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Abstract— We present a new framework for describing multi-
agent systems with hybrid interacting dynamics, where the
interaction between agents occurs at both the continuous and
discrete levels. We define multi-agent systems as Interconnected
Hybrid Systems, recast fundamental hybrid concepts such as
hybrid execution and reachability in this new interconnected
hybrid systems framework, and prove a necessary and sufficient
condition for the existence and uniqueness of the interconnected
hybrid executions, extending previous work on hybrid systems.
We provide conditions on each agent’s hybrid model that
guarantee the multi-agent system’s existence and uniqueness
property. Finally, we provide an example that shows how to
apply the existence and uniqueness conditions in the design of
the agents’ dynamics.

Index Terms— Interconnected hybrid systems, reachability,
execution, existence and uniqueness.

I. INTRODUCTION

In most of the work reported on cooperative systems,
individual models for cooperating agents are described by
purely continuous dynamics [2], [4], [5], [8], [9], [12]. There
are few exceptions, where discrete event system theory is ap-
plied [3]. However new communication network paradigms
[6], [10] had motivated the need for studying multi-agent
systems where the interaction between agents happen at both
continuous and discrete levels.

We envision an Internet in which functions (e.g. routing)
are not fixed to physical nodes, but are instead implemented
by software agents that are free to migrate from node to
node, depending on resources (e.g. connectivity, bandwidth)
that they may have to compete for [10]. This approach
gives rise to a new type of multi-agent system where agent
dynamics are composed by discrete states that represent
the location of the agent in the network and its operating
mode, and by continuous states that represent the amount
of resources that the agent is receiving from the network.
The node dynamics are also hybrid. The discrete states
represent changes in the agents hosted by the node, while
continuous states represent the resource availability in the
node. The continuous dynamics of agents and nodes evolve
according the agents requirements affecting the availability
of resources in the nodes. Agents may also jump to different
locations looking for more resources. These jumps affect
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the continuous evolution of other agents and nodes, and
cause discrete jumps at the nodes reflecting the new agent
distribution. A pictorial example of this situation is depicted
in Figure 1.

Fig. 1. Example of dynamical behavior of agents and nodes. Agents are
modeled as hybrid automata. Each mode in an automaton corresponds to
a possible location of an agent in the network. Each transition between
modes represents a change of location made by an agent. The dynamics of
the nodes are also modeled as hybrid systems. Each discrete mode represents
a set of agents residing at a node. The agents on the left are located on a
node. Therefore discrete states of agents and nodes are fixed while their
continuous dynamics interact. The agent on the right is moving between
nodes, so a discrete transition occurs.

It is not clear how to capture the operation of such a
system with existing hybrid frameworks. The interactions
between the hybrid systems that model agents and nodes
happen at both the continuous and discrete levels. The
continuous and discrete dynamics of the agents depend
on both the continuous and discrete states of the nodes
and viceversa. A single hybrid model to study this type
of system would result on a centralized model where it
would be difficult to decouple individual agent’s descriptions.
Instead, we attempt to capture this interaction with a new
class of systems: the interconnected hybrid systems. Such
systems are not mere parallel compositions [13], or products
of the component hybrid subsystems. The existence and
evolution of an individual subsystem can be meaningless if
isolated. Moreover, interactions are not limited to common
or uncommon events. In our case, the hybrid state in one of
the systems modifies the execution in another one. Therefore
we formally define the interconnected hybrid system such
that the continuous evolution in one agent depends on the
continuous states of agents that are connected to it, and
similarly the discrete dynamics depend on continuous and
discrete dynamics of neighboring agents. This definition also
includes a description of the connectivity of the multi-agent
system in each agent’s hybrid state. We then recast concepts
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from hybrid systems theory into the new framework, and
provide a necessary and sufficient condition for the existence
and uniqueness of the interconnected hybrid execution in
terms of each agent’s hybrid model, extending some of the
concepts in [7]. We use an application example to illustrate
how to use the existence and uniqueness condition for
designing the dynamics of agents locally, while guaranteing
the existence and uniqueness of the execution of the multi-
agent system globally. A preliminary version of this work
has appeared in [11].

