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Abstract— We consider average consensus algorithms exe-
cuted over stochastically varying communication topologies that
may be unbalanced. It is known that the state values will
reach consensus, under fairly weak conditions. However, the
consensus value is a random variable. We provide concentration
bounds for the distance of the state vector from the consensus
subspace and for the asymptotic distribution of the value to
which the various nodes converge as they reach consensus. The
results allow the analysis of average consensus over wireless
communication networks with more realistic assumptions than
before.

I. INTRODUCTION

Consensus algorithms are decentralized algorithms that

aim at achieving agreement among all participating agents

over the value of a quantity [1]. Such algorithms have seen

renewed focus over the last decade [2], [3], [4], [5], [6].

Conditions for convergence of the agents to a common value

are now well characterized in both deterministic [5], [6], [7]

and stochastic frameworks [8], [9], [10], [11], [12], [13]. Re-

cent work characterizes the rate of convergence by imposing

communication-related constraints between nodes. Effects

such as quantization [14], delays [15],additive noise [16],

packet loss [17], [9] and power constraints [18] have been

analyzed.

We will refer to the interconnection topology that de-

termines message passing betweeen nodes as the commu-

nication graph. Evidently the underlying communication

infrastructure of a network determines feasible interconnec-

tion topologies. However, in wireless networks, connections

formed are often probabilistic and subject to fading, inter-

ference, and noise. Given that fact that the decentralized

nature of consensus algorithms is well-suited for ad-hoc

wireless networks, it is important to study the convergence

of properties of these algorithms on wireless networks. If at

each iteration the communication graph remains balanced

and connected, it is known [6] that the final value is

the average of the initial values. From a wireless network

standpoint, such a requirement translates to bidirectional link

failures or a perfect acknowledgement mechanism. Neither of

these assumptions hold in practice. A more realistic approach

must account for the inherent randomness in connectivity.

Thus it is more natural to view network connectivity - and
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hence communication graphs - as the function of a possibly

unknown network state that is varies randomly with time. In

this more general scenario, therefore, the consensus value is

not necessarily the average of the initial values. In fact, it is

a random variable whose value depends on the set of com-

munication graphs chosen over time. From both an analysis

and a design perspective, it is important to characterize this

random variable, and the rate of convergence towards the

final value. In this paper, we provide concentration bounds

on the distribution of the node values at any time, and, in

particular, the final value.

The paper is organized as follows. We begin by for-

mulating the problem in the next section. The node value

distribution is characterized by the distribution of the values

around the average and the distance from the consensus

subspace. These characterizations are provided in Sections III

and IV respectively. Section V presents a numerical example.

II. PROBLEM FORMULATION

A. Network Model and Geometric Interpretation of Consen-

sus

Consider a collection of N agents (also called nodes) V =
{0, 1, . . . , N −1}. For each node i and at any (discrete) time

t, we specify an in-neighbor set Ni(t) ⊆ V such that for any

node j ∈ Ni(t), node i has access to the value from node

j at time t. Each node i has its initial value xi(0). If we

represent the value held by the i-th node at time t by xi(t),
the (discrete-time) average consensus algorithm proceeds by

each node updating its value as

xi(t + 1) = xi(t) − Ts

∑

j∈Ni(t)

(xi(t) − xj(t)), (1)

where Ts is a small positive constant. If we denote this

exchange of information by an edge from node j to node i,

we can define a digraph G(t) = (V , E(t)) with G(t) ∈ U ,

where U , {G0,G1, . . . ,GM−1} is the feasible set. However,

each node has access to its own value at every time step.

Let {G(t)} = {G(0),G(1), . . .} be a graph-valued se-

quence where G(t) ∈ U . Defining LG as the Laplacian of

a graph G, the consensus iteration for all nodes together is

x(t + 1) = W (t)x(t) (2)

where x(t) is an N × 1 state vector formed by stacking the

values x0(t), x1(t), · · · , xN−1(t) and W (t) , I − TsLG(t)

(I is the N×N identity matrix). W (t) is a stochastic matrix,

irrespective of G(t).
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Thus we can associate with each graph-valued sequence

{G(t)} a matrix-valued sequence {W (t)} where W (t) =
I − TsLG(t). Therefore, starting from an initial condition

x(0), one can view equation (2) as a linear iteration over

x(t) where the switching sequence W (t) is drawn from a

set W = {W0, W1, · · · , WM−1}, with Wk = I −TsLGk
. In

wireless networks, whether or not a particular edge in G(t)
exists depends on the interference and fading present in the

respective wireless channels at time t. For every transmitter,

the successful reception of its message at an intended receiver

depends on the observed Signal-to-Interference-and-Noise-

Ratio (SINR) at the receiver. The receive SINR in turn

depends on the state of the channel and the existence of

interferers, both of which are random. Consquently, the graph

process G(t) and hence the matrix process W (t), are random.

