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Lyapunov Stability of an Open-Loop Induction Machine
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Abstract—The induction machine is widely utilized in the
industry and exists in a plethora of applications. Although it
is characterized by its inherent stability over a wide range of
operating conditions, this characterization is based on steady-
state arguments. This work develops a rigorous approach to
the open-loop stability of the induction machine. In particular,
a condition for the global asymptotic stability of the induction
machine in the sense of Lyapunov is presented. These conditions
are met if the machine is lightly loaded. Hence, meeting these
conditions guarantees that the motor will reach (or return
to) the desired equilibrium point regardless of how far it has
been perturbed from it. The analysis is based on the standard
nonlinear differential equation model of the induction machine
taking into account transient responses.

Index Terms— Induction Machine, Lyapunov Stability, Open-
Loop Stability

I. INTRODUCTION

The classical method that depicts the range of stable opera-
tion for the induction machine is a torque versus (normalized)
slip curve as shown below (see [1])
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Fig. 1. Torque versus normalized slip curve
7 is the steady state output torque, 7, is the peak load
torque, S is the normalized slip defined as
ws — Npw
gt A dal (1)
ws
(i.e. the normalized difference between the electrical fre-
quency wg, and the angular speed n,wr), and S, is the
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pull-out slip which corresponds to the peak torque T,,.
The curve indicates the stability of the induction machine
about steady-state operating points. The stable steady-state
operating points for motoring must satisfy 0 < S < S),.
For example, if the motor is operating at slip S; producing
the torque 79 as shown in Figure 1. Then any increase in
the load torque (but the total load torque not exceeding 7p)
would result in a decrease in the steady-state speed wp [see
(1)] with a consequent increase in the steady-state slip S
(i.e. a shift to the right from the operating point .S; in Figure
1). The increased slip gives an increase in the steady-state
output torque to accommodate the increase in the load torque.
On the other hand, consider the motor operating at the slip
Sy > S, in Figure 1. Any increase in the load torque (even
a minimal one) would again result in a decrease in wg, [see
(1)] and thus an increased slip to the right of the original
steady-state slip S5 in Figure 1. But now a lower output
torque is produced which cannot meet the increased load
demand. Hence the motor will stall. Note that this argument
is based on steady-state conditions and does not account for
transients. In fact though the operating points for S > S,
are always unstable, operating points with S < S, can also
be unstable.

At rest (wg = 0), S =1 and typically S, << 1. Thus at
startup of the motor the (instantaneous) slip S >> S, and,
as Figure 1 shows, the torque produced by the motor is low.
As a result, the machine must be lightly loaded so that it can
come up to full (near synchronous) speed under open-loop
conditions. After getting up to full speed, the motor can then
be loaded and run stably.

In this work, we give a rigorous treatment of the stability
issue by accounting for transients. Specifically, a sufficient
condition for the global stability of an open-loop induction
machine is derived using Lyapunov theory based on the well-
known nonlinear differential equation model of the induction
machine. It is shown that the conditions for global stability
hold if the machine is lightly loaded. We begin in Section
IT by deriving an error-dynamics model of the induction
motor in the stator field coordinate system. In Section III a
power balance equation of the motor is developed that is then
transformed into the error state variables. The results are then
utilized in Section IV to develop a Lyapunov function that
gives sufficient conditions for global stability of the induction
machine. Section V provides a numerical example that is
used to demonstrate the application of the theorem. Finally,
concluding remarks are presented in Section VI.
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II. STATOR FIELD MODEL OF THE INDUCTION MOTOR

The starting point for the analysis is the two-phase equiv-
alent model of the machine (see [1] and [2]). The parameters
of the two phase induction motor are the stator-side induc-
tance Lg and resistance Rg, the rotor-side inductance Lp
and resistance Rp, the mutual inductance M, the number of
rotor pole pairs n,, the moment of inertia of the rotor J, and
the rotational friction f.

The variables consist of the angular position of the rotor
Or, the angular speed wp, the load torque 7, the stator
currents ig, and igp, the stator voltages ug, and ugp, and
the rotor currents ir, and ig, where a and b denote the
equivalent two phases of the motor.

