
 

 

 

  

 

Abstract—Analysis of lubricating oil is a direct and reliable 

approach to machinery condition monitoring. An estimate of 

the amount of fatigue induced metallic debris in the lubricating 

oil of a mechanical system can help us plan maintenance 

schedules. A reliably designed preventive maintenance system 

can reduce lost productivity and prevent catastrophic failures 

by timely replacement or maintenance of mission critical 

mechanical components. Oil-debris sensors can provide the 

required information on the amount of metallic debris in oil 

return lines. These sensors generate a signal signature similar 

to a single full period sine wave with the passage of a metallic 

particle. As such, the output of these sensors can be analyzed 

and an estimate of the health state of mechanical system can be 

obtained. However, these sensors are sensitive to vibrations of 

the structure where the sensor is mounted. This sensitivity 

leads to the distortion of the signal output. Such signals are 

difficult to interpret and could be misleading. As such, an 

imperative step towards successful machinery fault detection is 

signal enhancement. In this paper, we apply empirical mode 

decomposition (EMD) technique to extract particle signatures 

from the output of oil-debris sensors contaminated with 

vibration induced signal components. To reduce the 

computational burden, the acquired signal is lowpass filtered 

prior to the application of the EMD. The proposed algorithm 

has been tested using both simulated and experimental data 

and has shown to be effective.  

 

I. INTRODUCTION 

he advantages in preventive maintenance techniques 

have been a strong impetus for a large body of research 

in the field of machinery condition monitoring. 

Preventive maintenance not only enables us to preclude 

disastrous consequences of failure of mission critical 

mechanical components, but also helps us to prevent 

unwanted production delays.  

Vibration signals and oil condition data are two dominant 

sources of information currently used for health assessment 

of mechanical systems. Especially, with the recent 

development in digital signal processing methods, vibration 

data analysis has received much attention during the past 

few decades. Vibration signals are information rich as the 

health condition in one way or another affects the vibration 
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nature of a mechanical system. Gear wear/fatigue cracks or 

roller bearing spalls, shaft misalignment etc all create some 

form of featuring vibration signatures which can be detected 

through vibration signal analysis.  
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Fig. 1.  Sensor output in response to the passage of a metallic particle 

 

However, it is very difficult to properly extract such 

featuring signatures due to the large number of components 

in a mechanical system, each contributing to the overall 

vibration signal captured by a sensor. As a result, the fault 

induced vibration signal components are often masked by 

strong vibration interferences from other mechanical 

components. This is the main challenge when the detection 

of incipient faults is of great importance whereas the 

corresponding fault signatures are very weak comparing to 

noise and interferences. 

Furthermore, fault severity estimation based on vibration 

analysis is usually very difficult. Even when the extraction 

of fault related vibration signal component is successful, it 

could still be an intricate task to relate such signatures to the 

severity of the fault because of the non-linearility of a 

mechanical system. 

The above difficulties in vibration-based methods give 

rise to the analysis of oil condition data. A majority of 

mechanical systems are oil lubricated. The metallic debris 

content in the lubricating oil provides a direct perception on 

the health state of mechanical systems. Furthermore, the 

metallic particle size and count can be directly related to the 

severity of the faults. Accordingly, machinery condition 

monitoring based on oil condition data is preferred in many 

applications. 

In off-line oil analysis methods, oil samples are collected 

and then analyzed in laboratories. Another approach uses a 

chip detector that utilizes magnetic collector to capture the 
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metallic debris. An alarm system will then warn machine 

operators when the quantity of such debris reaches a 

predefined threshold [1, 2].  

Oil Debris Monitor (ODM) is an on-line oil condition 

monitoring device. It is installed on the oil return lines and 

provides a full flow passage way for the lubricating oil. It 

can detect the metallic particles that pass through it [2, 3]. 