We make the following assumptions in this paper:

• (Assumption A1) The link states, and hence the matrix

sequence W (t), are i.i.d. across time.

• (Assumption A2) The diagonal elements Wii > 0 for

all W ∈ W . Defining W̄ , E [W ], we also assume that the

Laplacian L̄ associated with W̄ = I −TsL̄ corresponds to a

strongly connected weighted digraph.

• (Assumption A3) W̄ is doubly stochastic.

Note that, contrary to [12], [13], we do not assume that

the edge states (i.e., whether an edge is present or not) are

independent at any given time.

Using (2), the state x(t) can be written as

x(t) =W (t − 1) · · ·W (1)W (0)x(0) =
t−1
∏

k=0

W (k)x(0).

Observe that x(t) is a random variable whose value is

determined by the stochastic process W (t) and the initial

state x(0). Define x̄(t) as the expected value of x(t). Using

Assumption A1, we obtain (for a given initial condition

x(0)),
x̄(t) = W̄ tx(0). (3)

By Assumption A3, the average of x̄(t) is preserved, since

1
∗x̄(t) = 1

∗W̄ tx(0) = 1
∗x(0),

where 1 , [ 1 1 . . . 1]∗ and M∗ denotes the transpose

of the matrix or the vector M . Moreover, x̄(t) converges

asymptotically to the average consensus value xav(0)1,

where we introduce the notation xav(t) , 1
N

∑N

n=1 xn(t).
To see this, note that

x̄(t) −
11

∗

N
x(0) = (W̄ −

11
∗

N
)x̄(t − 1).

Since by Assumption A2, W̄ corresponds to a strongly

connected graph, the spectral radius of
(

W̄ − 11
∗

N

)

is strictly

less than one [19], and consequently,

lim
t→∞

x̄(t) =
11

∗

N
x(0) ≡ xav(0)1.

It was also shown recently [11] that x(t) converges almost

surely to some consensus point if A2 holds, i.e.,

lim
t→∞

x(t) = α1, (4)

almost surely for some random α. We now build on a

geometric interpretation from [11], and introduce notation

that will be used later. Let ‖v‖ denote the Euclidean norm

of vector v. We can write

‖x(t)−1xav(0)‖2 = ‖x(t)−1xav(t)+1xav(t)−1xav(0)‖2.

Expanding the right hand side yields

‖x(t) − 1xav(0)‖2 = ‖x(k) − 1xav(t)‖2

+ ‖1xav(t) − 1xav(0)‖2

+ 2 〈x(t) − 1xav(t),1xav(t) − 1xav(0)〉 ,

where 〈., .〉 denotes the standard inner product in R
N . This

inner product, in turn, vanishes since

〈x(t) − 1xav(t),1xav(t) − 1xav(0)〉

= 〈x(t) − 1xav(t),1〉xav(t) − 〈x(t) − 1xav(t),1〉xav(0)

= Nx2
av(t) − Nx2

av(t) − Nxav(t)xav(0) + Nxav(t)xav(0)

= 0.

Thus, we obtain

‖x(t) − 1xav(0)‖2

= ‖x(t) − 1xav(t)‖2
+ ‖1xav(t) − 1xav(0)‖2

= ‖r(t)‖2
+ ‖e(t)‖2

(5)

where r(t) , x(t) − 1xav(t) and e(t) , 1xav(t) −
1xav(0).

A geometric interpretation of this result is shown in

Figure 1 for the case of two agents. In the state space

of the agent values, the consensus subspace is the straight

line x1 = x2 = · · · = xN . The term ‖r(t)‖ represents

the (residual) distance of x(t) from its closest point in the

consensus subspace, while ‖e(t)‖ represents the distance

from this closest point and the average consensus point.

