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Flexible Control Lyapunov Functions
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Abstract— A central tool in systems theory for synthesizing
control laws that achieve stability are control Lyapunov func-
tions (CLFs). Classically, a CLF enforces that the resulting
closed-loop state trajectory is contained within a cone with a
fixed, predefined shape, and which is centered at and converges
to a desired converging point. However, such a requirement
often proves to be overconservative. In this paper we propose
a novel idea that improves the design of CLFs in terms of
flexibility, i.e. the CLF is permitted to be locally non-monotone
along the closed-loop trajectory. The focus is on the design
of optimization problems that allow certain parameters that
define a cone associated with a standard CLF to be decision
variables. In this way non-monotonicity of the CLF is explicitly
linked with a decision variable that can be optimized on-line.
Conservativeness is significantly reduced compared to classical
CLFs, which makes flexible CLFs more suitable for stabilization
of constrained discrete-time nonlinear systems and real-time
control.

I. INTRODUCTION

One of the interesting problems in nonlinear control sys-
tems is the synthesis of control laws that achieve stability [1],
[2]. Control Lyapunov functions (CLFs) [3], [4] represent
a powerful tool for providing a solution to this problem.
The classical approach is based on the off-line design of an
explicit feedback law that renders the derivative of the CLF
negative. An alternative to this approach is to construct an
optimization problem to be solved on-line, such that any of
its feasible solutions renders the derivative of a candidate
CLF negative. This method can be traced back to the early
results presented in [5], followed by the more recent articles
[6], [7], where synthesis of CLFs is performed in a receding
horizon fashion.

All the above works mainly deal with the continuous-
time case, while conditions under which these results can
be extended to sampled-data nonlinear systems using their
approximate discrete-time models can be found in [8]. An
important article on control Lyapunov functions for discrete-
time systems is [9]. Therein, classical continuous-time results
regarding existence of CLFs are reproduced for the discrete-
time case. A significant relaxation in the off-line design
of CLFs for discrete-time systems was presented in [10],
where parameter dependent quadratic CLFs are introduced.
Also, interesting approaches to the off-line construction
of Lyapunov functions for stability analysis were recently
presented in [11], [12] and [13].

Despite the popularity of CLFs within systems theory,
there is still a significant gap in the application of CLFs in
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Fig. 1. A graphical illustration of classical CLFs (p € [0, 1), ¢ € Rx0).
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Fig. 2. A graphical illustration of flexible CLFs (c € R~q).

real-time control. The main reason for this is conservative-
ness of the sufficient conditions for Lyapunov asymptotic
stability which are employed by most off-line and on-line
methods for constructing CLFs. To illustrate this consider the
graphical depiction in Figure 1. Classically, a CLF enforces
that the resulting closed-loop state trajectory is contained
within a cone with a fixed, predefined shape, which is cen-
tered at and converges to a desired converging point. Typical
examples of relevant classes of systems for which classical
CLFs are overconservative are linear and nonlinear chains
of integrators with bounded inputs and state constraints [14]
and discontinuous nonlinear and hybrid systems [15]. Fur-
thermore, in many real-life control problems classical CLFs
prove to be overconservative. For example, consider the
control of a simple electric circuit, such as the Buck-Boost
DC-DC converter. At start-up, to drive the output voltage
to the reference very fast, the inductor current must rise and
stay far away (e.g., 5S[A]) from its corresponding steady-state
value (e.g., 0.01[A]) for quite some time. Another typical
and very relevant real-life example is control of position
and speed in mechatronic devices, such as electromagnetic
actuators. For a given position reference, the speed must
increase very fast at start-up and then return to its steady
state value, which is equal to zero. In both cases enforcing
a classical CLF design is obviously conservative.
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Motivated by such examples, in this paper we propose a
methodology that reduces the conservatism of CLF design
for discrete-time nonlinear systems. Rather than searching
for a global CLF (i.e. on the whole admissible state-space),
we focus on relaxing CLF-type conditions for a predeter-
mined local CLF through on-line optimization problems.
This approach makes it possible to derive a trajectory-
dependent CLF (i.e. the stabilization conditions are only
imposed for each measured state, along the closed-loop
trajectory generated on-line), which is flexible (i.e. it can be
locally non-monotone). A unique distinguishing feature of
the idea presented in this paper is the explicit link between
non-monotonicity of the CLF and a decision variable that can
be optimized on-line. Besides the theoretical appeal of the
proposed approach, we indicate that for nonlinear systems
affine in control and CLFs based on infinity norms, the
developed optimization problems can be formulated as a
single linear or quadratic program, which is also attractive
for real-time control.