We define the Interconnected Hybrid System in Section
II. and the interconnected hybrid execution in Section III.
Section IV states the necessary and sufficient conditions for
its existence and uniqueness while Section V provides an
application example. Section VI outlines our conclusions.

II. INTERCONNECTED HYBRID SYSTEMS

We consider a multi-agent system with individual hybrid
dynamics. The agents in the system interact at both the
continuous and discrete level through the continuous control
input and the discrete transition guards respectively. We
index the agents in the system by the set I . A hybrid system
is denoted Hi, for all i ∈ I .

We use the following notation: νk denotes dependence of
ν on k. νqk

denotes dependence of ν on qk which depends
on k. νn, denotes the nth element of a sequence in ν, ν(t)
denotes the value of ν at time t, and with some abuse of
notation, ν0 marks an initial condition. {νk}k∈K denotes a
collection of νk indexed by the set K. Similarly (νk)k∈K

denotes the vector (ν1, ν2, . . . , ν|K|) indexed by the set K.
Let Oi is the set of operating states and Di is the set of

connectivity states of Hi. Each oi ∈ Oi represents a different
operating condition of Hi. Each di ∈ Di, represents different
connectivity conditions. Let Qi be the set of discrete states of
Hi, such that Qi = Oi×Di, where (oi, di) ∈ Qi is denoted
as qi. Each qi has an associated set V (qi) ⊆ I ∀qi ∈ Qi,
which stores the indexes of the systems that are connected
to Hi, i.e., if j ∈ V (qi) then Hj is connected to Hi. Note
that V (q) = V (q′) for all q = (o, d), q′ = (o′, d′) ∈ Qi that
satisfy d = d′.

Let Σi = {Σqi
}qi∈Qi

be a collection of continuous dy-
namical systems Σqi

indexed by the set Qi. Each continuous
system is a tuple Σqi

= (Xqi
, fqi

, Uqi
,R+) where Xqi

is the
continuous state space, fqi

the continuous dynamics, Uqi
the

set of continuous controls, and R
+ = [0,∞) the time set.

Also let Xi =
⋃

qi∈Qi
Xqi

be the continuous state space over
all the discrete states of agent i.

Let Si = {Sqi
}qi∈Qi

be the set of discrete transition labels
of Hi. Symbol sqi

∈ Sqi
determines the discrete state after

a transition from qi ∈ Qi in system Hi. We consider only
state based (autonomous) transition in this paper.

Let Gi = {Gqi
}qi∈Qi

be the set of guard conditions
for Hi. Gqi

is a map that determines when a transition is
possible from qi ∈ Qi. Let Zi = {Zqi

}qi∈Qi
be the set

of transition maps of Hi, where Zqi
: Gqi

× Sqi
→ Xi

determines the continuous state of Hi after a transition label
in Sqi

from a hybrid state in Gqi
.

The hybrid state space of agent i is Hi = Qi × Xi, the
continuous state space of the agents that are connected to i
is XV (qi) =

∏

j∈V (qi)
Xj , and the hybrid state space of the

agents that are connected to i is HV (qi) =
∏

j∈V (qi)
Hj .

Definition 1 (Interconnected Hybrid System) An Inter-
connected Hybrid System (IHS) is a set H∗ = {Hi}i∈I of
Controlled Hybrid Dynamical Systems [1] Hi indexed by
the set I , where Hi = [Qi,Σi,Gi,Zi,Si] such that

• The continuous control inputs in Uqi
are the continuous

states of the systems that are connected to Hi. Therefore
Uqi

= Xqi
×XV (qi).