The ODM was first developed for monitoring the F22 

Advanced Tactical Fighter engine. This sensor generates a 

signature very much like a full period of a sine wave with 

each metal particle passing. By processing the output signal 

it is possible to find an estimate of the level of fatigue-

induced material deterioration of the mechanical 

components. 

Figure 1 illustrates distinct output signatures of ODM in 

response to the passage of ferromagnetic and non-

ferromagnetic particles. As one can see from this figure, the 

phase of the output signature depends on the nature 

(ferromagnetic or non-ferromagnetic) of the metallic 

particle. The amplitude of this signature is affected by the 

particle mass for ferromagnetic material and by particle 

surface area for non-ferromagnetic metals [2]. The period of 

this signature denoted by T in Figure 1 depends on the 

particle passing speed.          

Consequently, from the output of the sensor the number 

of metallic particles contained in lubricating oil, as well as 

size and nature (through amplitude and phase of each 

signature output) of each can be determined. As a result, an 

estimate of the damage level could be obtained and if 

necessary maintenance can be scheduled to reduce 

production loss or in-flight shut-downs of aircrafts [2, 3].  

However, this sensor like many other measuring devices 

suffers from noise and interferences. Due to the sensitivity 

of the sensor to vibrations, in addition to the intrinsic 

background noise caused by wiring flaws and electrical 

interferences, the signal output of the sensor may be mixed 

with interferences caused by vibrations of the structure 

where the sensor is mounted. These interferences appear as a 

mixture of modulated sinusoidal signals. As mentioned 

before and also shown in Figure 1, the particle signature is 

similar in shape to a full period sine wave. As such, 

interferences could be mistakenly interpreted by the health 

assessment unit as passage of numerous consecutive metal 

particles of the same nature. In addition, the original particle 

signature masked with interferences would remain 

undetected.  

Figure 2(a) illustrates the output of an ODM in response 

to the passage of a ferromagnetic particle in the absence of 

any vibration interferences. Figure 2(b) shows the signature 

of the same particle passing through the sensor when the 

ODM was subject to vibrations introduced by an 

electromagnetic shaker. Apparently, this signal in its current 

form practically provides no clue to the machine condition. 
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(b)  
Fig.2. ODM Sensor output measured at 4000Hz sampling rate with the 

passage of a ferromagnetic metallic particle a) in the absence of vibration 

interferences and, b) with vibrations introduced by a shaker. 

 

Accordingly, a pre-processing step is required in order to 

extract the particle signatures from such a signal and 

interference mixture. The extracted signal components can 

then be used for health assessment. 

II. EMPIRICAL MODE DECOMPOSITION AND ITS 

APPLICATION IN ENHANCING AN OIL-DEBRIS SENSOR 

In this section we elaborate on EMD application to 

extracting particle signatures from a mixture of particle 

signatures and vibration interferences. EMD is a relatively 

new approach for analyzing stationary and non-stationary 

signals. This method was originally proposed by Haung et 

al. [4, 5]. In this paper we do not deliberate on the 

conceptual details of this method as plenty of information is 

available from the literature [4-6]. 

This method decomposes a signal into a finite number of 

intrinsic mode functions. In the following, the steps 

involving the extraction of intrinsic mode functions known 

as the sifting process are explained: 

Given the signal X(t): 

1) Find all the local minima and local maxima in the 

signal. 

2) Connect all the local maxima by a cubic spline to 

form the upper envelope. 
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(b)  
Fig. 3 (a) A single simulated particle signature and, (b) signature of part 

(a) mixed with simulated vibration interference 

2sin(400 t)cos(1300 t)+5cos(2000 t)π π π  
 

 

3) Repeat step 2 for all the local minima to form lower 

envelope. 

4) Find the mean of upper and lower envelopes at 

every instant t and subtract this mean m(t) from 

signal X(t): ( ) ( ) ( )h t X t m t= − . 

5) h(t) is an intrinsic mode function (IMF) if it satisfies 

the conditions:  

I. The number of extrema and the number of 

zero crossings must be either equal or differ at 

most by one. 