II. PRELIMINARIES
A. Basic notions and definitions

Let R, Ry, Z and Z, denote the field of real numbers,
the set of non-negative reals, the set of integer numbers and
the set of non-negative integers, respectively. We use the
notation Zx., and Z, ., to denote the sets {k € Z, |
k> c1}and {k € Zy | c1 < k < ¢}, respectively, for
some c1,cy € Zy. For a set S C R™, we denote by int(S)
the interior and by cl(S) the closure of S. A polyhedron (or
a polyhedral set) in R™ is a set obtained as the intersection
of a finite number of open and/or closed half-spaces. For
a vector x € R™ let ||«|| denote an arbitrary p-norm and
let [z];, ¢ = 1,...,n denote the i-th component of z. Let
[|2)lco := max;—1,.. n |[z]:], where | - | denotes the absolute
value. For a matrix Z € R™*" let || Z| := sup,_ %
denote its corresponding induced matrix norm. A function
¢ : Ry — Ry belongs to class K if it is continuous, strictly
increasing and ¢(0) = 0. A function ¢ : Ry — R belongs
to class Koo (p € Koo) if ¢ € K and lim,_, o, ¢(s) = 0.
A function 8 : Ry x Ry — Ry belongs to class KL if for
each fixed k € Ry, f(-,k) € K and for each fixed s € Ry,
B(s,-) is decreasing and limy_, o B(s, k) = 0.

B. Lyapunov asymptotic stability for difference inclusions

Consider the discrete-time autonomous nonlinear system
z(k+1) € ®(z(k)), keZy, (1)

where z(k) € R™ is the state at the discrete-time instant k
and the mapping ¢ : R™ = R" is an arbitrary nonlinear
set-valued function. For simplicity of notation, we assume
that the origin is an equilibrium in (1), i.e. ®(0) = {0}.

Definition II.1 We call a set P C R" positively invariant
(PI) for system (1) if for all € P it holds that ®(x) C P.

Definition II.2 (i) System (1) is Lyapunov stable if for any
e > 0 3§(¢) > 0 such that for all corresponding state

trajectories of (1) it holds that ||z(0)|| < d(¢) = |lz(k)|| < e
for all k € Z,. (ii) Let X with 0 € int(X) be a subset of
R™. We call system (1) attractive in X if for each z(0) € X
it holds that all corresponding state trajectories of (1) satisfy
limg— oo ||z (k)| = 0. (iii) We call system (1) AS(X) if it is
Lyapunov stable and attractive in X.

Theorem IL.3 Let X be a PI set for (1) with 0 € int(X).
Furthermore, let oy, a2 € Koo, p € Rpg 1) and let V : R" —
R be a function such that:
ar(llz])) < V(z) < ao(llz]) (2a)
V(z®) < pV(z) (2b)
forallx € X and all z+ € ®(x). Then system (1) is AS(X).
The proof of the above theorem is similar in nature to
the proofs given in [16], [17], by replacing the difference
equation with the difference inclusion as in (1) and is omitted
here for brevity. We call a function V(-) that satisfies the
hypothesis of Theorem I1.3 a Lyapunov function.
C. CLFs for discrete-time systems

Consider the discrete-time constrained nonlinear system

where z(k) € X C R" is the state and u(k) € U C R™ is
the control input at time instant k. ¢ : R™ x R™ — R™ is a
nonlinear function with ¢(0,0) = 0. We assume that X and
U are bounded sets with 0 € int(X) and 0 € int(U).

