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Abstract— This paper is concerned with the problem of
robust stability of uncertain neutral systems with discrete and
distributed delays. The uncertainties under consideration are
assumed to be time-varying but norm bounded. By intro-
ducing a new form of Lyapunov-Krasovskii functional which
contains some novel triple-integral terms, improved discrete-,
distributed-, and neutral-delay-dependent stability conditions
are obtained and formulated in terms of linear matrix in-
equality (LMI). Numerical examples are given to show that
the proposed method is effective and leads to less conservative
results than the existing ones.

I. INTRODUCTION

Time delays are often encountered in many dynamic
systems such as chemical or process control systems and
networked control systems [1], [2]. Time delay is always
one of the sources of instability and poor performance. The
subject of analysis and synthesis of time-delay systems, thus,
has attracted considerable attention during the past few years.
Stability criteria for time-delay systems can be classified into
two major categories, namely, delay-independent ones [3],
[4] and delay-dependent ones [5], [6], [7], [8], [9], [10], [11],
[12], [13]. Generally speaking, delay-dependent conditions
are less conservative than delay-independent ones. So, many
efforts have been paid to obtain less conservative delay-
dependent conditions. An important index of measuring the
conservativeness of the obtained conditions is the maximum
upper bond on the delay. Finding some less conservative
stability conditions motivates the present study.

Some practical applications can be modeled by neutral
systems with distributed delays [14], [15]. So it is important
both in theory and in application to study the stability
of neutral systems with distributed delays. However, much
fewer results have been proposed for the stability analysis
of neutral systems with distributed delays compared with the
rich results for neutral systems with only discrete delays [16],
[17], [18], [19], [20]. Applying the discretized Lyapunov
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functional approach, stability conditions for systems with
distributed delays were obtained in [21], [22], [23]. However,
this method is difficult to be extended to deal with the
synthesis problems. On the basis of the descriptor model
transformation [7], [9] and the decomposition technique of
discrete-delay term matrix, Han [24] put forward a stability
test for neutral systems with discrete and distributed delays.
Using a combination of the integral inequality technique and
the descriptor model transformation, new delay-dependent
stability conditions were proposed in [25]. Most recently,
results in [24], [25] have been further improved in [26]
where a modified Lyapunov-Krasovskii functional has been
constructed and some free-weighting matrices [13], [18] have
been introduced to reduce the conservativeness. However,
there still exists room for further improvements.

In our previous work [27], a new form of Lyapunov-
Krasovskii functional containing a triple-integral term was
introduced to derive less conservative delay-dependent sta-
bility conditions for time-delay systems. In this paper, we
extend this method to study the stability of neutral systems
with distributed delays. Using some integral inequalities,
improved discrete-, distributed-, and neutral-delay-dependent
stability conditions are obtained without introducing any
free-weighting matrices. Two numerical examples are pre-
sented to illustrate that our results are less conservative than
the existing ones.

Notations: Throughout this paper, the superscripts ‘-1’
and ‘T’ stand for the inverse and transpose of a matrix,
respectively; Rn denotes an n-dimensional Euclidean space;
Rm×nis the set of all m × n real matrices; P > 0 means
that the matrix P is symmetric positive definite; I is an
appropriately dimensional identity matrix.

II. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following uncertain neutral system with
discrete and distributed delays:

ẋ(t)− C(t)ẋ(t− τ) = A(t)x(t) + B(t)x(t− h)

+D(t)
∫ t

t−r

x(s)ds, t > 0

x(t) = φ(t), t ∈ [−ρ, 0] (1)

where x(t) ∈ Rn is the state vector; τ > 0, h > 0 and
r > 0 are constant neutral, discrete and distributed delay,
respectively; ρ = max{τ, h, r}; The initial condition φ(t)
is a continuously differentiable vector-valued function; A(t),
B(t), C(t) and D(t) are uncertain matrices and can be
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described by

A(t) = A + ∆A(t), B(t) = B + ∆B(t),
C(t) = C + ∆C(t), D(t) = D + ∆D(t) (2)

where A, B, C, D are known constant matrices; The
admissible uncertainties are assumed to satisfy the following
condition:

[∆A(t) ∆B(t) ∆C(t) ∆D(t)] =
MF (t) [Na Nb Nc Nd] (3)

where M , Na, Nb, Nc and Nd are known constant matrices
with appropriate dimensions and F (t) is an unknown time-
varying matrix satisfying:

FT(t)F (t) ≤ I, ∀t (4)

Throughout this paper, it is assumed that the matrix C(t)
is Schur stable.