• A guard condition for a discrete transition of agent i is a
function Gqi

: Sqi
→ Xqi

×HV (qi). Gqi
specifies when

a transition is possible as a function of the continuous
state of agent i and the hybrid states of agents connected
to i. Gqi

(s) = GL
qi
(s) × GR

qi
(s) where GL

qi
(s) ⊆ Xqi

denotes the local condition of Gqi
(s) i.e. the condition

on the continuous state of agent i, and GR
qi
(s) ⊆ HV (qi)

denotes the remote condition of Gqi
(s) i.e. the condition

on the hybrid states of agent connected to i.
The discrete state space of the IHS H∗ is QI =

∏

i∈I Qi,
its continuous state space is XI =

∏

i∈I Xi, and its hybrid
state space is HI =

∏

i∈I Hi. The state of the IHS is
denoted as ~h = (~q, ~x~q) where ~q = (qi)i∈I ∈ QI , and
~x~q = (xqi

)i∈I ∈ XI .

Definition 1 presents a hybrid analog to the standard
multi-agent setting [2], [4], [5], [8], [9], [12] where each
agent uses the states of its neighbors to update its own
evolution. The discrete states of the systems are divided
into operating states, used to describe modes of operation of
each individual agent in the system, and connectivity states,
which describe the possible configurations for information
exchange between agents in the system.

Interactions between the continuous dynamics of the
agents occur through their continuous control inputs. The
continuous control inputs of agent i ∈ I in the IHS are
functions of the continuous states of the agents that are
directly connected to agent i ∈ I . Interactions between
the discrete dynamics of the agents occur at their discrete
transition guards. The transition guards of agent i ∈ I
set conditions on the hybrid states of the agents that are
connected to agent i ∈ I . A graphical example of an IHS is
shown in Figure 2. The following is an standing assumption
for the rest of this paper.

Assumption 1 The sets of discrete states Qi are finite for
all i ∈ I . The continuous state space Xi ⊆ R

d for all i ∈
I , where d is an integer. The vector fields fqi

(xqi
, uqi

, t)
are globally Lipschitz continuous on both xqi

and uqi
with

Lipschitz constants Lx
qi

and Lu
qi

for all qi ∈ Qi for all i ∈ I .

III. INTERCONNECTED HYBRID EXECUTION

In this section we introduce the Interconnected Hybrid
Execution (IHE) based on the concept of hybrid execution
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Fig. 2. Graphical representation of an IHS. Three hybrid systems inter-
connected in line topology with bidirectional connectivity. The area inside
ovals and circles represent the continuous state space of the agents. The
graphs inside the continuous spaces represent the automata for each system.
The gray area within the state space represents the guard for the discrete
transition indicated with segmented line in H2. This transition depends on
the continuous states of the agents connected to H2

in [7]. The IHE is the analog of the state evolution of a
continuous multi-agent dynamical system, and captures the
system’s hybrid behavior over time.

An Interconnected Hybrid Time Trajectory (IHTT) is a
sequence τ = {τ0, τ1, . . . , τn, . . . , τN}, where τn for n =
0, . . . , N is the time at which there is at least one system
Hi ∈ H∗ that makes a discrete transition from qn

i to qn+1
i ,

such that the Interconnected Hybrid System H∗ makes a
discrete transition from ~qn to ~qn+1.Two consecutive elements
in the IHTT satisfy τn ≤ τn+1 for all n = 0, 1, . . . , N − 1.
τ is infinite if N =∞ and finite otherwise.

The IHTT is used to encode timing information for the
continuous and discrete dynamics of the IHS H∗. The IHTT
stores the times when at least on one of the agents executes
a discrete transition. The IHTT also specifies time intervals
between two consecutive elements in the sequence where
uninterrupted continuous evolution takes place.

Let the elements of the collection (τ,q, s,x,u) be:
• τ is an interconnected hybrid time trajectory.
• q = {~q0, ~q1, . . . , ~qn, . . . , ~qN} is a sequence of vectors

of discrete locations ~qn = (qn
i )i∈I where qn

i is the
discrete mode of system Hi at the nth step in the
execution.