Definition II.4 A function V' : R™ — R that satisfies

ar(f|lzf]) £ V(z) < ax(|lz]), VzeR" 4)

and for which there exists a control law, possible set-valued,
7 : R™ = U such that

V(¢(z,u) < pV(z),

is called a control Lyapunov function (CLF) in X for the
difference inclusion corresponding to system (3) in closed-
loop with u(k) € n(z(k)), k € Z. O

Vo € X, Yu € 7(x)

Problem II.5 Choose a candidate CLF V (-) for system (3).
At time k € Z; measure the state x(k) and calculate a
control action u(k) that satisfies:

u(k) € U, o(x(k),u(k)) € X,

V(g(x(k), u(k))) < pV (x(k)).
Let m(x(k)) = {u(k) € R™ | (5 holds} and let
Gai(, 7(2)) = {d(x,u) | u e ()}

Proposition I1.6 Let a CLF V (-) in X be given for system
(3). Suppose that Problem I1.5 is feasible for all states x in X.
Then the difference inclusion

z(k +1) € palz(k), n(z(k))),
is AS(X).

(5a)
(5b)

keZi, (6
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The above result, which follows directly from Theo-
rem II.3, establishes that feasible solutions of Problem II.5
are stabilizing feedback laws. However, feasibility of the
inequalities (5) at all time instants, which also requires
finding a CLF in X for the nonlinear system (3), often proves
to be a too conservative requirement.

III. FLEXIBLE CONTROL LYAPUNOV FUNCTIONS

In this section we will propose a solution for relaxing
classical CLFs. We assume that a time-invariant CLF is
known for system (3) only in a subset of the state-space
X, i.e. in  C X with 0 € int(2), and we focus on relaxing
inequality (5b) on-line, for each measured state. This will
result in a flexible CLF that is trajectory-dependent.

Consider the following inequality corresponding to (5b):

Viz(k+1)) < pV(x(k)) + Ak), keZy,  (7)

where \(k) is an additional decision variable which allows
the radius of the sublevel set {z(k+1) € X | V(z(k+1)) <
pV(x(k)) + A(k)} to be flexible, i.e. it can increase if (5b)
is too conservative (see Figure 2 for a graphical illustration).
Based on inequality (7) we can formulate the following
optimization problem. Let oz, a4 € Koo and J : R — Ry
be a function such that asz(|A\|) < J(A) < ay(]A|) for all
A€ R. Let Q C X with 0 € int(£2) be a set with non-empty
interior where V(+) is a CLF for system (3). For example, 2
can be taken as a the region of validity of a linearized model,
for which a CLF function can be computed efficiently.

Problem IIL.1 Choose a candidate CLF V (-) for system (3).
At time k € Z, measure the state z(k) and minimize the
cost J(A(k)) over u(k), A(k) subject to

u(k) € U, o(x(k),u(k)) € X, A(k) =0,

V(o(x(k),u(k))) < pV(x(k)) + A(K).
Let T(z(k)) := {u(k) € R™ | IA(k) € R s.t. (8) holds}
and let ¢q(z, 7(x)) = {d(zx,u) | u € 7(x)}. Let A*(k)
denote the optimum of Problem IIL.1 for all k € Z .

(8a)
(8b)

Theorem IIL.2 Leta CLFV (-) in Q C X (with 0 € int(Q2))
be known for system (3) and suppose that Problem III.1 is

feasible for all states x in X. If limy_,oo A*(k) = 0, the
difference inclusion
z(k+1) € dpa(x(k),7(x(k))), k€Zy, ©)

is AS(X).

Proof: Let x(k) € X for some k € Z,. Then,
feasibility of Problem IIL.1 ensures that x(k + 1) €
¢pa(z(k),m(z(k))) € X due to constraint (8a). Hence,
Problem III.1 remains feasible and thus, X is a PI set for
system (9). Then, by applying the inequality (8b) repetitively
and using the inequality (4) (the upper bound) it can be
shown (see [17], Chapter 2) that there exists a KC-function o
such that

V(z(k+1)) < p"aa((lz(0)]) + o(IAGl),  (10)

where Ay = {M(Dhiezy,,- Exploiting the lower bound
in inequality (4) and the fact that ozl_l € K it results that
there exists a KL-function  and a KC-function  such that

lz(R) < Bz, k) + (1A —yy 1)), VE € Zx1.