A. Space Vector Model

A space vector model of the induction machine is ([1] and

(2D

d d ,
Rsig + LSEZS + M% (iRejnZ’oR) = Ug
d d ,
Rpip + Lp—ip + M— (ige7mf7) = 0 )
. , in * dwR
npM Im {ls (gReJ PQR) } -7 = J—dt

where the state vector’s (complex) stator current, rotor cur-
rent and stator voltage are defined as

. A . ..
g = 1Sa T+ JiSh
. A . ..
iR = YRa T JRb
A .
Ug = USq T JUSH

The total load torque on the motor 7, is defined as

N
7L = fwr + TrLo

where 71 denotes the external load torque exerted on the
rotor, and is henceforth assumed to be constant.
B. Stator Field Coordinate System Model

Next, the model (2) is transformed into a stator field
coordinate system. The transformation is defined as

3

iggg = isatjisg Zige YS!
iqu Y Z'Rd+jqu él‘RejnpeRe*jwst (3)
Uggy = usa+ jusq = uge ISt
or
ig = Zqueijt
ip = ZquefjnpeReijt 4
Ug = Hquejwst

where wg is the electrical frequency of the voltage source
applied to the stator and is assumed to be constant.

Substituting (4) into the space vector model (2) and
simplifying results in
dZqu
dt
+ijMZqu = Ugqq

dszq
dt

Rsigq, + Ls + jwsLsigqq, + M

. di . .
RRigq, + Lr (qu +j(ws —npwr) Lrigy,  (5)
di
+M—2 1 j (ws — nywr) Miggy =0

dt

. . * dw
npM Im {Qqu (ngq) } —(fwr+7TrLo) = Jd—tR

Expanding into real and imaginary parts, we obtain the
state space representation

x = f(x) + Bu (6)
where
N ) ) ) . T
x £ [wr isd isq iRd iRq |
T
u £ [usq usq Tro |
_ M o i
pJ (iSqiRrd — iSdiRg) — TWR
RrM . n nyM Rs .
i L WRIRy — ———1
oLsLp ™ oLs RRe = g ol
np . .
oLsln WRSq T WSlsq
ReM . n,M Rs .
iRy — ———WRIR] — ——1
JLsLR Rq QULS R Rd O’LS 5
f(x) = M S
oLsln WRLSd — WStSd
Rs(l—o)i _anw i . RRi
oM Sd O'LR R%Sq O'LR rd
__P ; ;
. WRIRg T WSTRq
Rs(l—o0). npM . Rg .
oM tsq + oLgr Wrtsd oLgr ‘Rq
+—Lwrirs — wsira
L ag n
_ 1 -
0 0 ——
1 J
—_ 0 0
O’LS 1
B2 0 — 0
1 CTLS
o —
0 0
oM o1
0 0
L oM i
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and o is the leakage factor defined as

M2
LsLp
The equilibrium conditions are obtained by setting the
derivatives in the stator field model (5) to zero and then
equating the real and imaginary parts to obtain

c&1—

Rsisqo — wsLstigqo —wsMirgo = Usdo

Rsisqo +wsLsisao +wsMirdo = Usqo

RRripdo—wsLRrirq + npwroLrirqo—wsMisqo  (7)
+npwroMigqo = 0

RRirqo +wsLrirdo — NpwroLRIR0 + wsMisqo
—nproMiSd():O

npM (i5q0tRdo0 — 1Sd0%Rq0) — (fwro + Tro) =0

C. Error Model

Next, to facilitate the Lyapunov analysis of the induction
machine we derive an error model. This is achieved by
translating the origin of the system (6) to an arbitrary
equilibrium point xq as defined by (7). Specifically, a set
of error state variables about an equilibrium point is defined
as

A
€1 = WR —WRO
N
€y = /LSd - ’LSdO
N
€3 = 15— 1540 (8)
N
€4 = ZRd - ZRdO
A . .
€5 = 1TRq — 'Rq0
or
WR = €1+ WRo
isd = €2 +1isdo
'L'Sq = e3+ Z'SqO (9)
iRd = €4+ iRdo
qu = e5+ quo.

Then, substituting these expressions for the state variables
of the stator field into the model (6), we obtain the error
model of the induction machine

é = A(xo)et+g(e) (10)
where
T
e:[el €2 €3 €4 65]

r i npM .
( i —~7 'Rq0
_nplo Lg, _Rs
( ( M VRq0 T ZSqO) ( )O'LS
Ny 0 1) Lp: ny(o—1 _
(M LRdO +ZSdO) e &éRO ) ws
np M Rs(o—1
- (L_ZSqO + ZRqO T T oM
M ny, M
I = (—lSdo + mdo) oLy WRO
(11)
. n .
L= 1 Rdo E—1540
np(c—1) RrM ”pM
o WRo tws oLsLp oLg WRO
_R _np _RpM
O'Ls O’L%wRO ULsLR
_ iR _ np
?, A oL ws P WRO
o— D _ __Rr
WRo — Ws oL
and
r ny,M npM 7
7 €3€4— 7 €2€5
2
ane1e5 n ny M M .
JLS LsLR
A np M np M?
gle)= | — €164 — €1€2 (12)
oLg ocLsLg
n n
——F—eie3 — —Leies
oLgr o
npM Np
ejez + —eeq
L oLg o A

The error model consists of quadratic terms which vanish
near the equilibrium point (where the matrix A(xo) domi-
nates), and the stability of the linearized system is dependent
on the choice of the equilibrium point as A(x() depends on
the equilibrium point.