The objective of this paper is to derive less conservative
delay-dependent stability conditions in terms of LMI to
ensure a larger maximum upper bound on the delay.

Before moving on, the following lemmas are introduced
which play important roles in the development of the main
results.

Lemma 1: For any constant matrix Z = ZT > 0 and a
scalar τ > 0 such that the following integrations are well
defined, then

(1)

−
∫ t

t−τ

%T(s)Z%(s)ds

≤ −1
τ

∫ t

t−τ

%T(s)dsZ

∫ t

t−τ

%(s)ds

(2)

−
∫ 0

−τ

∫ t

t+θ

%T(s)Z%(s)dsdθ

≤ − 2
τ2

∫ 0

−τ

∫ t

t+θ

%T(s)dsdθZ

∫ 0

−τ

∫ t

t+θ

%(s)dsdθ

Lemma 2: [28] For given matrices Q = QT, M and N
with appropriate dimensions, then

Q + MF (t)N + NTFT(t)MT < 0

for all F (t) satisfying FT(t)F (t) ≤ I , if and only if there
exists a scalar ε > 0, such that

Q + ε−1MMT + εNTN < 0

III. MAIN RESULTS

In this section, robust stability of system (1) is studied.
Firstly, the following nominal system is considered.

ẋ(t)−Cẋ(t−τ) = Ax(t)+Bx(t−h)+D

∫ t

t−r

x(s)ds (5)

The following theorem presents a stability condition for
the nominal system (5).

Theorem 1: Given scalars τ > 0, h > 0 and r > 0, the
nominal neutral system (5) is asymptotically stable if there
exist matrices P = [Pij ]5×5 > 0, Q = [Qij ]2×2 > 0, X =
[Xij ]2×2 > 0, Ri > 0, Wi > 0, Si > 0 (i = 1, 2) and
Zj > 0 (j = 1, 2, 3) with appropriate dimensions such that

Ξ + ΓT
1 PΓ2 + ΓT

2 PΓ1 + AT
c Y Ac < 0 (6)

where

Ξ =
[

Ξ1 Ξ2

ΞT
2 Ξ3

]

Γ1 =




I 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 I 0




Γ2 =




A 0 B C 0 0 0 D 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0
I −I 0 0 0 0 0 0 0
I 0 0 0 0 −I 0 0 0




Ac =
[

A 0 B C 0 0 0 D 0
]

Ξ1 =




Ξ11
1
τ R2 HB + 1

hX22

∗ − 1
τ R2 −Q11 0

∗ ∗ −W1 − 1
hX22




Ξ2 =




HC 0 1
r S2

2
τ Z1 Ξ18 Ξ19

−Q12 0 0 0 0 0
0 0 0 0 0 1

hXT
12




Ξ3 = diag{−Q22,−W2,−1
r
S2,−1

τ
R1 − 2

τ2
Z1,

− 1
r
S1 − 2

r2
Z3,− 1

h
X11 − 2

h2
Z2}

Ξ11 = Q11 + HA + ATHT + τR1 + W1 + hX11 + rS1

−1
τ

R2 − 1
h

X22 − 1
r
S2 − 2Z1 − 2Z2 − 2Z3

Ξ18 = HD +
2
r
Z3

Ξ19 =
2
h

Z2 − 1
h

XT
12

Y = Q22 + τR2 + W2 + hX22 + rS2

+
τ2

2
Z1 +

h2

2
Z2 +

r2

2
Z3

H = Q12 + hX12

Proof: Choose a Lyapunov-Krasovskii functional can-
didate as

V (xt) = V1(xt) + V2(xt) + V3(xt) + V4(xt) (7)

where

V1(xt) = ζT(t)Pζ(t)

V2(xt) =
∫ t

t−τ

ωT(s)Qω(s)ds

+
∫ 0

−τ

∫ t

t+θ

xT(s)R1x(s)dsdθ

+
∫ 0

−τ

∫ t

t+θ

ẋT(s)R2ẋ(s)dsdθ
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+
∫ 0

−τ

∫ 0

θ

∫ t

t+λ

ẋT(s)Z1ẋ(s)dsdλdθ

V3(xt) =
∫ t

t−h

xT(s)W1x(s)ds

+
∫ t

t−h

ẋT(s)W2ẋ(s)ds

+
∫ 0

−h

∫ t

t+θ

ωT(s)Xω(s)dsdθ

+
∫ 0

−h

∫ 0

θ

∫ t

t+λ

ẋT(s)Z2ẋ(s)dsdλdθ

V4(xt) =
∫ 0

−r

∫ t

t+θ

xT(s)S1x(s)dsdθ

+
∫ 0

−r

∫ t

t+θ

ẋT(s)S2ẋ(s)dsdθ

+
∫ 0

−r

∫ 0

θ

∫ t

t+λ

ẋT(s)Z3ẋ(s)dsdλdθ

where ζT(t) =
[
xT(t) xT(t− τ) xT(t− h)

∫ t

t−τ
xT(s)ds

∫ t

t−r
xT(s)ds

]
, ωT(s) =

[
xT(s) ẋT(s)

]
.