B. Specific Problems Considered in this Work

Equating the infinity-norms on both sides in (2), we begin

‖x(t)‖∞ = ‖W (t − 1)x(t − 1)‖∞

≤ ‖W (t − 1)‖∞‖x(t − 1)‖∞ = ‖x(t − 1)‖∞,

where we exploit the sub-multiplicativity of the infinity-

norm and the fact that W (t) is stochastic. A recursive

application of this result yields ‖x(t)‖∞ ≤ ‖x(0)‖∞. Thus,

a straightforward application of the Dominated Convergence

Theorem [20] allows us to interchange the integral and the

limit and write E

[

lim
t→∞

x(t)
]

= lim
t→∞

E [x(t)] . In light of

(4) and (3), this simplifies to E [α] = xav(0). Thus, the

expectation of the final state remains the average consensus

point. In this paper, we extend this result by answering the

following questions:

1) What is the distribution of α?
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Fig. 1. Geometric interpretation of (5) for N = 2. The average consensus
point is the intersection of the straight lines x1 +x2 = x1(0)+x2(0) with
the straight line x1 = x2, shown by the point (xav(0), xav(0)). We find
concentration bounds on the distributions of r and e for all t ≥ 0.

2) What is the distance r(t) of the state x(t) from the

consensus subspace at any time t given an initial state

x(0) and a random switching sequence {W (t)}?

III. ASYMPTOTIC DISTRIBUTION OF α

To find the distribution of α, we need to characterize

e(t) = 1(xav(t) − xav(0)). We can obtain a slightly easier

quantity to consider by rewriting

e(t) =
1

N
(1∗x(t) − 1

∗x(0))

=

(

1
∗
∏t−1

l=0 W (l)x(0) − 1
∗x(0)

N

)

1 , δ(t)1.

Since the sequence {W (t)} is uncorrelated and W̄ is doubly

stochastic,

Eδ(t) =
1
∗(W̄ t − I)x(0)

N
= 0.

Before proving the concentration result, we prove two pre-

liminary results and introduce some notation. The first result

provides a partial characterization of the distribution of the

weight matrix W (t) at any time t.

Lemma 3.1: Denote the (i, j)-th element of W̄ by w̄ij .

For any t ≥ 0, if Gm ∈ U is chosen with probability pm

‖W (t) − W̄‖∞ ≤ 2Tsmax
i

∑

j 6=i

(1 − w̄ij ),
∑

j 6=i

w̄ij .

Proof: Let Xij(t) (i 6= j) be a random variable which

equals one when there is a directed edge from j to i at time

t, and zero otherwise. Thus, Xij is Bernoulli with parameter

w̄ij(t) where

w̄ij =
M−1
∑

m=0

1(i,j)∈Em
pm.

Define

Xii(t) ,
∑

j 6=i

Xij(t)

w̄ii(t) , EXii(t) =
∑

j 6=i

w̄ij(t).

Therefore W (t) is a random matrix whose entries are

Wij(t) = ∆ij −TsXij(t), where ∆ij is the Kronecker delta.

We thus obtain

‖W (t) − W̄‖∞ = Tsmax
i

∑

j

∣

∣Wij(t) − W̄ij

∣

∣

= Tsmax
i

fi({Xij(t)}), (6)

where

fi({Xij(t)}) ,

∣

∣

∣

∑

j 6=i

(Xij(t) − w̄ij)
∣

∣

∣
+
∑

j 6=i

|Xij(t) − w̄ij |

is a function on {0, 1}N .

Define Ii(t) to be the neighbor set of node i in the tth

iteration, i.e., Ii(t) , {j : Xij(t) = 1, j 6= i}. Evidently,

For a fixed value of i, assume that Xij’s in some index set

j ∈ I ⊆ N \ {i} assume the value one and for values of j

outside this index set, assume the value zero. Then,

fi ({Xij(t)}) =
∣

∣

∣
|Ii(t)| −

∑

j 6=i

w̄ij

∣

∣

∣
+ |Ii(t)| −

∑

j∈Ii(t)

w̄ij

+
∑

j∈N\Ii(t)

w̄ij .

Define Yi(t) = |Ii(t)| −
∑

j 6=i w̄ij . If Y ≥ 0 we obtain

fi ({Xij(t)}) = 2
∑

j∈Ii(t)

(1 − w̄ij) ≤ 2
∑

j 6=i

(1 − w̄ij) . (7)

Similarly, if Y < 0, then we obtain

fi ({Xij(t)}) = 2
∑

j∈N\Ii(t)

w̄ij ≤ 2
∑

j 6=i

w̄ij . (8)

The result follows by substituting (7) and (8) in (6).