The system (7) which determines the equilibrium points
may be rewritten as

npM (isq0tRdo — 1Sd0tRq0) — (fwro + Tro) =0  (13)
15do USdo
K| 50 | — | s (14)
TRdO 0
LRqO 0
where K £
Rs —wsLg
UJSLS RS
0 M (npwro — ws)
—M (npwro — ws) 0
0 waM
wsM 0
Rp L (npwro — ws)
—LR (’rlpro —ws) RR

Therefore, one possible scenario is to select the set-
points for the speed wrp, and voltages ugqo and ugqo, with
the currents %540, 2540, *Rdo and igqo then specified by
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equation (14). The resulting load torque 7. is determined
by equation (13). In other words, one specifies wro, Usdo
and ugsq0, and then uses

1540 USdo
ZbSqO _ K—l USq0 15
LRdO 0 (15)
1Rq0 0
and
Tro = npM (isq0irRd0 — ©SdotRq0) — fwro  (16)

to obtain the currents and load torque.

III. POWER BALANCE EQUATION

The Lyapunov candidate function will be derived from a
power balance equation that characterizes the power transfer
between the input and output of the motor.

A. Power Balance Equation

First we define the magnetic field energy of the motor W
and the mechanical energy W as (see [1])

1 ) . 1 . .
Wf = ELS ('L?qd + Z%q) + §LR (Z%%d + Z%q)
, . IRd
+M [ isa isq ] [ iny } (7
and
A 1 2
Wy £ 5 Jwh. (18)

The power balance equation in terms of the stator field
coordinate variables is given by

d 1Sd
P (Wf + WJ) = [ usd USq —TL ] 15q (19)
wr

-2 -2 -2 -2
—RS'LSd — RSZSq — RR'LRd - RRZRq'

B. Error State Variables

Next, substituting for the state variables (7) of the stator
field into the power balance equation (19), and simplifying
using the equilibrium conditions (7) results in the power
balance equation given in terms of the error state variables
as

d
P (Wf + W) = ugqez + usqes
— (fel +2feiwno + Tro€1) (20)
— Rg (e% + 2€2i3d0) — Rg (63 + 2€3isq0)
— Rp (BZ + 2€4iRd0) — Rp (6% + 2€5qu0)
where

Wy = %LS (€3 + €3 + 2eziga0 + 2e3i5q0)
+%LR (5 + €2 + 2eairao + 2es5inrq) + Meses
+M (isaoes + €2irdo + e3e5 + i5q0€5 + €3iRqg0)
5L (Ban + iB0) + 510 (han + 7o)
+M (isdaotrdo + 1S40 Rq0)

and

1 1
Wy = §J (e% + QeleO) + §Jwi30.

IV. LYAPUNOV STABILITY OF THE INDUCTION MACHINE

In this section, the power balance equation (20) is used to
obtain a Lyapunov candidate function V. Define the function
W (e) by

W(e) & Wy + W;— (W;(0) + W;(0))

where
1 9 9 1 9 9
Wy(0) = §LS (i%a0 + ZSqo) + §LR (1%a0 + ZRqo)
+M (isd0tRdo + 1540t Rq0)
and

1
W;(0) = §Jwiw.
This ensures W (0) = 0, however W is not assured to be
positive definite. Next rewrite W (e) as

W(e) =e’Pe +d’e 21)

where

0 0
Ls 0
L

0
M
s 0

(22)

N —
o oo

0 Lg
M 0 Lpg

SO OOy

0
M
0

and

JUJRQ

Lsisdao + Mirao
Lsisqo+Miggo
Lrigrao + Misqo
Lrirgo+Misq

(23)

The derivative of W (e) is of course equal to the right-
hand side of the power balance equation (20), which is now
rewritten as

aw

T, T
— =-—e e—cpe
dt Qw w

24

where
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f 0 0 0 0
0 Rs O 0 0
Qw20 0 Rs 0 0
0 O 0 Rr O
0 O 0 0 Rg
and
2fwro+TrLo
2Rsisd0 — usd
Cw £ 2R5isqo — USq
2RRtRdo
QRRquo