• s = {~s0, ~s1, . . . , ~sn, . . . , ~sN} is a sequence of vectors of
switching labels ~sn = (sn

qi
)i∈I where sn

qi
is the discrete

transition that occurs on system Hi at nth step in the
execution.

• x = {~x0, ~x1, . . . , ~xn, . . . , ~xN} is a sequence of con-
tinuous evolution ~xn = (xqn

i
)i∈I where xqn

i
is a

differentiable map xqn

i
: [τn−1, τn)→ Xqn

i
.

• u = {~u0, ~u1, . . . , ~un, . . . , ~uN} is a sequence of con-
tinuous control inputs ~un =

(

uqn

i

)

i∈I
where uqn

i
is a

continuous map uqn

i
: [τn−1, τn)→ Uqn

i
.

In order to simplify notation, we use the following con-
vention: Unless otherwise noted, if we use an interconnected
hybrid state ~h, an interconnected discrete state ~q, and/or a
discrete state qi in the same sentence/paragraph it implies
that the discrete state qi is a component of an interconnected
discrete state ~q, which is a component of an interconnected
hybrid state ~h. We will follow that convention for continuous
states, transition labels and continuous inputs as well.

We say that ~h(t) satisfies the discrete transition guard

Gqi
(s), if the local component of ~h(t) satisfies the local

part of Gqi
(s) - xqi

(t) ∈ GL
qi
(s), and the remote component

of ~h(t) satisfies the remote part of Gqi
(s) - (hj)j∈V (qi)(t) ∈

GR
qi
(s). We say that ~h(t) satisfies interconnected discrete

transition guard G~q(~s), if ~h(t) satisfies Gqi
(sqi

) for all i ∈ I ,
where ~q = (qi)i∈I and ~s = (sqi

)i∈I .
We say that ~x~q′ is in the interconnected transition map

Z~q(~h,~s), if each component of ~x~q′ satisfies the transition
map of each component of ~s, i.e. xq′

i
∈ Zqi

(~h, sqi
) for all

i ∈ I , such that ~q′ = (q′i)i∈I , ~q = (qi)i∈I , ~x~q′ = (xq′
i
)i∈I ,

and ~s = (sqi
)i∈I .

Definition 2 (Interconnected Hybrid Execution) An
Interconnected Hybrid Execution (IHE) with initial
conditions ~h0 is a collection χ(~h0) = (τ,q, s,x,u) where:

• Initial Condition: ~h0 = (~q0, ~x0(0)) is an initial condi-
tion of H∗.

• Continuous Dynamics: ~̇xn = ~f~qn(~xn, ~un, t) for all t ∈
[τn−1, τn), for all n ∈ {1, 2, . . . , N}, where ~f~qn(·) =
(

fqn

i
(·)

)

i∈I
is the vector field of all agents in the IHS

H∗.
• Discrete Dynamics: The following conditions hold for

all n ∈ {0, 1, 2, . . . , N − 1}:
– The discrete state after a transition ~qn+1 is equal

to the corresponding discrete transition label ~sn.
– The hybrid state before a transition ~hn(τn) satisfies

the corresponding transition guard G~qn(~sn).
– The continuous state after a transition ~x~qn+1(τn+1)

is in the corresponding transition map Z~qn(~hn, ~sn).

The IHE provides the information about the continuous
and discrete states and inputs of the system on time. The
conditions imposed in Definition 2 are required for the
execution to to satisfy the dynamics of H∗. Therefore an IHE
starts at a valid initial condition. The continuous evolution
between two times in the IHTT satisfies the continuous
dynamics of all agent, and the discrete transitions have valid
transition guards and maps.

IV. EXISTENCE AND UNIQUENESS OF THE IHE

We provide conditions for the existence and uniqueness
of an infinite IHE. The conditions are stated as a function
of each agent in the system. Therefore the existence and
uniqueness of the IHE can be guaranteed by the specification
of local design variables in each agents dynamics.

Let χS(~h0) denote the set of all IHEs with initial condition
~h0, and similarly χF (~h0) denotes the set of all finite IHEs,
χ∞(~h0) denotes the set of all infinite IHEs, and χM (~h0)
denotes the set of all maximal IHEs. Init denotes the set of
all initial conditions.