For future reference, define

C1 , 2Tsmax
i

∑

j 6=i

(1 − w̄ij ),
∑

j 6=i

w̄ij . (9)

Lemma 3.2: Denote the eigenvalues of W̄ by 1 = λ0 >

λ1 ≥ · · · ≥ λN−1 > −1 and let W̄ = S−1ΛS be its

spectral decomposition. Let si denote the ith (normalized)

eigenvector, and vi = [ v
(0)
i v

(1)
i . . . v

(N−1)
i

] the ith

row of S−1. If W̄ is normal or has no repeated eigenvalues,

then for any t ≥ 0, we have

‖W̄ t −
11

∗

N
‖∞ ≤ C2µ

t,

where

µ , max
i=1,2,··· ,N−1

|λi|

C2 ,

N−1
∑

i=1

N−1
∑

j=0

∣

∣

∣
v
(j)
i

∣

∣

∣
.
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Proof: From the spectral decomposition we see that for

any positive integer t, W̄ = S−1ΛS implies W̄ t = S−1ΛtS.

Since W̄ is doubly stochastic, 1
∗ is a left eigenvector with

eigenvalue 1. As a result,

W̄ t = N−1
11

∗ +

N−1
∑

i=1

λt
isiv

∗
i .

Define A = amn , W̄ t − N−1
11

∗,. Therefore,

‖A‖∞ = max
m

N−1
∑

n=0

|amn|

= max
m

N−1
∑

n=0

∣

∣

∣

∣

∣

N−1
∑

i=1

λt
is

(m)
i v

(n)
i

∣

∣

∣

∣

∣

≤
N
∑

n=1

max
λi 6=1

∣

∣λt
i

∣

∣

N−1
∑

i=1

∣

∣

∣
v
(n)
i

∣

∣

∣

≤ max
λi 6=1

|λi|
t
N−1
∑

i=1

N−1
∑

n=0

∣

∣

∣
v
(n)
i

∣

∣

∣
.

Hence the result follows.

This result can be extended to matrices W̄ that are not

normal and have repeated eigenvalues. Assume that W̄ has

p (possibly repeated) eigenvalues λ0 = 1, λ1, λ2, . . . , λp

with multiplicities 1, r1, . . . , rp respectively. Denote r′ =
max ({ri})−1. We can use a Jordan decomposition to obtain

W̄ t =
11

∗

N
+

p
∑

i=1

ri
∑

l=1

l
∑

m=1

(

t

l − m

)

λt+m
i si,mv∗i,l,

where si,j denotes the jth (generalized) eigenvector of the ith

eigenvalue and vi,j denotes the corresponding row in S−1.

Using similar arguments as above, we can prove that

‖W̄ t − N−1
11

∗‖∞ ≤ C2

(

t

r′

)

µt−r′

.

For the sake of notational simplicity, unless otherwise stated,

we will assume that W̄ is normal or has distinct eigenvalues.

The results presented below can be extended to more general

cases, and we will mention briefly the general statements

towards the end.

The main result in this section characterizes the distribu-

tion of the projection of the state x(t) on to the consensus

space from the average consensus point.

Proposition 3.3: Consider the problem formulation as

posed in Section II. Then the distribution of δ(t) at any time

t ≥ 0 satisfies

P (|δ(t)| ≥ ǫ) ≤ min
{

1, 2 exp
(

−ǫ2β(t)
)}

where

β(t) ,
(1 − µ2)

2C2‖x(0)‖2
∞(1 − µ2t)

(10)

and C , C1C2 with C1 and C2 as defined in (9) and Lemma

3.2 respectively.

Proof: The value of δ(t) depends on the choices W (0),
· · · , W (t − 1). Denote the conditional expectation of δ(t)
given the past k values W (t − k), · · · , W (t − 1) as

Zk(t) , E [δ(t) | {W (t − 1) . . . , W (t − k)}] .

From the definition,

Zk(t) =
1
∗
(

W (t − 1) · · ·W (t − k)W̄ t−kx(0) − x(0)
)

N
.

In particular, Z0(t) = 0 and Zt(t) = δ(t). By construction,

the sequence {Zk(t)} is a martingale in k for a given t [21].

