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Abstract— In this work, we consider the problem of control-
ling two linear systems coupled through the inputs. We propose
a novel distributed model predictive control method based
on game theory in which two different agents communicate
in order to find a cooperative solution to the centralized
control problem. We assume that each agent only has partial
information of the model and the state of the system. The class
of systems considered arises naturally in multi-input multi-
output processes in which a transfer function model is obtained
using standard identification techniques. The performance and
the robustness of the proposed control scheme with respect to
data losses in the communications are illustrated by extensive
simulations.

I. INTRODUCTION
Model predictive control (MPC) is a control strategy that

has been successfully applied to process control, specially to
constrained multivariable systems exhibiting dead times [1].
In general, MPC cannot be applied to large scale systems due
to the computational requirements or to the impossibility of
obtaining a centralized model of the whole system. Typical
examples of large scale systems are transportation systems
such us traffic, water or power networks [2]. In addition,
there is an increasing interest in networked control systems
(NCS) made up of different interconnected processes and
controllers [9], [10]. One way to address this class of control
problems in the MPC framework is to develop distributed
model predictive control (DMPC) schemes, in which the
system is controlled by agents with limited capabilities
which implement a control law based on a reduced model
of the system and on partial state information. In general
the computational burden of these distributed schemes is
lower than the one corresponding to the centralized MPC,
but the performance of the closed-loop system depends on
the decisions that all the agents take, so cooperation and
communication policies become very important issues.

In the context of distributed MPC design, several dis-
tributed MPC schemes have been proposed in the literature
that deal with the coordination of separate MPC controllers
that communicate in order to obtain optimal input trajectories
in a distributed manner; see [6], [13] for reviews of results in
this area. In [2] an algorithm based on Lagrangian relaxation
is presented. In [3], sufficient conditions that guarantee
stability of a class of distributed controllers are given. In
[4] a DMPC algorithm was applied to a quadruple tank
system. In [5], basic collaboration algorithms are provided
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with an extensive list of conditions to ensure convergence
and stability. In [14], the problem of distributed control
of dynamically coupled nonlinear systems that are subject
to decoupled constraints was considered. In [15], [16], the
effect of the coupling was modeled as a bounded distur-
bance compensated using a robust MPC formulation. In [17]
distributed MPC of decoupled systems (a class of systems
of relevance in the framework of multi-agents systems) was
studied. In [12] Lyapunov based distributed and decentralized
schemes for nonlinear systems were presented. Finally in [7]
a DMPC framework is proposed with guaranteed stability
and optimality properties.

However, for low-resource systems many of the distributed
control schemes that can be found in the literature are not
suitable due to limitations in the communication capabilities.
In wireless sensor and actuator networks, communication
is a very valuable and scarce resource and its desirable to
have algorithms that use few communication steps. In this
paper we propose a DMPC algorithm for two agents based
on game theory with reduced communication requirements,
specially suited for low-resource systems. Game theory is a
theoretical framework that allows one to study the problem
of cooperation of different agents with, maybe, conflicting
control goals, from a mathematical point of view. In the
proposed scheme, the coordination problem between the
agents is reduced to a game in which they have to choose
one out of three options, and only two communication cycles
are needed to reach an agreement. The proposed algorithm
provides a feasible solution to the equivalent centralized
control problem. In this context it is very important to have
control algorithms capable to cope with communications
errors; the stability of the overall system may depend on
it [8], [11]. In a real distributed environment, errors in
the communications and delays in the packets transmissions
should be expected. Motivated by this issues, the algorithm’s
robustness against communication failure, a critical issue in
low-resource distributed applications, is also studied though
extensive simulation.

II. PROBLEM FORMULATION

In this work we consider the following class of distributed
linear systems that consists of two different subsystems
coupled with the neighbor subsystem through the inputs:

x1(k + 1) = A1x1(k) +B12u1(k) +B21u2(k)
x2(k + 1) = A2x2(k) +B21u1(k) +B22u2(k) (1)

where xi ∈ Rni , i = 1, 2 are the states of each subsystem
and uj ∈ Rmj , i = 1, 2 are the different inputs. This class
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of systems are of relevance when identifications techniques
are used to obtain the transfer function of a MIMO process.