II. At every instant the mean of upper and lower 

envelopes should be equal to zero. 

Otherwise, repeat steps 1 to 4 but this time for h(t) instead of 

X(t) until one intrinsic mode function can be extracted. 

6) Subtract the extracted IMF from X(t) to find the 

signal residue R(t). Apply steps (1) to (6) on R(t) to 

extract an additional IMF. 

7) Continue the sifting process until the residue R(t) is 

less than a predetermined threshold value or in other 

words the residue is not of any significance.   

 

Now let us consider a single simulated particle signature 

as shown in Figure 3(a). As one can see from this figure, a 

particle signature satisfies the requirements of an IMF, 

namely zero mean envelope with three zero crossings and 

two extrema (the difference between the number of zero 

crossings and extrema is equal to one). In other words, 

application of the sifting process may be a simple approach 

for the extraction of particle signatures from a mixture of 

particle signature and vibration interferences.        

To illustrate, the simulated particle signature of Figure 

3(a) is mixed with simulated vibration interferences as 

shown in Figure 3(b) where the passage of metallic particle 

can not be detected and further processing is required. 

We then apply the sifting process on the simulated signal 

mixture. The extracted IMFs are shown in Figures 4(a), 4(b) 

and 4(c). The signature of the passing particle is extracted as 

a distinct IMF (Figure 4(c)). The original simulated particle 

signature is superposed on the extracted IMF in red dotted 

line. The difference is unnoticeable.  
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Fig. 4. Extracted Intrinsic Mode Functions 

 

According to this observation, the EMD method can be 

successfully applied to extract particle signatures from a 

mixture of signal and vibration interferences. The flowchart 

of the proposed algorithm is shown in Figure 5. 

 

Oil debris signal acquisition  

Low-pass filtering 

Empirical mode decomposition 

Machine health assessment  

Analog to digital 

conversion  

 

 
 

Fig. 5. Flowchart of the proposed algorithm. 
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 However, in addition to the capability of the EMD 

technique to extract oil-debris particle signals, the 

computational complexity of the method should also be 

considered. This is mainly because in this specific 

application the EMD technique is applied as a pre-

processing step in an on-line health monitoring system. As 

such, the processing time is of great importance.  

However, the computational complexity of the EMD 

method depends on the number of extrema in the signal. 

Consequently, presence of high frequency noise and 

interferences may slow down the process significantly. As 

mentioned before, the frequency content of the particle 

signature corresponds to the passage speed of the metallic 

particle. Therefore, we can specify a frequency limit beyond 

which no frequency components associated with the particle 

signature can be found. Accordingly, we can lowpass filter 

the measured signal to remove all the high frequency noise 

and interference, while leaving the signals of interest intact. 

This step should be applied to the acquired signal prior to 

the EMD steps. The experimental work is presented in the 

following section.         

 

 

Oil-Debris 

Sensor 

DC motor generating 

horizontal vibrations 

Slider crank 

mechanism 

DC motor generating 

vertical vibrations 

 
Fig. 6. Experimental setup. 

 

III. EXPERIMENTAL EVALUATION 

To evaluate the performance of the proposed method, a 

bi-axial vibration exciter is used to shake an ODM sensor in 

both vertical and horizontal directions at the same time 

(Figure 6). 

As shown in Figure 6, in each direction (horizontal or 

vertical) a DC motor drives a slider-crank mechanism and 

vibrates the ODM sensor. Two separate DC motor speed 

controllers are used to adjust the rotational frequency of 

individual DC motors.  

While the sensor is subject to such vibrations we 

manually pass very small metallic particles through the 

sensor. These particles as shown in Figure 7 are embedded 

at the tip of a plastic catheter.  

 
 

Metallic particle 

Plastic catheter 

 
Fig. 7. A metallic particle embedded at the tip of a plastic catheter is 

manually passed through the sensor. 

 

The output of the sensor was fed to an NI AT-MIO-

16DE-10 DAQ card and then collected through LabVIEW. 