As limg_,oo A*(k) = 0 by the hypothesis, it follows that
the closed-loop system (9) is “converging-input converging-
state”, as shown in [16], with A\*(k) as input. Hence,
limy o0 ||2(k)|| = O and thus, system (9) is attractive in
X. This further implies that the closed-loop state trajectory
x(k) reaches the set €2 in finite time. Hence, there exists
a j(x(0)) € Z4 such that \(j) = 0 is a feasible solution
of Problem III.1, by definition of a CLF in ) (see Defini-
tion I1.4). Then, due to minimization of the cost J(A) and
constraint (8b), we have that solving Problem III.1 yields
X*(k) = 0 for all k € Z>;. Hence, applying inequality (8b)
repetitively starting with time instant j € Z>1 yields:

V(z(k+1+5) < p"az(llz()I) + o (I 41
= p"as(llz()]),

for some o € K (note that X[, := N (D ez )
Combining the above local property with the lower bound
in (4) and since for any € > 0 we can choose a 6 € (0,¢)
such that a2(d) < ai(e), it follows that (9) is Lyapunov
stable (see [17], Chapter 2 for more details). Hence, system
(9) is AS(X). O

Remark ITI.3 The condition lim;_,oc A*(k) = 0 ensures
finite time convergence to the set {2, where V'(-) is a classical
CLE. However, in contrast with the terminal constraint set
method employed in model predictive control (MPC) (see,
e.g., [17]), it does not impose a fixed number of discrete-
time instants for reaching (2. Thus, the size of the set € is
no longer influencing the set of states for which Problem III.1
is feasible. This turns out to be a crucial relaxation in terms
of computing a candidate local CLF off-line, as 2 can be
arbitrarily small. ]

Next, we provide a non-conservative solution for guar-
anteeing that limy_. ., A*(k) = 0. By non-conservative we
mean that a non-monotone evolution of A*(k) should be
allowed, while A*(k) — 0 as k — oc.

Lemma II1.4 Let M € Z>, be a fixed constant to be chosen
a priori and let ;i € Ryg 1). If

0 < Ak) < IN(k —
< ()_ién[l%u (k —1),

then limy,_,oc A(k) = 0.

Vk € ZZ]\/[ (11)

The proof of Lemma III.4 follows by somewhat straightfor-
ward algebraic manipulations and is omitted for brevity.
Notice that constraint (11) allows a non-monotone evolu-
tion of \(k) for the first M sampling instant and furthermore,
as long as A\*(k — i) > 0 for at least one i € Zji .
By augmenting Problem III.1 with the constraint (11) on
A(k) enables flexibility of the candidate CLF V (-) along the

104



closed-loop state trajectory via constraint (8b), while still
guaranteeing Lyapunov asymptotic stability. In contrast, if
no constraint on A(k) is added to Problem III.1, although
A(k) can freely vary in time, which is obviously much less
conservative and can still lead to convergent trajectories, only
practical stability can be guaranteed a priori.

Another possibility to further relax Problem III.1 is to
optimize the parameters p, u € Ryg 1) on-line, for every z(k),
as they control the rate of convergence, see, e.g., [12].