The objective of a centralized MPC controller is to
minimize a cost function that depends on the predicted
trajectories of both states and inputs. At each sampling time,
the centralized MPC controller optimizes over the set of
input trajectories of length N , the prediction horizon. The
optimization variables are

U1 = [u1(0)T u1(2)T . . . u1(N − 1)T ]T

U2 = [u2(0)T u2(2)T . . . u2(N − 1)T ]T .

The MPC optimization problem is defined as follows

min
U1,U2

J(U1, U2, x1, x2)

x1(k + 1) = A1x1(k) +B12u1(k) +B21u2(k)
x2(k + 1) = A2x2(k) +B21u1(k) +B22u2(k)
x1(0) = x1, x2(0) = x2

(2)
where x1 and x2 are the current state of the whole system
and

J =
N−1∑
k=0

x1(k)TQ1x1(k) + x2(k)TQ2x2(k)

+u1(k)TR1u1(k) + u2(k)TR2u2(k).

The centralized MPC controller is based on a receding
horizon scheme; that is, at each sampling time, the current
state of the system x1, x2 is received from the sensors,
problem (2) is solved and the optimal input trajectory of
length N is obtained. The first inputs are applied, and the
procedure is repeated the next sampling time. In general, for
large scale problems, it might be computationally expensive
to solve (2). In the next section we proposed a distributed
control scheme in which the inputs are decided solving a
sequence of reduced optimization problems based on the
model of each subsystem.

III. DISTRIBUTED MPC
An important issue for distributed control schemes is the

computational and communicational burden that the agents
have to bear in order to control the system. Centralized
MPC solves a single large-scale problem and has no need of
communications. The goal of distributed and decentralized
systems is to obtain the same closed-loop performance as
the centralized MPC solving a sequence of lower complexity
optimization problems. A control system is decentralized
if there is not communication among the agents. This is
the worst scenario from the performance point of view
because each agent has to cope alone with its control
problem with the risk that the absence of coordination in the
agents’ decisions may lead to the instability of the system.
The control system is distributed if there is communication
between agents. The degree of communication depends on
the control problem and the communication constraints. In
this section we present a distributed MPC controller based
on a cooperative game scheme between two different agents.
We assume that each agent has access only to partial model
information; that is, agent 1 decides u1 and has information
of the dynamics and the measurements of x1, while agent 2

decides u2 and has information of the dynamics and the
measurements of x2. This implies that in order to cooperate
to minimize a global cost function, both agents have to
communicate.

Each agent defines a local cost function based on the
predicted trajectories of its state and input; that is,

J1 =
N−1∑
k=0

x1(k)TQ1x1(k) + u1(k)TR1u1(k)

J2 =
N−1∑
k=0

x2(k)TQ2x2(k) + u2(k)TR2u2(k).

The objective of the DMPC scheme is to minimize the global
cost function J = J1 + J2. To this end, each agent solves a
sequence of reduced dimension optimization problems based
on the model of its subsystem assuming a given fixed input
trajectory for its neighbor. In order to describe the algorithm,
we use the following notation:
• Ui: Future input trajectory of agent i with i = 1, 2.
• Unei: Future input trajectory of the neighbor of agent i;

that is, Une1 = U2 and Une2 = U1.
• Us

i : Shifted optimal input trajectory of agent i; that is,
if at a given sampling time the optimal input trajectory
of agent i, denoted Udmpc

i is

Udmpc
1 = [u∗1(0)T u∗1(1)T . . . u∗1(N − 1)T ]T

then

Us
1 = [u∗1(1)T u∗1(2)T . . . u∗1(N − 1)T 0]T .

Note that we use the index k to define the time steps of
the optimization problems, not the real sampling times.

The proposed DMPC algorithm is the following:
1) Each agent i receives its corresponding partial state

measurement xi.
2) Each agent i minimizes Ji assuming that the neighbor

keeps applying the optimal trajectory evaluated at the
previous time step; that is, Unei = Us

nei.

U∗i = min
Ui

Ji(Ui, U
s
nei, xi)

xi(k + 1) = Aixi(k) +Biiui(k)
+Bi,neiunei(k)

xi(0) = xi.

Note that in this optimization problem the free variable
is Ui (the neighbor input trajectory is fixed).

3) Each agent i minimizes Ji optimizing the neighbor
input assuming that he applies the input trajectory
computed in the previous optimization problem U∗i .