The signal processing was done using MATLAB on a 

Pentium 4 PC with 2.52 GHz speed. 
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Fig. 8. Signal measured from the vibrating ODM at 20 KHz sampling 

rate, when a Titanium particle was manually passed through the sensor. 

 

In the first experiment, the rotational speed of the DC 

motor associated with vertical vibrations is set to 3250 rpm 

and the one associated with horizontal vibrations to 30 rpm. 

A small Titanium (45~150µm in diameter) particle is passed 

through the sensor. The output of the sensor is sampled at 20 

KHz. A portion of the measured signal is shown in Figure 8. 

As one can see, the particle signature is immersed in large 

amplitude vibration interferences. The measured signal is 

lowpass filtered with the cutoff frequency of 1KHz (The 

lowpass filter is designed based on Parks-McClellan method 
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[7]).  

It should be noted that for a particle signature to have a 

significant spectral content over 1KHz we should have 

T<0.001s (see Figure 1). Hence, the corresponding particle 

passage speed would be approximately over 50 m/s which is 

not the case in this experiment. Similarly, it is possible in 

most of the practical cases to define an upper limit for the 

passage speed of the particle and accordingly design a 

lowpass filter. When the cut off frequency of the low pass 

filter is significantly higher than the upper limit of 1/T, the 

filtering would not distort the particle signature.  

The lowpass filtered signal is then decomposed to 6 

intrinsic mode functions as shown in Figure 9. The particle 

signature is successfully extracted using the EMD method. 

In another experiment the rotational speed of the DC 

motors associated with vertical and horizontal vibrations 

were set to 3500 and 50 rmp respectively. A fine Nickel 

particle (11~65µm in diameter) is passed through the sensor. 

The sampling frequency is set to 50 KHz. A portion of the 

measured signal is plotted in Figure 10.  

Following the same procedure illustrated above, the 

measured signal is lowpass filtered and then decomposed 

using EMD to 6 intrinsic mode functions. The extracted 

IMFs are illustrated in Figure 11. Similar to the previous 

experiment, the EMD is also effective in extracting this 

particle signature from the raw signal mixture measured by 

the sensor. 

It is important to note that in the above two experiments 

the particle signatures are detected visually. In practice 

however, an automatic approach is needed to detect the IMF 

in which the particle signature resides. Hence, only that 

specific IMF will be analyzed for condition monitoring. This 

is not elaborated in this paper and is under investigation.  

In addition, one should note that all the limitations of the 

EMD technique are inevitably inherited by the proposed 

signature extraction algorithm. It is very difficult to 

guarantee reliable results in all circumstances. In practice, 

the vibration interferences can be very complicated in nature 

which can affect the performance of the EMD. Background 

noise characteristics on the other hand can also influence the 

decomposition results. These are some other concerns which 

need to be addressed through further research.  

IV. CONCLUSION 

In this paper we proposed a simple yet effective method 

for the extraction of particle signatures when the ODM 

sensor is subject to intense vibrations. It was shown that in 

such circumstances the output of the sensor is a mixture of 

particle signatures and unwanted vibration interferences. 

Empirical Mode Decomposition technique was used to 

extract the particle signature and remove the vibration 

interference. As the computational complexity of EMD 

technique depends on the intensity of high frequency noise 

and interferences, the measured signal was lowpass filtered 

prior to the application of EMD. This step has made the 

EMD process much less computation-demanding and thus 

suitable for on-line applications. The proposed algorithm 

was validated using the simulated as well as experimental 

data acquired from an ODM subject to vibrations.   
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Fig. 9. The EMD result of the lowpassed version of the signal shown in 

Figure 8. 
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Fig. 10. Signal measured from the vibrating ODM at 50 KHz sampling 

rate, when a Nickel particle was manually passed through the sensor. 
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 Fig. 11. The EMD result of the lowpassed version of the signal shown in 

Figure 10. 
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