Remark IILS The role of inequality (11) is to ensure that
the closed-loop trajectory reaches the set {2 C X in finite
time by imposing a monotonically decreasing upper bound
on A(k). A different way to guarantee the same property
is to design an artificial higher dimensional system and
define the upper bound on A(k) as an output of this system.
Then limy oo A*(k) = 0 can be ensured through partial
stability [18] of the artificial system, without imposing a
monotonically decreasing upper bound. O

Remark III.6 A different possibility for relaxing (5b) is
given by the following inequality:

V(e(k +1) —e(k)) < pV(2(k) — e(k)),

where e(k) is an additional decision variable which allows
the center of the sublevel set {z(k+1) e X | V(z(k+1) —
e(k)) < pV(x(k) —e(k))} to be flexible, i.e. it can be non-
zero if (5b) is too conservative, moving the cone symmetry
axis away from zero (see Figure 2 for an illustration).
Inequality (12) is particularly suitable when regulation to
a set rather than to a point is of concern. In this case e(k)
can be constrained in the set of interest, which results in
asymptotic stabilization with respect to a set. O

keZy, (12)

Remark III.7 The requirement that a local standard CLF
must be predetermined can be eliminated by synthesizing the
function V'(-) on-line simultaneously with the computation
of u(k) and A\*(k). This leads to a time-variant trajectory-
dependent CLF, as opposed to a time-invariant one, which
can still be computed efficiently by introducing a suitable
parameterization, as shown in [19]. O

So far we have assumed that Problem III.1 is feasible
for all z € X, which is usually difficult to verify or even
not the case. This is because feasibility of Problem III.1
is in general only guaranteed for states within the maximal
controlled invariant set contained in X, for system (3), which
is not necessarily identical to X. A simple but numerically
complex way to establish a domain of feasibility is to
solve Problem III.1 explicitly off-line via multiparametric
programming, whenever it can be formulated as a linear or
quadratic (mixed-integer) program. Next, we present two so-
lutions for guaranteeing recursive feasibility of Problem III.1.
The first solution is based on establishing an easily verifiable
sufficient condition under which a particular sublevel set of
V(+) contained in X, rather than €, is a PI set for the closed-
loop system.

Lemma IIL.8 Given a CLF V(-) in Q@ C X for system (3)
anda A € Ry, letVa :={z € R" | V(z) < A}. Let
A= sup

{V(o(x,u)) — pV(2)}.
zecl(X),uecl(U)

Then, for any A € Rsq such that VAo C X, if the above
supremum is a maximum' and A\ < (1 — p)A, Problem III.1
is feasible for all x € VA and remains feasible for all closed-
loop trajectories that start in Va.

Corollary III.9 Leta CLFV (-) in 2 for system (3) be given.
Then, for any A € Rsq such that Vo C €2, Problem III.1 is
feasible for all v € VA and remains feasible for all resulting
closed-loop trajectories that start in V.

The second solution combines a terminal inequality con-
straint on the state trajectory with an equality constraint on
the trajectory of A(k). Let h : R®™ — R™ be a function

with h(0) = 0. For any N € Zx; let A\n_y(k) =
(MO,k), ..., AM(N — Lk)) € RY and let upy_qj(k) =
(u(0, )7...,u( —1,k)) € UVN. Finally, let z(i + 1, k) :=
o(x (z, k),u(i,k)) fori =0,...,N—1and 2(0,k) := z(k).

Problem III.10 Choose a candidate CLF V(-) for system
(3), ap€Rp,)and a A € Ryg. At time k € Z, measure
the state x(k) and minimize the cost J(Ay_1j(k)) =
Zij\;l |A(4, k)| over u(i, k), A(i, k) subject to the constraints

u(i k) € U, ¢(x(i, k), uli, k) € X, Ai, k) >0

forallt=0,...,N —1, (13a)
V(g(x(i, k), u(i, k))) < pV(2(i, k) + A0, k),

forallt=0,...,N —1, (13b)
V(z(N,k)) <A. (13¢)

Let TI(x(k)) = {uy_s(k) € {R™}V | Iy (k) €
RY s.t. (13) holds} and let #(z(k)) := {u(0,k) |
-yl € el Dene e F(a) = o)
u € 7(z)}.

Theorem IIL11 Let a3, € Ko be such that

a3(IA(0,k)]) < J(Awv—1(k)) < as(|A0,k)]). Choose

A € Rsq such that V(-) is a CLF for system (3) in

closed-loop with u(k) = h(x(k)), k € Z, in the set
A ={r e R"| V(z) < A} C X Let X¢(N) C X denote

the set of states for which Problem II1.10 is feasible. Then:
() X (V) is a PI set for the difference inclusion

z(k+1) € pu(z(k), 7(x(k))), k€ Zys.