Uw
nei = min

Unei
Ji(U∗i , Unei, xi)

xi(k + 1) = Aixi(k) +Biiui(k)
+Bi,neiunei(k)

xi(0) = xi

Note that in this optimization problem the free variable
is Unei (the input trajectory Ui is fixed). Solving
this optimization problem, agent i defines an input
trajectory for its neighbor that optimizes its local cost
function Ji.
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Fig. 1. Cost function table used for the decision making.

4) Both agents communicate. Agent 1 sends U∗1 and Uw
2

to agent 2 and receives U∗2 and Uw
1 .

5) Each agent evaluates the local cost function Ji for
each the nine different possible combination of input
trajectories; that is U1 ∈ {Us

1 , U
w
1 , U

∗
1 } and U2 ∈

{Us
2 , U

w
2 , U

∗
2 }

6) Both agents communicate and share the information
of the value of local cost function for each possible
combination of input trajectories. In this step, both
agents receive enough information to take a cooper-
ative decision.

7) Each agent applies the input trajectory that minimizes
J = J1 + J2. Because both agents have access to
the same information after the second communication
cycle, both agents will chose the same optimal input
sets. We denote the chosen set of input trajectories

{Udmpc
1 , Udmpc

2 }

8) The first input of each optimal sequence is applied and
the procedure is repeated the next sampling time.

From a game theory point of view, both agents are
playing a cooperative game. This game can be synthesized
in strategic form by a 3x3 matrix. Every row represents a
possible decision of agent 1 and every column represents the
possible decisions for agent 2. The resulting cells contain the
sum of the cost functions of both agents. At each time step,
the option that yields a lower global cost is chosen. These
nine possibilities are shown in the next table.

Remark 1: A qualitative analysis can be done for the
proposed solutions at each step for the agent i:
• Us

i : Stable option. The agent has de possibility to main-
tain its actuation. This can be a good option because
U∗j is calculated supposing that Ui = Us

i . This also
allows the system globally to stay stable once a global
J minimum has been reached.

• U∗i : Selfish option. This option offers an improvement
in Ji if the rest of the system’s manipulated variables
stay unchanged. It can be a good choice to reduce J
if the rest of the agents have reached a steady state
actuation.

• Uw
i : Altruist option. This option offers the best improve-

ment for the neighbor agent. whose wish is Ui = Uw
i

when it takes U∗j . The agent i sacrifices its own welfare
in order to improve the performance of its neighbor.

Remark 2: The proposed scheme can be extended to deal
with a N agents, however, in order to build a global cost

table to take a cooperative decision, the complexity in general
grows exponentially. In order to reduce the complexity, the
structure of the system may be exploited taking into account
that all the input may not affect all the outputs. Also, in
general not all the possible cooperation options are employed
with the same frequency, so is possible to reduce further
the complexity by not taking into account the less frequent
options.

Remark 3: In this work we have not considered state
constraints, however, the results can be extended to con-
strained systems if the optimization problem is modified
appropriately.

Remark 4: In general, the minimum number of communi-
cation steps needed for a cooperating control scheme is two.
In the first step each agent informs of its intentions to its
neighbors and during the second it can confirm if it accepts
its neighbors’ intentions.

Remark 5: Ideally it would be desirable that each agent
could access the whole state of the system. However, most
of the times is impossible to reach such a communication
level due to constraints in the transmission rate, the channel
capacity or the size of the system. Moreover, sharing all the
information can be unpractical because not all the variables
in the system are relevant for all the agents. This is one of the
reasons why in general agents only communicate with their
neighbors; that is, those agents whose variables are relevant
for them.

A. Communication errors

The proposed algorithm assumes flawless communications
between both agents. In a real distributed environment, errors
in the communications and delays in the packets transmission
should be expected. In this section we modify the proposed
strategy to take into account data losses and delays in the
packet transmissions. To simplify the notation, we assume
that an error in the communication link will affect the
transmissions in both ways, so there is no possibility that
only one of the agents is affected by a fault.

To model data losses and possible delays, we assume that
the possibility of flawless communications is given by the
parameter reliability ∈ [0, 1]. This parameter characterizes
the quality communication network. In the following section,
different simulations for different values of this parameter are
done.

In the original algorithm the agents chose among three
options for the control signal (Us

i , U∗i , Uw
i ) with the goal

of minimizing J . When data losses occur, the agents do not
receive Uw

i or the information needed to build the global cost
table. In this case, each agent must decide wether to keep
applying the last optimal input trajectory Us

i , or act selfishly
and try to minimize its local cost function choosing U∗i . In
order to test the robustness of the proposed approach in the
worst possible case, we assume that when communication
errors occur, each controller operates in a decentralized way,
applying U∗i .

