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Abstract— A fundamental question for observation systems
based on wireless sensor network (WSN) is to achieve the
best tradeoff between estimation precision and many design
factors. One challenge of this kind is to select a small number
of sensors, if possible, to observe the environment, and thus
conserve precious onboard battery energy by transmitting
only valuable data to the base station. Although many sensor
selection methods have been proposed, the analysis on this
problem is relatively limited.

Based on the theory of optimal experimental design and con-
vex analysis, we present some feasibility analysis on the optimal
sensor selection problem. Equipped with Fisher information
matrix, we show that there exists a threshold, which we named
Carathéodory’s limit, such that the optimal estimation is always
feasible as far as the number of selected sensors is no less than
that limit. We also investigated on the difference between the
total sample number and the total sensor number. Discussions
on some necessary conditions of sensor density and sensor
deployment patterns are included too. We argue that sensor
selection methods have potentials to save significant amount of
energy for a large class of embedded wireless sensor networks
without sacrificing estimation accuracy.

I. INTRODUCTION

A. Motivation

In future, wireless sensor networks (WSNs) might signifi-
cantly change the world [9]. Such a network could contains
thousands of low-cost embedded sensor nodes, with each
node equipped with a microprocessor, a wireless radio and
several physical sensors. Cooperating with each other, these
tiny sensor nodes could collect valuable monitoring data of
the environment and enable numerous new applications [7].
A key challenge for WSN is to design sensor operations
that would conserve precious onboard battery energy to
transmit just enough data and yet satisfy estimation accuracy
requirements. In fact, comparing to the energy cost for
wireless communication, other energy costs are normally
ignored [18].

Under this background, the optimal sensor selection prob-
lem (SSP) attracted more and more attention in recent years.
Many algorithms have been developed in order to select a
certain number of sensors and achieve the optimum criterion.
They are usually formulated as the minimization of a cost
function [10], [28], [5], [3], [27] or the maximization of a
utility function [2].

Despite the considerable number of publications on the
topic, an important question that has not been studied in
depth is that if sensor selection is even feasible and worth-
while. The fact that an algorithm could select, say, twenty
sensors out of one hundred does not automatically justify the
effort. What if we “save” 80% energy but collect garbage
data? That is in fact a 20% of waste. In addition, if only
a small set of networks are feasible for sensor selection,
the impact of the method is also limited. In this work, we
discuss some fundamental characteristics of sensor selection
methods. The conclusion is that sensor selection is feasible
for many densely deployed sensor networks. Based on the
results, readers can estimate the potential energy savings due
to sensor selection methods for a specific project.

One important difference between WSN and the existing
Internet technology is that the information transmitted via
WSN is usually the measurement on the physical world and
therefore subject to certain constraints due to physical laws.
Naturally, the networking problems are then strongly coupled
with the physical systems. Studying such relations between
networks and the physical world is the central mission for
the research of cyber-physical systems [22]. The methods in
this work are model-based approaches.

B. Counter Examples

To show that even an “optimal” SSP method could be im-
proper, we can imagine some counter examples, as illustrated
in Fig. 1. We want to get the best estimation from the sensor
network with the least energy costs. Assuming there are n

sensors in total. If case a is always true, then why bother
to develop a generic SSP method to choose kS sensors out
of n? A brute force method that tests sensors one by one
from the nearest might be good enough. Meanwhile, if case
b holds, then, as we explained, SSP methods can do nothing
but waste energy and collect useless data.

Sensor selection is more meaningful for case c and case
d. If case c is true, then, naturally, we need a solid method
to estimate the necessary number of selected sensor based
on the requirement of the estimation accuracy. However, our
analysis reveals an interesting phenomenon: case d is closer
to the reality, even though it might be counter intuitive at
the first look. In fact, the estimation error can be minimized
after the number of selected sensors is equal or bigger than
a threshold Cl , which we named Carathéodory’s limit, and
Cl is usually a number much smaller than n. Notice that the
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Fig. 1. Possible error curves for sensor election problems.

minimum error may be achievable with even less than Cl

sensors, but there is no guarantee.