We aim to bound the increase between successive steps of

the martingale {Zk(t)}. From the definition,

|Zk(t) − Zk−1(t)| =
∣

∣N−1
1
∗W (t − 1) · · ·W (t − k + 1)

(

W (t − k) − W̄
)

W̄ t−kx(0)
∣

∣. (11)

Using the spectral expansion

W̄ =
11

∗

N
+

N
∑

i=2

λisiv
∗
i

and the fact that W (t) is always stochastic, we obtain

(

W (t − k) − W̄
)

W̄ t−k =
(

W (t − k) − W̄
)

N
∑

i=2

λt−k
i siv

∗
i .

Using this result in (11), we obtain

|Zk(t) − Zk−1(t)|

=
∣

∣N−1
1
∗W (t − 1) · · ·W (t − k + 1))

(

W (t − k) − W̄
)

·
N
∑

i=2

(λt−k
i siv

∗
i )x(0)

∣

∣

≤
∥

∥N−1
1
∗
∥

∥

∞
‖W (t − 1) · · ·W (t − k + 1)‖∞

∥

∥W (t − k) − W̄
∥

∥

∞

∥

∥

∥

∥

∥

N
∑

i=2

λt−k
i siv

∗
i

∥

∥

∥

∥

∥

∞

‖x(0)‖∞ , (12)

We now upper bound the right hand side. It is easy to

verify that
∥

∥N−1
1

∥

∥

∞
= 1. Moreover, since each W (k) is

stochastic and the ∞-norm is sub-multiplicative,

‖W (t − 1) · · ·W (t − k + 1)‖∞ ≤
k−1
∏

l=1

‖W (t − l)‖∞ ≤ 1.

Upper bounds for the third and the fourth terms have already

been obtained in Lemma 3.1 and Lemma 3.2, respectively.

Thus for a given x(0),

|Zk(t) − Zk−1(t)| ≤ Cµt−k ‖x(0)‖∞ .

Applying Azuma’s inequality [21] yields

P(|Zt(t) − Z0(t)| ≥ ǫ) ≤ 2 exp
(

−β(t)ǫ2
)

,

where

β(t) =
1

2C2 ‖x(0)‖2
∞

∑t

k=0 µ2(t−k)

=
1 − µ2

2C2 ‖x(0)‖2
∞ (1 − µ2t)

.
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Since the measure is probability, the result follows.

Note that this results holds for all t. As a special case, we

obtain the asymptotic distribution as t → ∞.

Corollary 3.4: The asymptotic distribution of α obeys the

inequality

P(|α| ≥ ǫ) ≤ 2 exp
(

−β(∞)ǫ2
)

= 2 exp

(

−
ǫ2(1 − µ2)

2C2 ‖x(0)‖2
∞

)

. (13)

Proof: Taking the limit t → ∞ in the result from

Proposition 3.3.

We conclude this section with two remarks. First, (13) can

be used to bound any moment of α by using the following

identity [20, p. 198] for a random variable X ,

E|X |r =

∫

|X |rdµ ≡ r

∫ ∞

0

ur−1λ(u)du.

where r > 0 and λ(u) , P(|X | ≥ u). Since Proposition 3.3

provides a function upper bounds λ(u) at every point,

E|X |r ≤ r

∫ ∞

0

ur−1η(u)du.

For example, the asymptotic variance can be bounded as

lim
t→∞

E|δ(t)|2 ≤ 2 lim
t→∞

(
∫ ∞

0

u exp
(

−u2β(t)
)

du

)

=
1

β(∞)
=

2C2 ‖x(0)‖2
∞

1 − µ2
.

The second remark concerns the case where W̄ may have re-

peated eigenvalues or is not normal. Using similar arguments

as for the case of non-repeated eigenvalues, one obtains a

similar bound as in (13). However, instead of a geometric

series, we get an expression of the form

µ−2r′

t
∑

k=0

(

k

r′

)2

µ2k.

As t → ∞, this converges to a hypergeometric series [22]

lim
t→∞

t
∑

k=0

(

k

r′

)2

µ2k = 3F2(1, 1, 1;−r′ + 1,−r′ + 1; µ2),

where

mFn(a1, a2 . . . , am; b1, b2 . . . , bn; z) ,

∞
∑

l=0

αlz
l

l!
,

with α0 = 1 and

αl+1

αl

=

∏m

i=1(l + ai)
∏n

j=1(l + bj)
z.