A. Lyapunov Candidate Function and its Derivative

Next, using P as defined in (22) above, a candidate
Lyapunov function V' is constructed by defining

V £ eTPe. (25)

The derivative of this Lyapunov candidate function is thus

av
dt
Using (10) this becomes

= —e'Qwe —ciye —d’e.

dv
T = —eQwe — clye — d”(g(e) + Alxo)e)
which can be rewritten as
dVv
o —eTQe —cTe (26)
where Q £
f %’anquo _%aniRdO
%anquO RS 0
—%TlpMiRd() 0 RS
%prRiR¢> . sMnywro
_§anRiRdO —§anwR0 0
in,Lrirg —3npLRigao
0 f%anwRo
%M”pro 0 27)
Rp 0
0 Rgr

and ¢’ = cfj, + dTA(xo) or explicitly

fwro—npM (isq0iRd0 — 5d0TRq0) +TLO
Rsisdo — (Lsisqo + Miggo) ws — usdo
Rsisqo + (Lsisao + Migdo) ws — usqo
Rrirdo+ (Misq + Lrirg) (npwro — ws)
Rrirqo— (Misdo + Lrirao) (Npwro — ws)

However, with reference to the equilibrium conditions (7)
one sees that ¢ = 0 regardless of the equilibrium point.
Therefore, the Lyapunov candidate function and its derivative
are

V £ eTPe (28)

and

Cﬁl_‘t/ = —eQe.

B. Sufficient Conditions for Global Stability

The induction machine is globally asymptotically stable in
the sense of Lyapunov if (see [3])

(a Vie)>0 YVe#0, and V(0)=0

(b) dV(e)/dt <0 Ye#0

(c) V(e) — oo as [le|| — oo

The leading principal minors of the matrix P are

29

1 1 1
7r1:§J>O, WQZZJLS>07 7T3:§JL2S>O
1 2 1 2172712
7T4:1—6J0'LSLR>07 775:3_2JU LSLR>O

As all of the leading principal minors of P are positive, P
is positive definite. Moreover, V(0) = 0 so that condition (a)
is always satisfied. Furthermore, V' = e’ Pe > A\, (P) ele
and as A\pin (P) > 0 we have V(e) — oo as ||e|| — oo thus
fulfilling condition (c).

The matrix @) in (27) can be written as a function of just
(S,ws), i.e., Q@ = Q(S,ws) by using (15) to eliminate the
currents and n,wpro = ws(1—295) to eliminate nywpry. Doing
so, the leading principal minors of Q(S,wg) are computed
and letting S — 0 results in

L = f
I, — fRs
M3 — fR% (30)
1
I, — fRs (RSRR—ZM%ZS)
1 2
o, — f(RSRR—ZMQw%>
so that for

4RsRRr — M?w% >0

and small enough S, the system is globally asymptotically
stable. Summarizing, the main result is that for sufficiently
small normalized slip S (i.e. the motor is lightly loaded), the
system is globally asymptotically stable.

V. NUMERICAL EXAMPLE
Consider an induction machine with the following param-
eter values (see [1]): M = 0.0117 H, Lgr = 0.014 H,
Ls=0014H, Rs=179Q, RR=399Q, f=0.00014
N-m/rad/sec, J = 0.00011 Kg-m?, n, =3, wg = 27 x 60
rad/sec. The condition for globally asymptotically stable
under light loads is
4RsRp
M?3w?
For example, with the following set points: ugq4o = 50 V,
ugq0 = 0V, and wro = 124 rad/sec the normalized slip is
377 -3 x 124 377 — 372
377 - 377

=1.363 > 1.

= 0.0132

S:
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and the corresponding equilibrium currents and load torque
set point are computed from equations (15) and (16) as

isqgp = +2.852 A
isqp = —8.521 A
irao = —0.128 A
irgo = —0.040 A
7o = +0.025 N-m.

Substituting these into the expression (27) for the matrix @
and numerically computing the five eigenvalues gives

0.000121
0.361589
0.361607
5.238411
5.238412

which are all positive showing the system is globally asymp-
totically stable under these operating conditions.

VI. CONCLUSIONS AND FUTURE WORK

Sufficient conditions for the global asymptotic stability of
an open-loop induction machine have been derived in this
work. Under lightly loaded conditions, global asymptotic
stability holds meaning the motor will eventually converge
to its equilibrium point no matter how far away it starts from
the equilibrium point.

Future work is intended to focus on obtaining local stabil-
ity results that set bounds on the error variables. These are
expected to apply to larger set of operating conditions, but
not result in global stability.
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