In this work, we will try to systematically answer the
above questions in a framework based on the theory of
optimal experimental design. One key idea is to incorporate
the mighty Carathéodory’s theorem, which has not been
discussed with SSP before, into our analysis. Another simple
yet important idea from us is to use general sampling, which
will be addressed later, as a bridge toward Carathéodory’s
theorem.

For presentation purposes, we firstly introduce background
knowledge in Sec. II-A, then review the related work in
Sec. II-B. The problem is formulated in Sec. II-C, and
discussed in the following sections. To verify the theory,
we actually developed two sensor selection methods. Finally,
Sec. III concludes the article and list some future work.
Please check the notation list in the Appendix frequently.

II. PROBLEM FORMULATION AND ANALYSIS

A. Carathéodory’s theorem and Fisher information matrix

Carathéodory’s theorem [19] plays the key role in our
analysis. The theorem tells us the required number of vectors
in order to represent a point in a convex domain.

Let us introduce the concept of convex hull.
Definition 1 (Convex hull): The convex hull of a set SC,

denoted conv(SC), is the set of all convex combinations of
points in SC:

conv(SC) = {
n

∑
i=1

cixi|xi ∈ SC,ci ≥ 0,
n

∑
i=1

ci = 1},

where xi is a column vector.
Following our conventions on notations, Carathéodory’s

theorem can be presented as follows:
Theorem 2 (Carathéodory’s theorem, based on [19], p.72):

Let SC be a subset of R
k. Every element x in conv(SC)

can be expressed as a convex combination of no more than
k + 1 elements of SC. If x is on the boundary of conv(SC),
k + 1 can be replaced by k.

Now, we formally introduce Fisher information matrix
(FIM). For a linear observer1, the ideal n sensor measure-

1For non-linear observers, we can piecewisely linearize it. Refer to our
target tracking example in Sec. II-D.

ments, s, are defined as

s = AT q∗,

where q∗ is the vector of m unknown parameters under
estimation. Thus, q∗ ∈R

m, s∈R
n, and A∈R

m×n. In practice,
the sensor measurement is always corrupted by noise v̄,

y = s+ v̄,

v̄i =
1

ni

ni

∑
k=1

vi[k],

where ni is the number of samples that sensor i takes in the
time slot tS; vi[k] is the sensor noise for the k-th sample and
v̄i is the associated measurement noise.

The statistical property of the sensor noise is deter-
mined only by the hardware characteristics of the onboard
(physical) sensors. At the moment, we consider v as the
independent white Gaussian noise such that vi ∼ N (0,σ2

i ),
where σi is the standard deviation of the sensor noise. Other
types of noises are out of the scope of this article but
being discussed in another our work [20], [21]. An effective
method to reject the assumed sensor noise is to take ni

samples, average them and result in one measurement. Then,
the measurement is transmitted to the based station, which
computes one estimate on the unknown parameters according
to the received measurements from the network. It is easy to
see that the measurement noise v̄ is reduced such that

v̄i ∼ N (0,σ2
i /ni).

If ni ∈ {0,1}, we call it the single sampling scheme, which
is the only scenario being discussed in the current literature,
to our best knowledge. Obviously, since the number of total
samples, i.e., the number of samples taken by the whole
network, is always the same as the number of selected
sensors in this scheme, it is impossible to distinguish the
different characteristics between samples and sensors. Now,
we consider a more generic general sampling scheme, where
ni ∈ [0,c], ni ∈ Z, c ∈ Z, and c is a constant positive integer.
Then, given m parameters, i.e., q ∈ R

m, and n sensors, such
that y ∈ R

n, FIM can be defined in Def. 3.2

Definition 3 (Fisher information matrix):

M = AΣ−1AT , (1)

Σ−1 =











n1σ−2
1 0

0 n2σ−2
2

. . .

nnσ−2
n











.

Do not get confused with the notation of sum, ∑, and the
sigma matrix Σ.