We say that a finite IHE χ(~h0) ∈ χF (~h0) maps ~h0 to ~h
if its IHTT τ = {τ0, τ1, . . . , τN} and ~h = (~qN , ~xN (τN )).
The interconnected hybrid state ~h is reachable from initial
condition ~h0 - denoted ~h ∈ Reach(~h0) if there exists a finite
IHE χ(~h0) ∈ χF (~h0) that maps ~h0 to ~h. The set of states
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~h that can be reached from any initial condition is called
Interconnected Reachable Set:

ReachH∗ =
⋃

~h0∈Init

Reach(~h0)

Let ψ(qi, t) denote the continuous flow of fqi
(xqi

, uqi
, t).

We define the Set of Blocked Continuous Evolution as the
set that specifies what states in the system require a discrete
transition for the system to continue its evolution:

OutH∗ = {~h ∈ HI ;∀ε > 0,∃t ∈ [0, ε) and ∃i ∈ I,

s.t. ψ(qi, t) /∈ Xqi
}

We say that H∗ is deterministic if given ~h0, χM (~h0)
contains at most one element. The following result provides
the necessary and sufficient conditions for existence of an
infinite execution assuming the system is deterministic.

Lemma 1 (Deterministic existence) Suppose H∗ is deter-
ministic. Then given an initial condition ~h0, χ∞(~h0) is
nonempty (an infinite execution exists) if and only if for
all ~h ∈ ReachH∗

⋂

OutH∗ there exist a ~s ∈ S~q such that
~h satisfies G~q(~s), where ~q is the discrete state of ~h, and
S~q =

∏

i∈I Sqi
such that ~q = (qi)i∈I .

Proof: (Sketch) (⇒) Suppose all conditions in Lemma
1 hold except that there is a ~h whose continuous evolution
is blocked but does not satisfy any discrete transition guard.
Since ~h is reachable there is a finite execution χ(~h0) that
maps the initial condition to ~h. This finite execution is max-
imal because it can not be extended through continuous or
discrete dynamics. However, the infinite execution assumed
to exist is also maximal. Thus the system is not deterministic.
Contradiction.

(⇐) Suppose all conditions in Lemma 1 hold except that
there is a ~h0 for which no infinite execution exists. Then
it is possible to find a finite, maximal execution χ(~h0) that
maps ~h0 to ~h. However Lemma 1 implies that χ(~h0) can be
extended either through continuous evolution or by a discrete
transition. Then χ(~h0) is not maximal. Contradiction.

Note that the conditions in Lemma 1 require that whenever
the system gets into an state where continuous evolution
is blocked, it is guaranteed that a discrete transition from
that state exists. In the following we state the necessary and
sufficient conditions for an IHS to be deterministic.

Definition 3 (Forced Transition Condition) ~h ∈
ReachH∗ satisfies the Forced Transition (FT) condition if
the following condition holds: If there exists a transition
label ~s ∈ S~q such that ~h satisfies the corresponding
transition guard G~q(~s), then ~h ∈ OutH∗ .

Definition 4 (Disjoint Transition Guard Condition) ~h ∈
ReachH∗ satisfies the Disjoint Transition Guard (DTG)
condition if the following condition holds: If there exist two
discrete transition labels ~s,~s ′ ∈ S~q such that ~s 6= ~s ′, then ~h
satisfies at most one of the discrete transition guards G~q(~s)
or G~q(~s

′).

Definition 5 (Singleton Transition Map Condition) ~h ∈
ReachH∗ satisfies the Singleton Transition Map (STM) con-
dition if the following condition holds: If there exists a
discrete transition ~s ∈ S~q such that ~h satisfies the transition
guard G~q(~s), then the transition map Z~q(~h,~s) contains at
most one element.