Taking the time derivative of V (xt) along the trajectory
of system (5) yields

V̇ (xt) = 2ζT(t)P ζ̇(t) + ωT(t)(Q + hX)ω(t)
−ωT(t− τ)Qω(t− τ) + xT(t)(τR1 + W1

+rS1)x(t) + ẋT(t)(W2 + rS2 + τR2 +
τ2

2
Z1

+
h2

2
Z2 +

r2

2
Z3)ẋ(t)−

∫ t

t−τ

xT(s)R1x(s)ds

−
∫ t

t−τ

ẋT(s)R2ẋ(s)ds−
∫ t

t−h

ωT(s)Xω(s)ds

−
∫ 0

−τ

∫ t

t+θ

ẋT(s)Z1ẋ(s)dsdθ

−
∫ 0

−h

∫ t

t+θ

ẋT(s)Z2ẋ(s)dsdθ

−
∫ t

t−r

xT(s)S1x(s)ds−
∫ t

t−r

ẋT(s)S2ẋ(s)ds

−
∫ 0

−r

∫ t

t+θ

ẋT(s)Z3ẋ(s)dsdθ (8)

Using Lemma 1 yields

−
∫ t

t−τ

xT(s)R1x(s)ds ≤ −1
τ

∫ t

t−τ

xT(s)dsR1

∫ t

t−τ

x(s)ds

(9)

−
∫ t

t−τ

ẋT(s)R2ẋ(s)ds ≤ −1
τ

∫ t

t−τ

ẋT(s)dsR2

∫ t

t−τ

ẋ(s)ds

(10)

−
∫ t

t−h

ωT(s)Xω(s)ds ≤ − 1
h

∫ t

t−h

ωT(s)dsX

∫ t

t−h

ω(s)ds

(11)

−
∫ t

t−r

xT(s)S1x(s)ds ≤ −1
r

∫ t

t−r

xT(s)dsS1

∫ t

t−r

x(s)ds

(12)

−
∫ t

t−r

ẋT(s)S2ẋ(s)ds ≤ −1
r

∫ t

t−τ

ẋT(s)dsS2

∫ t

t−r

ẋ(s)ds

(13)

−
∫ 0

−τ

∫ t

t+θ

ẋT(s)Z1ẋ(s)dsdθ

≤ − 2
τ2

∫ 0

−τ

∫ t

t+θ

ẋT(s)dsdθZ1

∫ 0

−τ

∫ t

t+θ

ẋ(s)dsdθ (14)

−
∫ 0

−h

∫ t

t+θ

ẋT(s)Z2ẋ(s)dsdθ

≤ − 2
h2

∫ 0

−h

∫ t

t+θ

ẋT(s)dsdθZ2

∫ 0

−h

∫ t

t+θ

ẋ(s)dsdθ (15)

−
∫ 0

−r

∫ t

t+θ

ẋT(s)Z3ẋ(s)dsdθ

≤ − 2
r2

∫ 0

−r

∫ t

t+θ

ẋT(s)dsdθZ3

∫ 0

−r

∫ t

t+θ

ẋ(s)dsdθ (16)

Substituting (9)-(16) into (8) yields

V̇ (t) ≤ ξT(t)(Ξ + ΓT
1 PΓ2 + ΓT

2 PΓ1 + AT
c Y Ac)ξ(t) (17)

where ξT(t) =
[
xT(t) xT(t− τ) xT(t− h) ẋT(t− τ)

ẋT(t− h) xT(t− r)
∫ t

t−τ
xT(s)ds

∫ t

t−r
xT(s)ds∫ t

t−h
xT(s)ds

]
. Therefore, if Ξ + ΓT

1 PΓ2 + ΓT
2 PΓ1 +

AT
c Y Ac < 0, then V̇ (xt) < 0 which guarantees system (5)

is asymptotically stable. This completes the proof.
Remark 1: On the basis of Lyapunov-Krasovskii func-

tional approach, a new discrete-, distributed-, and neutral-
delay-dependent stability criterion is developed. It should
be noted that two integral inequalities are used to derive
Theorem 1 and no additional free-weighting matrices are
introduced in the derivation except for Lyapunov matrices.
So, the method proposed in this paper may have less decision
variables than the well-known free-weighting matrix method.