An important application of FIM is to estimate the covari-
ance matrix of the estimate, cov(q̂), where q̂ is the estimate
on the true parameter q∗. In plain words, the covariance
matrix is a confidence ellipsoid that encloses the most likely
values of the true parameter. We always want to minimize
the ellipsoid since the smaller ellipsoid indicates a better
prediction on the true parameter. The theorem of Cramér-Rao
inequality [20], [15] told us that the minimum estimation

2In some literatures [19], the M matrix in Def. 3 is called information
matrix. We do not distinguish them in this work. Refer to [21], [17], [24],
[19] for details.
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error we can expect is bounded by M−1. In other words,
if we maximize the volume of M (or minimize that of
M−1), we will get the best unbiased estimation. If the
maximum likelihood estimator, qML, exists, cov(qML)= M−1

according to the Cramér-Rao inequality [8]. There are rich
literatures [1] on how to precisely measure the volume of a
matrix. In this work, we took the widely used D-optimality
criterion [19], [1], Ψ, which is defined as

Ψ(M) = − lndet(M).

Such a criterion has been used by other works in sensor
selection [11], [6], [23], [12].

B. Literature Review

The SSP has been discussed from different aspects before
and the detailed formulations used in several prior works are
usually diverse in nature [10], [28], [5], [3], [2], [27]. How-
ever, the main idea behind all these works is the same and
can be summarized as balancing the trade off between the
precise estimation and the energy costs on communications.

Many sensor-network-based systems are used to observe
systems that are governed by certain physical laws. Naturally,
the model of those systems could provide valuable informa-
tion for us to simplify the problem [22]. In this work, we
focus on model-based sensor selection methods.

A model-based geometric method is presented in [10].
Based on geometrical analysis of camera-like sensors, it is
concluded that the sensor selection problem can be solved
in polynomial time. The authors of this work also observe
that four sensors can provide the position estimation as good
as that from all sensors. The sensor selection problem can
be studied from the perspective of information compression
as well since the sensor data with high uncertainty or
redundancy should not be transmitted via the communication
channel. Uncertainty is measured by entropy whereas redun-
dancy can be measured by correlations. For example, [28]
presents a sensor selection method based on entropy filtering
and Bayes’ theorem. This work uses a grid-based method
where the area of interest is segmented into many small cells,
and the entropy of the target’s location is computed based on
a probability mass function. Since smaller entropy indicates
less information uncertainty, [28] proposes an algorithm to
select proper sensors by minimizing the entropy. Thus, only
the “good” information with more certainty is sent to the
base station. The probability mass function can be recursively
updated according to the dynamics of the target using a
Bayes’ theorem based updating method. More details about
this method are presented in several other works [14], [30],
[29]. Based on the same framework, [26] proposes a faster
heuristic entropy-based sensor selection method. In [25], a
tempo-spatial correlation model is assumed. The variance
of the estimation noise is minimized by selecting proper
sensors.

In addition, sensor selection can be discussed within the
framework of optimal estimation, where the estimation error
is normally used as the cost function of the optimization.
In previous works [5], [4], [3], [11], [12], and [23], the
SSP is formulated as a constrained 0-1 integer programming
problem, where the estimation error is minimized.

Because this approach is the most related, we include more
details on the formulation. Along this approach, the decision

on whether to select sensor i is indicated by a binary integer
ni ∈ {0,1}, with 1 as being selected and 0 as not.3

These type of SSP can be formulated as follows
Definition 4 (Binary SSP):

n̂ = argminΨ(M(n)),

M =
n

∑
i=1

niMi,

subject to : ni ∈ {0,1},

∑ni = kS,
where the kS is the number of selected sensors “given by
users.” As what we explained after Fig. 1, finding the proper
kS is in fact not trivial. We may actually waste energy if the
selection on kS is not proper. We will resume the discussion
shortly. Mi is the FIM that is associated with sensor i,

yi = aT
i q∗,

Mi = σ−2
i aia

T
i , (2)

A =
[

a1 a2 · · · an

]

.

C. Formulations

As aforementioned, our approach makes better use of on-
board processing power of the modern “smart sensors.” For
typical sensor nodes, the energy costs for such sampling and
filtering operations are ignorable comparing to the energy
consumption for wireless communications [16].

