,

1

|λ̄|2

)
,

(
−Re

1

λ
,−Im

1

λ
,

1

|λ|2

)
,

(
−Re

1

λ̄
,−Im

1

λ̄
,

1

|λ̄|2

)}

+ (0, 0, ψ) : α ≥ 1, ψ ≥ 0} .

Figure 3 illustrates the region Ω. In this example the simpli-

fied stability test in (10) is useless since Ω0 covers the whole

complex plane, while the stability condition in Proposition 3

only requires that the Nyquist polytope N [H1, . . . ,Hn] stays

outside the set Ω. Although it may appear that the stability

region; i.e., the space N [H1, . . . ,Hn] can stay, is large, one

can show that co{H1(ω), . . . ,Hn(ω)} ∈ Ω2 := {s ∈ C :
|s| ≤ 1/|λ|} is a necessary and sufficient for the criterion in

Proposition 3 to hold. This simplifies the stability test.

B. Inverse Nyquist Polytope

It may sometimes be easier to visualize the stability test

in Proposition 3 if we consider the following alternative

normalization

n∑

k=1

zk|Hk(jω)|2 = 1.

Introducing the new variables ẑk = zk|Hk(jω)|2, we may

replace statement (ii) in Proposition 3 by the following

Re s

Re s

Re s

Re s

Im s

Im s

Im s

Im s

|s|2

Λ

Ω0

Ω
Ω2

λ

λ̄−λ

−λ̄
1

λ̄

1

λ̄

1

λ

1

λ
− 1

λ

− 1

λ

− 1

λ̄

− 1

λ̄

Re 1

λ̄
−Re 1

λ̄

Fig. 3. (Left upper) the set Λ where eigenvalues of Γ belongs. (Left
lower) the polyhedron Ω which N [H1(jω), · · · , Hn(jω)](ω) must avoid
for stability of the interconnected system. (Right upper) the projection of
Ω on to the Re s-Im s plane, i.e., the corresponding Ω0. (Right lower) The
region Ω2 for the two-dimensional stability test.

equivalent condition

N̂ [H1, . . . ,Hn](ω)
⋂

Ω̂ = ∅,

where N̂ [H1, . . . ,Hn](ω), referred to as “the inverse

Nyquist polytope”, is defined as

co

{(
Re

1

Hk(jω)
, Im

1

Hk(jω)
,

1

|Hk(jω)|2

)
: k = 1, .., n

}

(12)

and the instability region to avoid is

Ω̂ =

{
n∑

k=1

ψk(Reλk, Imλk, |λk|
2) − (0, 0, ψn+2) :

ψk ≥ 0;

n∑

k=1

ψk ≤ 1;ψn+2 ≥ 0

}
.

This graphical test involving the inverse Nyquist polytope is

illustrated in Figure 4. Note that this change of variable is

frequency dependent. Furthermore, if Hk(jω0) = 0 for some

ω0, then we should set ẑk to zero. The instability regions

corresponding to Λ = co{λ,−λ} and Λ = co{λ,−λ, λ̄,−λ̄}
are illustrated in Figure 5.

Example 3: To further illustrate the graphical test, let

us consider a system consisting of three SISO subsystems

H1(s), H2(s), and H3(s) which are circularly connected. In

this case, the eigenvalues of the interconnection matrix Γ are

λ1 = 1, λ2 = − 1

2
+ i

√
3

2
, and λ3 = − 1

2
+ i

√
3

2
.

For the case where H1(s) = e
−0.8s

s2+s+1.5
, H2(s) = e

−0.5s

s+1.25
,

H3(s) = − e
−s

s+1
, one can show that the system is robustly

stable by applying the inverse Nyquist criterion. The left-

hand-side figure in Figure 6 illustrates the graphical test.
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Re s

Im s

|s|2

bΩ

bN [H1, H2](ω)

Ĉ1

Ĉ2

Fig. 4. Illustration of three-dimensional inverse Nyquist test for robust
stability in the case of two subsystems. Note that the three-dimensional

inverse Nyquist curves Ĉ1 and Ĉ2 evolve on a parabolic surface. For

stability, the Nyquist polyhedron bN [H1, H2](ω) (illustrated by the dashed

blue lines) must avoid the polyhedron region bΩ.