IV. CONVERGENCE TO CONSENSUS SUBSPACE

We now use similar techniques as above to provide con-

centration bounds on the distance r(t) of the vector x(t)
from the consensus subspace at any time t. We can write

r(t) = x(t) − 1xav(t)

= (I − N−1
11)x(t)

= PW (t − 1)W (t − 2) · · ·W (0)x(0),

where P = I − N−1
11

∗ is the projection operator. Once

again, since {W (t)} is uncorrelated, Er(t) = PW̄ tx(0).
The martingale {Yk(t)} in this case is given by

Yk(t) = E [r(t)| {W (t − 1), W (t − 2), . . .W (t − k)}]

= PW (t − 1)W (t − 2) · · ·W (t − k)W̄ t−kx(0).

In particular, Y0(t) = PW̄ tx(0) and Yt(t) = r(t). To bound

the increase in successive steps of the martingale, consider

‖Yk(t) − Yk−1(t)‖ = ‖PW (t − 1) · · ·W (t − k + 1)
(

W (t − k) − W̄
)

W̄ t−kx(0)‖∞

≤ ‖P‖∞‖W (t − 1) · · ·W (t − k + 1)‖∞

‖
(

W (t − k) − W̄
)

W̄ t−kx(0)‖∞,

by using the sub-multiplicative property of the ∞-norm.

Since P is the projection operator onto the one-dimensional

consensus subspace, ‖P‖∞ = 1. For the rest of the terms, a

similar approach as in (11) yields

‖Yk(t) − Yk−1(t)‖∞ ≤ Cµt−k‖x(0)‖∞.

where C and µ are as defined earlier. Applying a vector

version of Azuma’s inequality we obtain

P
(

‖r(t) − PW̄ tx(0)‖∞ ≥ ǫ
)

≤ 2exp( − ǫ2α(t)). (14)

This result bounds the distribution of r(t) about a determin-

istic evolution PW̄ tx(0). We summarize this result below.

Proposition 4.1: Consider the average consensus problem

with the assumptions as stated in Section II. The state

vector x(t) converges almost surely to a point α1 on the

consensus subspace. Then the distance r(t) of the state from

the consensus subspace has a mean PW̄ tx(0) and satisfies

P
(∥

∥r(t) − PW̄ tx(0)
∥

∥

∞
≥ ǫ
)

≤ 2 exp
(

−ǫ2β(t)
)

. (15)

where β(t) is as defined in (10).

The concentration inequalities in Propositions 3.3 and 4.1

can be used to probabilistically bound x(t) in the state space

using equation (5) for any given x(0).

V. NUMERICAL RESULTS

We now present some simulation results for the distri-

bution of α in a simple wireless network. To illustrate

our results, we consider the simplest network possible with

N = 2 nodes that run the average consensus algorithm in

the presence of packet losses. In simulations, this presence

of drops is modelled as link states being Bernoulli random

variables with parameters p01 = 0.2 and p10 = 0.8 for links
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Fig. 2. Simulation results for N = 2 nodes running the average consensus
algorithm over a fading channel. The plot here shows the distance from the
consensus value from the average consensus value for a range of initial states
x(0). These results are compared with the theoretically obtained bound in
Proposition 3.3.

0 → 1 and 1 → 0 respectively. The packet losses are assumed

to be independent of each other and across time. The initial

values are chosen to be x0(0) = 0.4 and x1(0) as uniformly

random from −0.4 to 0.4. Note that our bound depends only

on ‖x(0)‖∞ = 0.4 in this example.

To calculate the Monte Carlo estimate of the probability

distribution, we run 100 sample runs each starting at a

particular initial state chosen as described above, with 10000

simulations for each sample run. The asymptotic limit is

approximated by running up to 50 iterations. For each

initial state, we obtain an empirical probability distribution

of the distance of the asymptotic value from the average

consensus value. As expected, we get a family of probability

distributions. This family is compared with the theoretical

bound in Figure 2. We see that even for this simple network,

the observed asymptotic consensus value has a broad support.

We verify that the entire family of observed probability

distributions is bounded by our result.

VI. CONCLUSIONS

In this paper, we have studied the probabilistic evolution

of a network of agents implementing the average consensus

algorithm. While it is known that these system achieve

consensus, our contribution lies in the derivation of new con-

centration bounds on the state evolution at any time. These

results are used to characterize the asymptotic distribution

of the consensus point about the average consensus point.

Our formulation allows the analysis of consensus algorithms

over time-varying fading and interference-limited wireless

networks with more realistic assumptions than before.
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