To simplify the notation, we use normalized sampling rate,
p, through the rest of our work, and pi = p̄i/∑ p̄i, where
p̄i is the (physical) sampling rate for sensor i, defined as
p̄i = ni/tS. It is immediate that ∑ pi = 1. Now, we have M =
nS ∑ piMi, where Mi is defined as in Eq. 2 and nS = ∑ni.
Introducing M̄ as

M̄ = ∑ piMi,

then it is obvious that argminΨ(M̄(p)) = argminΨ(M(p)).
In fact, Ψ(M) = Ψ(M̄)−m lnnS = Ψ(M̄)− c1, where c1 is
a constant for a fixed nS.

Definition 5 (Sampling rate optimization problem (SROP)):

p̂ = argminΨ(M̄(p)),

M̄ =
n

∑
i=1

piMi,

subject to : p � 0,

∑p = 1.
If we multiply p in Def. 5 by kS, it is obvious that the

binary SSP is the SROP with more constraints. Therefore, the
precision of binary SSP can not be better than that of SROP.
Although SROP itself does not provide a solution for SSP,
it establishes a bound of the estimation error. In addition,
through the analysis of the SROP, we know a formulation
that we named Relaxed Convex SSP (RCSSP) is solvable
under reasonable conditions. The formulation on the problem
is in Def. 7 and the analysis on the condition is presented
in Sec. II-D. Now we have to introduce a new math symbol
�k.

Definition 6 (Math symbol �k): If every entry of vector v
is non-negative and at least k entries of v equal to 0, where k

3Notice that the notation c ∈ {a,b} means that c has to be either a or b,
while the notation c ∈ [a,b] means that c ∈ R,a ≤ c ≤ b.
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Fig. 2. Illustration on Carathéodory’s limit.

is a non-negative integer number and m ≥ k, then we denote
it as v �k 0.
A related symbol is �, which is equal to �0. It is immediate
that if p �n+1 0, then p �n 0.

Definition 7 (RCSSP):

p̂ = argminΨ(M̄(p)),

M̄ =
n

∑
i−1

piMi,

subject to : p �n−Cl−1 0,

∑p = 1,

where p ∈ R
n, Cl = m(m+ 1)/2, and M̄,Mi ∈ R

m×m.

D. Carathéodory’s Limit

Notice that we only discuss Carathéodory’s limit, Cl , under
the context of sensor selection, where Cl = m(m+1)/2. The
concept of Carathéodory’s limit is more than just a number.
It indeed represents a relationship among the number of
“total samples,” the “number of selected sensors,” and the
worst-case “estimation error.” The concept is illustrated in
Fig. 2. The term “our method” refers to the sensor selection
methods that choose sensors no more than Cl , while the
existing 0-1 integer programming approaches are depicted
by the “single sampling” curve. As the figure shows, the
worst-case estimation error reduces to the minimum when
the number of selected sensors is about Cl and the error
does not reduce further since that. On the other hand, the
estimation error gradually decreases along the axis of “total
samples.” The contribution of the concept of Carathéodory’s
limit is due to the fact this structure in the solution domain
of the SSP has not been reported.

The significance of the Carathéodory’s limit is described
as follows:

• It justifies the sensor selection methods, because the
limit exits for generic WSN-based observation systems.

• The network designs and the sensor selection algo-
rithm designs are connected via the limit. Therefore,
systematic co-designs are possible. While the existing
methods select sensors from a given network, we are

more interested in designing the network and the sensor
selection algorithm together, such that the worst-case
performances, in terms of observation precision and
energy costs, can be guaranteed.

• The limit establishes a baseline to compare different
sensor selection methods. According to the structure
of the solution domain, we conclude that it is fair
to compare networks with the same number of total
samples.

Introducing another notation “stack,” which converts the
lower diagonal part of a matrix to a column vector. For
example

M̄ =

[

M̄(1,1) M̄(1,2)

M̄(2,1) M̄(2,2)

]

stack(M̄) =





M̄(1,1)

M̄(2,1)

M̄(2,2)





Since the FIM is symmetric (cf. Eq.2) , stack(M̄) contains
all information of M̄.