Lemma 2 (Determinism) Given an initial condition ~h0,
χM (~h0) contains at most one element if and only if for all
~h ∈ ReachH∗ the Forced Transition, the Disjoint Transition
Guard, and the Singleton Transition Map conditions hold.

Proof: (Sketch) (⇐) Suppose there are two different
maximal executions χ̃(~h0) and χ̌(~h0) starting at ~h0, but all
FT, DTG, and SMT conditions hold. Since χ̃(~h0) and χ̌(~h0)
start at the same initial condition, there is a finite execution
χ(~h0) that is the maximal prefix of both of them. If ~h is the
state obtained from χ(~h0) then either:

1) Both χ̃(~h0) and χ̌(~h0) evolve continuously from ~h.
The Lipschitz continuous dynamics imply that χ(~h0)
can be extended on continuous evolution and still be a
prefix of both χ̃(~h0) and χ̌(~h0). Then χ(~h0) is not the
maximal prefix of χ̃(~h0) and χ̌(~h0). Contradiction.

2) χ̃(~h0) evolves continuously from ~h, while χ̌(~h0) ex-
ecutes a discrete transition (or viceversa). The former
implies (Lipschitz) that continuous evolution of ~h is
possible. The latter implies (FT condition) that ~h has
its continuous evolution blocked. Contradiction.

3) Both χ̃(~h0) and χ̌(~h0) execute a discrete transition
from ~h. DTG and STM conditions imply that these
transitions are the same, and the state of the system
after the transition is identical. Then χ(h0) can be
extended by a discrete transition and still be a prefix of
both χ̃(~h0) and χ̌(~h0). Thus χ(~h0) is not the maximal
prefix of χ̃(~h0) and χ̌(~h0). Contradiction.

(⇒) Suppose there is only one maximal execution but at
least one of the FT, DTG, or STM conditions is violated for
~h. Since ~h is reachable there is a finite execution χ(~h0) from
~h0 to ~h. If the FT condition is violated then both continuous
evolution and a discrete transition are possible. Then there
are two maximal executions starting at ~h0. Contradiction.

If the DTG condition does not hold, χ(~h0) can be extended
on two different discrete transitions creating two different
maximal executions starting at ~h0. Contradiction. If the STM
condition does not hold, a discrete transition may lead to two
different continuous states, then χ(~h0) can be extended into
two different continuous evolutions, creating two different
maximal executions starting at ~h0. Contradiction.

Lemma 2 rules out any possibility of the system taking
more than one path at the same time: If a discrete transition
is possible then continuous evolution is blocked and vice
versa (FT condition). If there exist two possible transitions
then only one of the corresponding transition guards may
be satisfied (DTG condition). And a discrete transition may
only have one possible destination point (STM condition).
Combining Lemmas 1 and 2 we obtain the following result.
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Theorem 1 (Existence and Uniqueness) Given an initial
condition ~h0, χ∞(~h0) contains exactly one element if and
only if the conditions of Lemmas 1 and 2 hold.

Theorem 1 states the necessary and sufficient conditions
for the existence and uniqueness of an infinite IHE in terms
of the global model of the IHS. The result that follows uses
these conditions to check existence and uniqueness of the
IHE based on the individual agent dynamics. Let the set of
blocked continuous evolution of system i ∈ I be:

Outi = {~h ∈ HI ;∀ε > 0,∃t ∈ [0, ε) s.t. ψ(qi, t) /∈ Xqi
}.

Corollary 1 (Locally Specified Existence and Uniqueness)
Given an initial condition ~h0, χ∞(~h0) contains exactly one
element if and only if all the following conditions hold for
all agents i ∈ I , and for all ~h ∈ ReachH∗ :

1) The interconnected hybrid state ~h ∈ Outi if and only
if there is a s ∈ Sqi

such that ~h satisfies Gqi
(s).

2) If there exists two discrete transitions s, s′ ∈ Sqi
such

that s 6= s′ then their corresponding transition guards
are disjoint Gqi

(s)
⋂

Gqi
(s′) = ∅.