Remark 6: Note that as the parameter reliability tends
to zero, the amount of information shared by the agents de-
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Fig. 2. Continuously stirred tank reactor (CSTR)

creases, and the controller tends to operate in a decentralized
manner.

IV. SIMULATIONS

To demonstrate the proposed controller, we use the lin-
earized model of a continuously stirred tank reactor (CSTR)
presented in [1]. The linearized process around a given
equilibrium point is described in continuous time by the
following transfer matrix[

Y1(s)
Y2(s)

]
=
[ 1

1+0.7s
5

1+0.3s
1

1+0.5s
2

1+0.5s

] [
U1(s)
U2(s)

]
,

where the manipulated variables U1 and U2 are respectively
the flow rate and the flow of coolant in the jacket. The
controlled variables Y1 and Y2 are respectively the effluent
concentration and the reactor temperature, see figure 2. The
sampling time is defined as Ts = 0.03s.

The control objective is to track a given constant reference
from a random initial state. We first design a centralized
MPC scheme that decides both inputs simultaneously. The
MPC optimization problem that has been used for the sim-
ulations is based on minimizing the following cost function
using the linearized discrete model of the process

J =
N−1∑
k=0

(ref1(k)− y1(k))TWy,1(ref1(k)− y1(k))

+(ref2(k)− y2(k))TWy,2(ref2(k)− y2(k))
+∆u1(k)TW∆u,1∆u1(k)
+∆u2(k)TW∆u,2∆u2(k),

where refi(k) is the reference signal for the controlled vari-
ables Y1 and Y2. For this simulations we have not considered
constraints on the input or the outputs. The following values
were used for the controller parameters:

N = 5
ref1 = 0
ref2 = 0
Wy,1 = Wy,2 = 1
W∆u,1 = W∆u,2 = 0.05

(3)

The centralized controller provides the optimal solution
from the performance point of view; that is, if the agents
could communicate an infinite number of cycles, the solution
would converge to the centralized one. We will compare a
decentralized and the proposed scheme with this controller.

The following parameters are used to compare the perfor-
mance of each controller:
• λ: Convergence rate of the global cost function. It is

computed as the smaller value such that the following
constraint holds

J(kTs) ≤ J0 · λk, λ > 0 (4)

where J(t) is the value of the global cost function eval-
uated at time t for the decided future input trajectories.
If the controlled system is unstable then λ > 1.

• Jv: Number of sampling times required in order to get
a relative error below 5%, where the relative error is
defined as

Eri =
∣∣∣∣refi − yi

refi

∣∣∣∣ · 100. (5)

Over 20 simulations of the system in closed-loop with the
centralized controller were done with the references given
before and different initial states, half of them with kmax =
100 and the other half with kmax = 300. The average
performance parameters were obtained for the centralized
controller:

λ = 0.77
Jv = 13.

These values will be used to compare the performance of the
decentralized and the distributed schemes.

A. Decentralized MPC

We consider that the CSTR is controlled by two different
agents. Agent 1 controls the flow rate U1 based on the
measurements of the Y1, while agent 2 controls U2 based
on the measurements of Y2. Each agent has an incomplete
model of the system; that is, they only know the first row of
the system model (how their measured output is affected by
each of the inputs). A decentralized MPC scheme is based
on the idea that each agent tries to control its own subsystem
without communicating with the other agent. Each agent tries
to minimize a local cost function. For agent 1 the local cost
function is

J1 =
N−1∑
k=0

(ref1(k)− y1(k))TWy,1(ref1(k)− y1(k))

+∆u1(k)TW∆u,1∆u1(k).

and for agent 2 the local cost function is:

J2 =
N−1∑
k=0

(ref2(k)− y2(k))TWy,2(ref2(k)− y2(k))

+∆u2(k)TW∆u,2∆u2(k).

At each time step, agent 1 receives Y1 and finds the optimal
sequence of inputs such that J1 is minimized assuming
that U2 = 0, the equilibrium input when the reference is
ref1 = ref2 = 0. Agent 2 follows the same protocol. For
this particular system the decentralized controller is not able
to stabilize the system. These simulations demonstrate that
even for a simple system, when different agents control the
same system, if a cooperation scheme is not used, the system
may become unstable.
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Fig. 3. Trajectories of the system in closed-loop with the proposed DMPC
and reliability = 1.