Remark 2: The proposed augmented Lyapunov functional
is more general than those in [18], [26]. In particular, our
Lyapunov-Krasovskii functional contains some triple
integral terms, that is,

∫ 0

−τ

∫ 0

θ

∫ t

t+λ
ẋT(s)Z1ẋ(s)dsdλdθ,∫ 0

−h

∫ 0

θ

∫ t

t+λ
ẋT(s)Z2ẋ(s)dsdλdθ and

∫ 0

−r

∫ 0

θ

∫ t

t+λ
ẋT(s)Z3

ẋ(s)dsdλdθ which play key roles in the further
reduction of conservativeness. Furthermore, we
choose the augmented vector ζ(t) as ζT(t) =[
xT(t) xT(t− τ) xT(t− h)

∫ t

t−τ
xT(s)ds

∫ t

t−r
xT(s)ds

]
.

Through some numerical examples, we can see that each
term in ζ(t) may contribute to the further reduction of
the conservativeness, which means that if any terms are
removed from ζ(t), a more conservative result will be
obtained. So we think the proposed Lyapunov functional in
this paper is different from existing ones and can lead to
less conservative results.

Remark 3: If letting P14 = 0, P24 = 0, P34 = 0, P15 = 0,
P25 = 0, P35 = 0, P45 = 0, X12 = 0, P44 = ε1I , P55 = ε2I ,
R1 = ε3I , W2 = ε4I , X22 = ε5I , Z1 = ε6I , Z2 = ε7I ,
Z3 = ε8I with εi (i = 1, 2, . . . , 8) being sufficiently small
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positive scalars in Theorem 1, a corollary can be directly
obtained which is omitted here. Furthermore, following the
similar line as in [29], it can be proved that this corollary is
equivalent to Theorem 1 in [26] where the improvements
over [24], [25] are demonstrated. So, results in [26] can
be covered by Theorem 1 in this paper. This also proves
theoretically that Theorem 1 is less conservative than the
results in [26].

Consider the following neutral systems with mixed delays

ẋ(t)− Cẋ(t− τ) = Ax(t) + Bx(t− h) (18)

A stability condition for such a system can be obtained on
the basis of Theorem 1.

Corollary 1: Given scalars τ > 0 and h > 0, neutral
system (18) is asymptotically stable if exist P = [Pij ]4×4 >
0, Q = [Qij ]2×2 > 0, X = [Xij ]2×2 > 0, Ri > 0, Wi > 0,
Zi > 0 (i = 1, 2) with appropriate dimensions such that

Θ + ΛT
1 PΛ2 + ΛT

2 PΛ1 + ÂT
c Ŷ Âc < 0 (19)

where

Θ =
[

Θ1 Θ2

ΘT
2 Θ3

]

Λ1 =




I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 0 0 I 0




Λ2 =




A 0 B C 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
I −I 0 0 0 0 0




Âc =
[

A 0 B C 0 0 0
]

Θ1 =




Θ11
1
τ R2 HB + 1

hX22

∗ − 1
τ R2 −Q11 0

∗ ∗ −W1 − 1
hX22




Θ2 =




HC 0 2
τ Z1

2
hZ2 − 1

hXT
12

−Q12 0 0 0
0 0 0 1

hXT
12




Θ3 = diag{−Q22,−W2,−1
τ

R1 − 2
τ2

Z1,

− 1
h

X11 − 2
h2

Z2, }
Θ11 = Q11 + HA + ATHT + τR1 + W1 + hX11

−1
τ

R2 − 1
h

X22 − 2Z1 − 2Z2

Ŷ = Q22 + τR2 + W2 + hX22 +
τ2

2
Z1 +

h2

2
Z2

H = Q12 + hX12

Proof: Choose the Lyapunov-Krasovskii functional
candidate as V (xt) = V1(xt) + V2(xt) + V3(xt) where
Vi(xt) (i = 1, 2, 3) are the same as those in Theorem 1
and follow the same line as in Theorem 1, and the proof
will be completed.

When consider the parameter uncertainties described by
(2)-(4), the following theorem can be easily obtained on the
basis of Theorem 1.