3) If there is a s ∈ Sqi
such that ~h satisfies Gqi

(s) then
Zqi

(~h, s) is a singleton.

Proof: (Sketch) Condition 1 and Outi satisfied for all
i ∈ I are equivalent to Lemma 1 and Definition 3 (FT).
Condition 2 is equivalent to Definition 4 (DTG). Condition
3 is equivalent to Definition 5 (STM).

According to Corollary 1, existence and uniqueness of the
IHE follows if every agent is designed such that its discrete
transitions are forced, two different discrete transitions are
impossible, and a discrete transition maps the continuous
state of the agent to a single location.

V. APPLICATION EXAMPLE

We consider an example taken from [10], and use Corol-
lary 1 to design the general structure of the dynamics of
agents in the system. This example is motivated by an
architecture for the future Internet [6] that addresses several
issues the Internet is facing due to its size explosion and the
addition of mobile devices to its operation. This architecture
abstracts the functional components of the network from the
hardware that is used to implement them. This is achieved
by enabling software agents that implement these functions
(e.g. routing, computing), while considering the hardware as
a resource (e.g. connectivity, memory) to be used by agents
to implement their functions (Fig. 3). Software agents in the
network are capable of requesting resources to the nodes
they occupy, as well as migrating between nodes in the net-
work seeking better resources to implement their functions.
Hardware nodes distribute their resources according to agents
requests, and can host multiple agents at the same time. The
network may suffer changes in the resources available in the
nodes, and the presence of nodes and links.

Following [10], the dynamics of each software agent and
hardware node are described by a hybrid system. In denotes
the set of hardware nodes, while Ia denotes the set of

Fig. 3. Network example: Each platform in the network can run several
processes concurrently. The network is abstracted as a graph and the
processes as agents (black circles) that can move among the nodes.

software agents, and I = In
⋃

Ia. Hi with i ∈ In denotes the
hybrid system that describes node i, while Hk with k ∈ Ia
denotes the hybrid system that describes agent k.

In this example we consider a special case of the system
studied in [10]. The network in this example is fixed.
Changes in the network generate event dynamics that are
beyond the scope of this paper. The dynamical description
of agents and nodes according to [10] is the following:

The set of discrete modes of node i is Qi = Oi × Di,
where Oi (operating state) is a singleton because we assume
a fixed network, and Di (connectivity state) has one element
d ∈ Di for each possible combination of agents that may
occupy node i. The set of discrete modes of agent k denoted
Qk = Ok × Dk, where Ok is a singleton because agents
have a single operating condition, and there is one element
d ∈ Dk for each possible location of agent k in the network.
Note that the discrete states of the nodes are affected by the
states of the agents and viceversa.

The continuous dynamics of node i and agent k, Σi and Σk

respectively, are designed using resource allocation theory
[14]. We do not include a detailed description of Σi and
Σk here because of space constraints. Interested readers
are referred to [10]. However we note that the continuous
dynamics of agent k have the state of the node it occupies
as control input, while the continuous dynamics of node i
have the states of all agents located in it as control inputs.

Transitions in the nodes are influenced by the agents’
discrete states: Transition labels in node i, Sqi

∈ Si reflect
changes in the agents occupying node i. Therefore, if agent
k leaves from or arrives to node i, a discrete transition in the
node’s dynamics s ∈ Sqi

occurs to update the connectivity
state d ∈ Di.

Transition s ∈ Sqi
may be enabled according to the

discrete dynamics of the agents: A node’s transition guard
Gqi

(s) is satisfied if the neighborhood of the destination state
q′i is equal to the set of agents that are connected to node i. In
this form, node i changes its discrete state to reflect the new
set of agents it hosts as soon as an agent arrives/leaves that
node. A graphical example of this is shown in the discrete
interaction of Figure 1. The discrete transition maps Zqi

(~h, s)

leave the continuous states unchanged for all ~h ∈ HI and all
s ∈ Sqi

.
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Transitions in the agents are influenced by the nodes’
continuous states: Transition labels in agent k, Sqk