Moreover, Vo C X (N).
(ii) The difference inclusion (14) is AS(X¢(N)).

(14)

The proof of Theorem III.11 follows by combining the
reasoning used in the proof of Theorem III.2 with the
shifted sequence technique employed in the standard terminal
constraint MPC stability proof, see, e.g., [17].

"Boundedness of ¢(-, -) and V(-) on bounded sets is a sufficient condition
for this hypothesis, as V'(-) is lower and upper bounded by a oo function.
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IV. IMPLEMENTATION ISSUES

The controller synthesis methodology developed in this
paper is generally applicable to discrete-time systems, at
the price of solving an optimization problem on-line. In
this section we present some ingredients for implementing
Problem III.1 as a single linear or quadratic program. Firstly,
suppose there exist functions f : R” — R™ with f(0) =0
and g : R™ — R™*™ such that:

z(k+1) = ¢(x(k), u(k)) = f(x(k)) + g(x(k))u(k). (15)

Also, assume that the sets X and U are polyhedra. Secondly,
we restrict our attention to CLFs defined using the co-norm,
ie. V(z) := ||Px| oo, where P € RP*™ is a full-column
rank matrix, to be computed off-line. The interested reader
is referred to [17] for techniques to compute local CLFs
based on infinity norms. These methods apply to linear and
piecewise affine (PWA) systems. Note that V(x) defined
above satisfies the inequality (4) for v (s) := %s (sp >0is
the smallest singular value of P) and for as(s) := || P||cos.
Consider now Problem III.1, possibly augmented with (11).
Since at discrete-time instant k the measured state z(k)
and the previously computed \*(k — i), i € Z ) are
known, it is clear that the constraints (8a) and (11) are linear
inequalities in u(k) and A(k). Next, letting V() = || P2||0o»
(8b) becomes:

1P(f(z(k) + g(z(k))u(k))lloc < pllPr(k)lloc + A(k),

where x(k), P and p € R 1) are known. By the definition
of the infinity norm, for (8b) to be satisfied it is necessary
and sufficient to require that:

£[P(f(2(k)) + g(z(k))u(k)li < pllP(k)]lo + AK)

for all i € Zj; ;,), which yields 2p linear inequalities in u(k)
and A(k). Therefore, if J(A(k)) := ||[TA(k)||ocs T € Ry, or
if J(A(k)) is linear or quadratic in A(k), then Problem III.1
can be formulated as a single linear or quadratic program,
respectively. Furthermore, for any N € Zx;, Problem III.10
can be implemented as a single LP or QP for linear systems
and as a mixed integer LP or QP for PWA systems.

Remark IV.1 In Problem III.1 a cost of the form
J@(k),u(k) AK) = [Qua(k + Dl + [Qalloc +
IRu(B)loo + [TAK)[oer @1,Q € R, R € RVm
can be specified to provide a way for selecting a feasible
control action on-line. Then Problem III.1 can still be for-
mulated as a single LP. This is because the minimization
of J(xz(k),u(k),A(k)) can be reformulated as minimizing
e1+e2+]| T k]| subjectto 1 > 0,9 > 0, £[Ru(k)]; < &1
and +[Q1 (f (x(k)) +g(2(k))u(k))]i +|Q(x(k)) [ < &2 for
all j € Zpyr) and @ € Zpy g O

Remark IV.2 The number of linear inequalities needed to
specify the inequalities (8) depends linearly on the number
of rows of P, the state dimension and the input dimension.
This means that Problem III.1 can be rendered numerically

efficient even for high dimensional systems or for fast non-
linear systems, as modern linear program solvers (OSL from
IBM or Cplex) can handle up to 16 million constraints. This
brings a wide range of applications in large scale systems,
mechatronics, power electronics, aeronautics and robotics
within reach. a

V. ACADEMIC EXAMPLE

In this section we illustrate the effectiveness of flexible
CLFs, employed via Problem III.1. For a practical application
of flexible CLFs we refer the interested reader to [20],
which deals with control of electromagnetic actuators. Now
consider the nonlinear system (15) with z(k) € X = {z €
R? | |2]|o <5}, u(k) eU={ueR||u| <1} and

Fa) = <[m]1 - 07%z + ([xb)?) |

o(z) = <0.245 —|E).s7in([x]2)> .