Theorem 8: If rank(A) = m, the RCSSP in Def. 7 is
solvable.

Proof If rank(A) = m, there exists sampling rate vectors
such that M̄ is full rank. That is, minΨ(M̄(p)) exists for
a set of p. In fact, pi = 1/n is one example. Define M̄∗ as
Ψ(M̄∗) = minΨ(M̄(p)). It is obvious that stack(M̄∗) is on
a convex hull. Therefore, based on Def. 7,

stack(M̄∗) ∈ conv(stack(M1), stack(M2), · · · ,stack(Mn)),

and stack(Mi)) ∈ R
Cl , where i ∈ {1, · · · ,n}. According to

Carathéodory’s theory, at most Cl + 1 elements are required
to represent stack(M̄∗). Therefore, at least n−(Cl +1) entries
in p can be zeros. �

Problems related to Theorem 8 have been discussed
in [24], [19], [13]. Different from the existing works, our
formation is specifically developed for SSP, so that we only
require A to be full rank. For example, the interpretation of
the requirement for target tracking applications is that the
sensors should not be placed along a line within the domain
where the target is moving. As the result, we conclude that
the requirement is not demanding, therefore, many networks
are sensor-selection feasible.

With longer derivations, we can prove that, instead of
Cl +1 sensors, only Cl sensors are required [21], but such a
difference is not important to the conclusions of this article.

Because Cl is the worst-case bound, it is possible to
develop algorithms that selects less than Cl sensors. In
another piece of our work [21], we proposed a two-step
scheme. Firstly, we use a light-weight heuristic method
named hCOSS to select sensors, which usually picks Cl

sensors or less. Secondly, in that cases when more than Cl +1
sensors are selected, we can use an algorithm to eliminate
unnecessary sensors and guarantee that no more than Cl +1
sensors are selected. The elimination process is the key idea
of our eCOSS algorithm.

An example of such scenario is shown in Fig. 3, where
light sensors are used to locate the position of a lamp. We
piecewisely linearize the non-linear sensor model and apply
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Fig. 3. Sensor selection by the hCOSS and eCOSS methods.

the least squares (LS) method to estimate the position of
the lamp, which is referred as the a priori position, based
on sensor data from the whole network. Then we select
sensors based on the a priori position. We use the hCOSS
and eCOSS methods to select no more than Cl + 1 sensors
and estimate the position based on the data from the selected
sensors. The position is referred as the a posteriori position.
On a 3GHz PC, the hCOSS method can select sensors out
of 60 candidates in about 8 ms, while the eCOSS method
requires about 15 ms to 25 ms.

In an independent work [10], a non-real-time geometrical
SSP method is proposed, and it is observed and proved
that for 2D target tracking applications, “the estimates that
are obtained by four sensors are as good as the estimates
obtained from all sensors.” Based on FIM, our method
confirmed that conclusion and our method is applicable to
general parameter estimation problems with arbitrary high
dimensions. Therefore, our method can be used to observer
more parameters.

E. Sensor-selection-feasible networks

Thanks to the aforementioned analysis, we are ready
to answer some interesting design questions, such as the
follows.

a) Necessary density condition: It is easy to imagine
some scenarios where no sensor selection method could help.
Such as, if there is only one sensor at all. Certainly, there is
a requirement on the minimal sensor density, ρL, in order to
justify the SSP methods. If the sensor’s detection range is r,
then ρL should satisfy

ρL > Cl/πr2,

in order for a sensor selection algorithm to save energy
without scarifying the estimation precision. If the sensor
density falls below ρL, there is no guarantee on the estimation
accuracy.

b) Monotone: Back to the questions following Fig. 1,
is case d monotonic? Remind

Ψ(M) = Ψ(nS ∑
i

Mi) = Ψ(M̄)−m lnnS. (3)