TABLE I
MAXIMUM UPPER BOUND ON r FOR τ = 0.1 AND DIFFERENT h

h 0.1 0.5 1 1.5 1.6 1.7
[26] 6.64 5.55 1.62 — — —

Theorem 2 6.67 6.12 2.75 1.31 0.93 0.42

TABLE II
MAXIMUM UPPER BOUND ON h FOR τ = 0.1 AND DIFFERENT r

r 1 2 3 4 5 6
[26] 1.12 0.93 0.77 0.65 0.55 0.43

Theorem 2 1.58 1.20 0.95 0.77 0.64 0.51

Theorem 2: Given a scalar τ > 0, h > 0 and r > 0,
neutral system (1) is robustly asymptotically stable if exists
a scalar ε > 0 and P = [Pij ]5×5 > 0, Q = [Qij ]2×2 > 0,
X = [Xij ]2×2 > 0, Ri > 0, Wi > 0, Si > 0 (i = 1, 2) and
Zj > 0 (j = 1, 2, 3) with appropriate dimensions such that




Π AT
c Y ΓT

3 M
∗ −Y Y M
∗ ∗ −εI


 < 0 (20)

where

Π = Ξ + ΓT
1 PΓ2 + ΓT

2 PΓ1 + εΥTΥ
Γ3 = [P11 + H P12 P13 0 0 0 P14 P15 0]
Υ = [Na 0 Nb Nc 0 0 0 Nd 0]

Proof: Replacing A, B, C and D in Theorem 1 with
A + MF (t)Na, B + MF (t)Nb, C + MF (t)Nc and D +
MF (t)Nd , respectively and using Lemma 2 completes the
proof.

IV. NUMERICAL EXAMPLES

In this section, two numerical examples are given to
show that the proposed results are improvements over some
existing ones.

Example 1: Consider the following uncertain neutral sys-
tem:

A =
[ −0.9 0.2

0.1 −0.9

]
, B =

[ −1.1 −0.2
−0.1 −1.1

]
,

C =
[ −0.2 0

0.2 −0.1

]
, D =

[ −0.12 −0.12
−0.12 0.12

]
,

M = I, Na = Nb = Nc = Nd = 0.1I.

This system has been investigated in [26]. Assuming
τ = 0.1, the purpose is to calculate the maximum upper
bound on r or h for different given h or r. To the best of
authors’ knowledge, results in [26] are the least conservative
among the existing ones, so we compare our results with
those in [26]. Table I lists the maximum upper bounds on r
for different given h. It is seen from Table I that much larger
value of r can be obtained using Theorem 2. In particular,
when h ≥ 1.5, method in [26] is unfeasible, while our
results are 1.31, 0.93, and 0.42, respectively. Table II lists
the maximum upper bounds on h for different given r. It
can be seen that our results are less conservative than those
in [26], that is, larger maximum upper bounds on h can be
obtained by our method.
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TABLE III
MAXIMUM UPPER BOUND ON h FOR DIFFERENT c AND r

Method c 0.15 0.2 0.25 0.3
[26] r = 1 0.95 0.82 0.70 0.59

Theorem 2 r = 1 0.97 0.84 0.72 0.60
[26] r = 0.8 1.13 0.98 0.83 0.69

Theorem 2 r = 0.8 1.16 1.00 0.85 0.70
[26] r = 0.6 1.41 1.22 1.02 0.83

Theorem 2 r = 0.6 1.49 1.28 1.06 0.86
[26] r = 0.4 1.87 1.68 1.40 1.10

Theorem 2 r = 0.4 2.20 1.88 1.53 1.19
[26] r = 0.2 2.75 2.69 2.44 1.98

Theorem 2 r = 0.2 8.30 6.54 4.59 2.80

Example 2: Consider the following uncertain neutral sys-
tem with

A =
[ −3.4 0.2

0.1 −0.9

]
, B =

[ −1.1 0.1
0.1 −1.2

]
,

C =
[

c 0
0 c

]
, D =

[
0.1 −0.2
−0.1 0.3

]

M = I, Na = Nb = Nc = Nd = 0.2I.

Assume τ = 0.2, the objective is to calculate the upper
bound on h for different values of c and r. Table III lists
the results together with those obtained using the method in
[26]. Table III shows that the stability condition proposed in
this paper yields less conservative results than those in [26].

V. CONCLUSIONS

In this paper, the stability of linear neutral systems with
discrete and distributed delays has been investigated. New
discrete-, distributed-, and neutral-delay-dependent criteria
have been proposed. These criteria are derived based on the
Lyapunov-Krasovskii approach and the integral inequality
technique and are presented in terms of LMI. Due to the new
construction of the introduced Lyapunov-Krasovskii func-
tional, our results are less conservative than the existing ones.
Two numerical examples have illustrated the effectiveness of
the proposed method.
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