∈ Sk

reflect the ability of agent k to change its location. Therefore,
if agent k is located at node i, and migrates to node i′, a
discrete transition s ∈ Sqk

occurs to update d ∈ Dk.
The transition guards Gqk

∈ Gk are designed such that
agent find a node with the best resources available in the
network. Assume the discrete state of agent k is qk, which
corresponds to agent k located at node i. Given s ∈ Sqk

let
the destination state of transition s be q′k, which corresponds
to agent k located at node i′, then ~h satisfies Gqk

(s) if

mig(xi′ , i
′) < nmig(xi, i) and (1a)

mig(xi′ , i
′) < mig(xj , j), ∀j 6= i′; j ∈ V (qk) (1b)

where mig(α, β) and nmig(α, β) are monotonically increas-
ing functions of α for all β ∈ I . Function mig(α, β)
measures the benefit of migrating to node β, whose current
continuous state is α. Similarly nmig(α, β) measures the
benefit of staying at node β, whose current continuous state
is α. Therefore, since the states xi, xi′ , and xj are inversely
related to the availability of resources in nodes i, i′, and
j respectively1, the transition guard that allows agent k to
migrate from node i to node i′ is satisfied when the benefit of
migrating to node i′ is better than staying at node i, and when
the benefit of migrating to node i′ is better than migrating
to any other node j that is reachable by agent k in one
transition. This is illustrated in Figure 4.

?
?

?

Fig. 4. Agent decision process. The agent compares the benefit of staying
in its current location with that of migrating to different nodes in its
neighborhood (Arrows with ?-marks; left). Then the agent migrates to (or
stays at) the node that offers the best benefit (arrow with agent; right).

Finally the discrete transition map Zqk
(~h, s) sets the

continuous state after the transition xq′
k
= 0 for all ~h ∈ HI

and all s ∈ Sqi
. This implies that when agent k arrives to a

new node, it starts with no resources.
We use Corollary 1 to determine if existence and

uniqueness of the IHE is satisfied based on the agents
models. To satisfy Condition 1) Outk is defined as
the union of of all the transition guards on agent
k, i.e. Outk , {~h ∈ HI ;~h satisfies Gqk

(s),∀s ∈
Sqk

where qk is a component of ~h}. Then as soon as a
transition guard is satisfied, the continuous evolution is
blocked and the transition occurs.

Condition 2) is satisfied by the definition of the transition
guard Gqk

: Assume there is a ~h ∈ ReachH∗ that satisfies
the guards Gqk

(s), and Gqk
(s′) of two different transitions

s and s′ in Sqk
. We denote as c the current node of agent

1The dynamics of the nodes are designed in [10]. The state of the nodes
represent the price the agents pay to access a particular resource. Therefore
the state of the nodes is inversely related to the availability of resources.

k, and with some abuse of notation we denote as s the node
that agent k reaches if it takes transition s and s′ if it takes
transition s′. Then according to (1b) mig(xs, s) < mig(xj , j)
for all j ∈ V (qk) including s′, and also mig(xs′ , s

′) <
mig(xj , j) for all j ∈ V (qk) including s, which implies that
mig(xs, s) < mig(xs′ , s

′) and mig(xs′ , s
′) < mig(xs, s).

Contradiction.
Finally, condition 3) is satisfied by the definition Zqk

for
all k ∈ Ia. A similar analysis can be performed on the hybrid
model of the nodes to reach the conclusion that these satisfy
all conditions in Corollary 1.

VI. CONCLUSION

We present an interconnected hybrid systems framework:
a set of hybrid systems with interweaved continuous and
discrete dynamics that form a multi-agent system with hybrid
interacting dynamics. We extend the work in [7] defining
reachable sets and executions for interconnected hybrid sys-
tems. We prove necessary and sufficient conditions for the
existence and uniqueness of interconnected hybrid executions
that are written in terms of the local model of each hybrid
agent, and apply these conditions to the problem of designing
future communication networks.
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