Re sRe s

Im s
Im s

|s|2|s|2

|λ|2

λ

−λ

λ−λ̄

−λ λ̄

|λ|2

Fig. 5. (Left) The instability regions corresponding to Λ = co{λ,−λ}.
(Right) The instability regions corresponding to Λ = co{λ,−λ, λ̄,−λ̄}.

One can see that the inverse Nyquist polytope avoids the

instability region, which is illustrated by the blue region.

On the other hand, if we lower the damping ratio of H1(s)

by 20%; i.e., let H1(s) = e
−0.8s

s2+0.8s+1.5
. Then the system is

no longer robustly stable. The corresponding inverse Nyquist

polytope intersects the instability region, as illustrated in

the right-hand-side figure of Figure 6. This means, as we

will see in Section IV, that one may find a destabilizing

interconnection matrix whose eigenvalues are in the set

co{λ1, λ2, λ3}.

IV. A ROBUST VERSUS NON-ROBUST FORMULATION

It can be shown that if there exists an ω such that

N [H1, · · · ,Hn](ω)
⋂

Ω 6= ∅, then a systematic algorithm

can be applied to construct a simple destabilizing network

interconnection matrix with eigenvalues in the specified

convex polytope. Hence the term “instability region” for Ω
is justified. The construction of the destabilizing network

interconnection matrix is rather involved and can be found

in [9]. The following necessary and sufficient condition for

robust stability of heterogeneous interconnected systems is a

consequence of the claim stated above.

Proposition 5: Let H = ⊕n
k=1Hk, where each Hk ∈ A

is a stable LTI system. Let λ1, · · · , λm ∈ C and Λ =

−2−1012

−2

0

2

0

0.5

1

1.5

2

2.5

3

3.5

4

−2
−1

0
1

2

−2

0

2

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 6. The inverse Nyquist criterion applied to a circularly connected
system. Left-hand-side: the inverse Nyquist polytope avoids the instability
region and thus the system is stable. Right-hand-side: the inverse Nyquist
polytope intersects the instability region and thus the system is not robustly
stable.

co{λ1, · · · , λm} which includes 0. Then the interconnection

of H and Γ is input-output stable for any normal intercon-

nection matrix Γ which satisfies eig(Γ) ∈ Λ if and only

if N [H1, . . . ,Hn](ω)
⋂

Ω = ∅ for all ω ∈ R ∪ {∞},

where N [H1, . . . ,Hn](ω) and Ω are defined in (7) and (8),

respectively.

The condition Π11 ≥ 0 may be omitted if additional

assumptions on the dynamics are introduced. The robustness

interpretation discussed in Remark 1 and Proposition 5 is

then lost but instead we obtain a less restrictive stability

condition. We will here only give a brief illustration of the

consequences of removing the constraint Π11. We refer to [9]

for further details and to Section V for an example.

The following result is analogous to Proposition 4.

Proposition 6: Let Λ = {λ1, · · · , λn},

ΠΛ,e =

{
Π ∈ S2×2

C
: Π22 ≤ 0;

[
λ
1

]∗
Π

[
λ
1

]
≤ 0,∀λ ∈ Λ

}
,

(13)

and define

Λcl
e =

{
λ :

[
λ
1

]∗
Π

[
λ
1

]
≤ 0, ∀Π ∈ ΠΛ

}
.

Then Λcl
e = {0, λ1, · · · , λn}.

For ΠΛ,e in (13), one may derive graphical tests for testing

the corresponding statement (a) of Proposition 2. The tests

are identical to those presented in Section III, except that the

regions the Nyquist polytope/Inverse Nyquist polytope must

avoid become smaller. Specifically, without the constraint

Π11 ≥ 0, the new Ω set becomes

Ωe = co

{(
Re

1

λk

, Im
1

λk

,
1

|λk|2

)
: ∀k

}
+ (0, 0,R+)

(14)
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where R+ denotes the set of nonnegative real numbers.

There is also the additional assumption that there must exist a

stable homogeneous interconnection; i.e. a transfer function

H0 ∈ co{H1, . . . ,Hn} such that the interconnection of

H0 ⊗ In and Γ is stable.