Therefore, for a deployed network with the sensor density
no less than ρL, we can increase the total samples nS to

achieve arbitrary accuracy, since Ψ(M) is infinitely small
if nS → +∞. Therefore, for the single sampling scheme, the
error curve is monotonic and similar to case d, which is
similar to the figures shown in an independent work [11]. In
Fig. 2, case d is the “single sampling” curve.

c) Samples vs. sensors: What is the difference between
samples and sensors? When will case c and case d hold? For
single-sampling schemes, case d dominates. However, it is
unfair to say that “the estimation error gradually is reduced as
more sensors are selected,” unless the constraint on single-
sampling is properly stated. This property is illustrated in
Fig. 2. In general, without such a constraint, the estimation
error drops quickly along the increase of the selected sensors
and stays at the minimum value after the sensor number
reaches Cl , which is usually a quite small number. This
scenario is depicted in case c, which is the “our method”
curve in Fig. 2.

For a fixed nS, the estimation of general sampling scheme
is not worse than that of the single sampling method.
However, if the single sampling scheme takes a larger nS than
the general sampling method, the former one has chances to
offer more accurate estimation. Therefore we conclude that it
is unfair to compare different sensor selection methods with
different total sample numbers.

d) Sensor deployment pattern: Is there an ideal sensor
deployment pattern for sensor selection purposes? The limit
of rank(A) = m indicates that the sensor selection methods
are not very “picky” on the sensors’ locations. For example,
for 2D tracking problems, where q∗ is the position of the
target, ai are linear dependent only when the sensors and
the target are along one line. But this pattern is intuitively
improper. The conclusion is that many networks are sensor-
selection feasible.

III. CONCLUSION AND FUTURE WORK

Based on FIM and Carathéodory’s theory, we discovered
that the optimal estimate on unknown parameters is achiev-
able by a relatively small number of sensors, which is named
as Carathéodory’s limit. The different impacts of sensors and
samples are discussed in depth. The analysis also provides
guidelines on sensor deployment. To verify the analysis, we
developed two sensor selection methods that use the general
sampling scheme. We conclude that sensor selection methods
can significantly save valuable onboard energy for many
CPSs that observe environments using WSNs.

As a future work, we plan to analyze our algorithms from
the computer networking perspective in order to complement
our algorithms with more realistic networks.

APPENDIX: CONCEPTS AND NOTATIONS

• FIM: Fisher information matrix.
• WSN: wireless sensor network.
• CPS: cyber-physical system.
• Measurement and sample: a sensor can take multiple

samples, processes them and results in one measure-
ment.

• Notation on scalars, matrices and vectors: a vector is
indicated by a bold lower letter, such as n, while a
matrix is a capital bold letter, e.g., M̄. The scalar n

should be not confused with vector n. The subscripts in
brackets indicate scalar entries of a matrix or vector. The
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subscripts without brackets are instances of variables.
For example, Mi(1,1) is the (1,1)th entry of the matrix
Mi.

• Index: the integers in [ ] are indices of discrete time or
iteration number, such as M̄(p[k]).

• conv( ): convex hall.
• cov( ): covariance.
• n : the total number of sensors.
• tS: the sampling time. In tS, sensor i collects ni samples.
• nS: the total number of samples of the whole network

in tS time slot.
• kS: number of sensors to be selected by users.
• n: the sample vector. The number ni is the number of

samples that sensor i collects in each tS time slot.
• m: the number of unknown parameters.
• M, M̄, and Mi: FIM.
• c1: a constant.
• Cl: Carathéodory’s limit, which is m(m+ 1)/2.
• yi: the ideal measurement value of sensor i.
• si: the measurement from sensor i, which is yi plus the

sensor noise.
• N (µ ,σ2): Gaussian (normal) distribution with the ex-

pectation of µ and the standard deviation of σ .
• p̄: sampling rate of sensors.
• p: normalized sampling rate of sensors.
• q, q∗, qML: q is the position of the target. Specifically,

q∗ is the true position of the target and qML is the
maximum likelihood estimate on q∗.

• a � b: each entry of vector a is no less than the scalar
b. ai � b.

• v, v̄: measurement noise vector.
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