B. Distributed MPC

In this section we carry out a set of simulations using the
proposed DMPC scheme. Each agent tries to minimize local
cost function Ji presented in the previous section as in the
decentralized scheme. In this case however, agents do com-
municate and try to minimize the sum of their optimization
functions following the proposed DMPC scheme.

In this case, if there are no data losses or delays
(reliability = 1), the proposed controller scheme is able
to stabilize the closed-loop system. We carried out over
20 simulations with different initial states and constant
references. Figure 3 shows one of these simulations. For
this set of simulations the performance parameters were
Jv = 41.1458 and λ = 0.8858. It can be seen that the
performance of the distributed scheme is worst than the
one of the centralized controller (although much better than
the decentralized scheme which is not able to stabilize the
system). As mentioned before, the centralized scheme is the
best possible controller from the communication point of
view.

C. Communication errors

In order to test the robustness of the proposed DMPC
with respect to communications errors, a set of simulations
with different reliability values were carried out. for each
value reliability over 20 simulations were done. The results
obtained are shown tables 2 and 3. Figure 4 shows the
dependence of the performance parameters Jv and λ on the
network quality parameter reliability.

Table 2: λ and Jv for reliability ∈ [0.5, 0.9]
reliability

0.9 0.8 0.7 0.6 0.5
λk=100 0.8929 0.8976 0.9098 0.9315 0.9902
Jvk=100 44.6375 48.025 64.1375 76.575 84.15
λk=300 0.9598 0.9599 0.9625 0.969 0.984
Jvk=300 45.375 52.8125 71.3125 90.9375 129.625

Table 3: λ and Jv for reliability ∈ [0.1, 0.4]

Fig. 4. λ and Jv dependence on the parameter reliability.

reliability
0.4 0.3 0.2 0.1

λk=100 1.1767 1.3917 1.6086 1.9318
Jvk=100 98.8625 100 100 100
λk=300 1.1604 1.3818 1.6041 1.9235
Jvk=300 291.0313 300 300 300

Notice that the value of k affects the value of the com-
parison parameters. An increment in the value of λ is found
when k increases if the system stays stable (λ < 1). This
is due to the fact that if the system has reached the desired
value for the controlled variables during the first k1 sampling
times, the evolution during the k2 following time steps wont
be significant. As λ is calculated as a function of the total
number of the simulation steps the final k2 time steps will
only degrade quantitatively its value, specially if k2 is in the
same order of magnitude than k1.

On the other hand, it is also observed an increment in Jv

with k. The reason for this is that if a simulation fails to
regulate the average error below the 5% it will have Jv =
kmax.

As the reliability increases, the performance parameters
tend to the ones obtained in the flawless communication
simulations. The simulation results also show that depending
on the value of reliability, the DMPC is able to stabilize
the closed-loop system or not. For reliability ≤ 0.5, the
performance parameter is λ < 1, this implies that the closed-
loop system is stable. However, if more than 50% of the
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Fig. 5. Trajectories of the system in closed-loop with the proposed DMPC
and reliability = 0.5.

Fig. 6. Evolution of the system with reliability = 0.2.

communications fail, then the DMPC is not able to stabilize
the closed-loop system. These results demonstrate that for
this particular example, when the communication network
becomes faulty, the proposed controller tends to operate in a
decentralized manner, and hence, is not able to stabilize the
system.

V. CONCLUSIONS

In this work we have proposed a novel distributed MPC
algorithm based on game theory for a class of systems
controlled by two agents. The proposed controller only needs
two communication steps in order to obtain a cooperative
solution to the centralized optimization problem. Each agent
solves an optimization problem that only depends on its local
model and partial state information. After sharing informa-
tion about the local cost, the agents chose the solution that
yields the best global performance among a set of suboptimal
possibilities. The options are suboptimal because each agent
has an incomplete view of the system and they propose the
best solutions from their point of view. The algorithm was
modified in order to take into account delays and errors

in the communications. The proposed algorithm has low
communication and computational burdens and provides a
feasible solution to the centralized problem. The performance
and the robustness of the proposed algorithm with respect
to delays and errors in the communications were tested in
simulation.
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