In the next section we use this new characterization to de-

rive a stability result for heterogeneous consensus networks.

V. HETEROGENEOUS CONSENSUS NETWORKS

Consider the system equation

y = H(Γy + r) (15)

where H = ⊕n
k=1Hk with Hk(s) = 1

s
(1 + ∆k(s)), where

∆k is a stable perturbation of the dynamics. The disturbance

r represents the effect of the initial condition and Γ ∈ R
n×n

is a normal matrix satisfying

Γ1 = 0, where 1 =
1

n

[
1 . . . 1

]T
,

and eig(Γ) ∈ co{0, λ2, . . . , λn}, where we assume Reλn ≤
. . . ≤ Reλ2 < 0. Given the structure of H and Γ, the output

of (15) can at best converge to a steady state solution y0

satisfying

0 = (I + ∆(0))Γ)y0

where ∆ = ⊕n
k=1∆k. Provided that ∆k(0) 6= −1, it follows

that the steady state solution must lie in the subspace spanned

by the eigenvector 1; that is,

lim
t→∞

y(t) ∈ span{1}. (16)

This means that all outputs converge to the same value,

which is also referred to as “the outputs of the system

reach consensus”. In the case where all ∆k = 0, it is well

known that the consensus is reached and that the rate of

exponential decay to consensus is equal to η = −Reλ2.

See, for example [10]. The goal here is to provide conditions

under which the perturbed system is guaranteed to reach

consensus with a prescribed rate of convergence.

To this end, we first note that Γ has a spectral decompo-

sition

Γ = Udiag(0, λ2, . . . , λn)U∗ (17)

where U =
[
1 V

]
, 1 ⊥ V , and V ∗V = In−1. We further

assume that Reλk ≤ −η, ∀k = 2, . . . , n for some η > 0.

Finally, consider the “instability” region

Ωe = (0, 0,R+) + co

{(
Re

1

λk

, Im
1

λk

,
1

|λk|2

)
: k ≥ 2

}
.

The next result shows that the number η provides an upper

bound on the maximum possible rate of exponential decay

to consensus.

Theorem 1: Consider the system in (15), where H =
⊕n

k=1Hk, and Hk(s) = 1

s
(1 + ∆k(s)). Suppose Γ can be

decomposed as in (17), where Reλk ≤ −η, k = 2, . . . , n,

for some η > 0. Suppose in addition that there exists α,

0 < α < η, such that

(i) ∆k(s− α) ∈ A, k = 1, . . . , n,

(ii) N [Ȟ0, Ȟ1, . . . , Ȟn](ω)
⋂

Ωe = ∅, ∀ω ∈ R ∪ {∞},

where Ȟ0(s) := 1

s−α
, Ȟk(s) = 1

s−α
(1 + ∆k(s− α)).

Then the outputs of the system satisfy eαty(t) → span{1} as

t→ ∞ for any input r which satisfies eαtr(t) ∈ L2[0,∞).
Remark 2: The same conclusion holds if we replace (ii)

in the theorem statement by the following two-dimensional

stability criterion:

co{Ȟ0, Ȟ1, . . . , Ȟn}(jω)
⋂

Ωe,0 = ∅, ∀ω ∈ R ∪ {∞},

where Ωe,0 = co
{

1

λ2
, . . . , 1

λn

}
.

Remark 3: Heterogeneous consensus networks have pre-

viously been considered in e.g. [6], [7], [11] and [11] consid-

ers integral quadratic constraints as the basis of the derivation

of the results, which is related to our approach. Our result

is to our knowledge the first to explicitly consider rate of

convergence bounds of heterogeneous consensus networks.

VI. CONCLUDING REMARK

A scalable robust stability criterion for interconnected sys-

tems with heterogeneous linear time-invariant components is

presented. The criterion has an appealing feature that only

the properties of dynamics of individual components and the

spectrum of the interconnection matrix are involved. The

criterion has an illustrative graphical representation if we

further assume that the individual components are SISO. It

can be shown that violation of the criterion allows explicit

construction of an admissible interconnection matrix which

results in an unstable interconnected system.
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