The technique of [17] was used to compute the weight P €
R?*2 of the local CLF V() = || Pz||« for p = 0.8, yielding

p_ [26851 0.7203
= [0.2083 4.0458]

A rough approximation of the region where V (z) = || Pz
is a CLF for the considered nonlinear system is given by the
set © == {z € R? | ||z]l < 1}. In (11) we have set
i = 0.94 and M = 1. The cost J(xz(k),u(k),A(k)) =
1Quz(k + Dlloo + [Qu(k) o + | Ru(k)| + [A(R)], where

40 01 0
Ql:[o 4]’Q:{0 0.1}’}3:0‘4’

was used to improve performance. The optimization problem
corresponding to Problem III.1 was formulated as a single
LP utilizing the techniques presented in Section IV. The
resulting LP has 4 optimization variables and 12 constraints
(13 if (11) is added). During the simulations, the worst case
computational time required by the CPU over 4000 runs
was 2 milliseconds, which clearly shows the potential of the
proposed algorithm for controlling fast nonlinear systems.
Figure 3 presents closed-loop simulation results in terms
of state trajectories (upper plot), A*(k) (middle plot) and
control input history (lower plot) as follows: solid lines
depict the results obtained by solving Problem III.1 with
constraint (11) for initial state #(0) = [3,—1]" and dashed
lines depict the results obtained by solving Problem III.1
for initial state x(0) = [5,—1]". For the first simulation
(solid lines) the optimization problem was feasible at all
times and A* (k) converges monotonically to zero, as imposed
by (11). Problem II.5, which implements the classical CLF
approach, is not feasible for the same initial state, which
clearly illustrates the decrease of conservativeness. In fact,
Problem IL.5 is only feasible for states in €2. This can also be
observed from the solid line trajectories in Figure 3, i.e. at
time instant £ = 18, when \*(k) = 0, both states are inside
Q (its boundaries are represented by dotted lines in the upper
plot of Figure 3). Hence, locally, Problem III.1 based on a
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Fig. 3. Closed-loop simulation results.

flexible CLF recovers Problem I1.5 based on a classical CLF,
while Problem III.1 remains feasible for a much wider set
of initial conditions.

The feasible region of Problem III.1 can be further ex-
tended by either increasing M or by discarding the constraint
(11). To illustrate this, in the second simulation we consid-
ered the initial state #(0) = [5, —1] ", which is on the border
of the state constraints set. For this initial condition neither
Problem IL.5 nor Problem IIl.1 with (11) and M = 1 is
feasible. However, by setting M = 4 in (11) or by removing
(11), Problem III.1 becomes feasible and the controller
successfully stabilizes the system. Again, one can observe
that A*(k) = 0 and remains zero thereafter at time instant
k = 13, which coincides with the time instant at which both
states reach the set €2, as guaranteed by Corollary III.9.

VI. CONCLUSIONS

In this paper we proposed a novel methodology for reduc-
ing the conservatism of CLFs for discrete-time constrained
nonlinear systems. Rather than imposing a CLF globally (i.e.
on the whole state-space), we focused on relaxing CLF-type
conditions for a predetermined local CLF through on-line op-
timization problems. This approach made it possible to derive
a trajectory-dependent CLF, which is flexible (i.e. it can be
locally non-monotone when required). The non-monotonicity
of the CLF was explicitly linked with a decision variable
that can be optimized on-line. Moreover, we indicated that
for nonlinear systems affine in control and CLFs based on
infinity norms, the developed optimization problems can be
formulated as a single LP or QP, which is attractive for real-
time control.
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