
  

  

Abstract— A fully implicit iterative integration procedure is 
presented for hybrid simulation of the seismic response of 
structural systems. The advantage of this approach is that 
experimental elements can be introduced into a simulation 
using fully implicit integration algorithms designed for pure 
numerical simulations. The procedure utilizes the tangent 
stiffness matrices for both numerical and experimental 
substructures. The tangent stiffness matrix for experimental 
substructures is estimated using readily available experimental 
measurements and by classical diagonalization that reduces the 
number of unknowns in the matrix. In order to avoid physical 
application of the iterative displacements to experimental 
substructures, the restoring force of each actuator is estimated 
using polynomial interpolation and extrapolation of 
experimental measurements. Numerical and hybrid simulation 
are used to demonstrate that the proposed algorithm provides 
an efficient method for full implementation of implicit 
numerical integration in hybrid simulations of complex 
nonlinear structures. 

I. INTRODUCTION 
ybrid simulation combines numerical and experimental 
methods for cost-effective, large-scale laboratory 

testing of structures under simulated earthquake loading [1-
3]. The equation of motion is expressed for the combined 
experimental and numerical components and solved using a 
time-stepping integration procedure as in numerical 
simulations. Explicit integrators, such as the Central 
Difference Method, are simple to implement in a hybrid test, 
but their conditional stability limits their application to 
simple structural models. A combination of non-iterative 
implicit and explicit integration algorithms [4], including the 
operator-splitting method [5], offer improved stability and 
accuracy, but  use the initial stiffness matrix to predict the 
nonlinear response of the specimen. A tangent stiffness 
matrix has been proposed to improve this correction [6]. 

Fully implicit integration algorithms are widely used in 
pure numerical simulations of the seismic response of 
structures for their superior stability and accuracy at larger 
time steps compared to explicit methods. However, the 
direct application of implicit integration algorithms to hybrid 
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simulation has been partially limited by the requirement to 
iterate with experimental substructures and difficulties in 
estimating the experimental tangent stiffness matrix. Past 
implementations have relied on conservative iterations that 
ensure each iteration results in a monotonically increasing 
path to the converged displacement [7], imposing iterations 
through a feedback loop between the integrator and the 
experimental substructure [8-10], or treating the interface 
forces between the experimental and numerical 
substructures as constant external forces [11, 12]. More 
recently, Pan et al. [13] conducted a distributed test using 
finite element software and fully implicit integration 
algorithms that capture the instantaneous behavior of a 
single-degree-of-freedom (SDF) experimental substructure.  

In order to extend the capabilities of hybrid simulation to 
complex structural systems with nonlinear behavior 
distributed throughout the structural model, a fully implicit 
integration method is presented that is compatible with 
experimental substructures. The implementation issues of 
dealing with the experimental substructure are handled by 
introducing a safe iteration strategy and a procedure for 
estimation of the experimental tangent stiffness matrix. The 
effectiveness of the proposed integration method is 
demonstrated through actual hybrid simulations that show 
the ability of this approach to accurately capture the 
behavior of the experimental substructure. The accuracy of 
the simulation is measured by computing the overall energy 
balance of the simulation and the energy errors introduced 
by experimental and numerical errors [14]. 

II. NUMERICAL INTEGRATION  
In a hybrid simulation, the equation of motion of the 

combined numerical and experimental structural model can 
be expressed as: 
 

e+Ma + Cv + r r = f  (1) 

in which M  and C  are mass and damping stiffness 
matrices of the numerical substructure, f  is the external 
force vector, v  and a  are velocity and acceleration vectors, 
respectively, r  is the restoring force from the numerical 
substructure, and er  is the restoring force measured in the 
experimental substructures. Here, it is assumed that the 
nonlinear restoring forces of the numerical and experimental 
substructures are essentially strain-dependent. 
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 Time-stepping integration procedures solve the 
equilibrium equation of motion (1) at discrete time steps 
combined with the kinematic relations between the states. 
For example, the finite difference kinematic relations in the 
Newmark’s Beta integration procedure [15] are: 

 

( ) ( )2 2
1 1

1
2n n n n nt t tβ β− −

⎛ ⎞= + Δ + − Δ + Δ⎜ ⎟
⎝ ⎠

d d v a a  (2) 

( )1 11n n n nt tγ γ− −= + − Δ + Δv v a a  (3) 

where d  is the displacement vector, tΔ  is the integration 
time step, n  is the integration step number, and β  and γ  
are integration parameters that affect the stability and 
accuracy of the integration scheme, such as numerical 
damping and period elongation. Numerical damping in the 
integration algorithms is sometimes used to suppress the 
response of high-frequency modes of vibration that may be 
excited by experimental errors and measurement noise. In 
order to provide numerical damping without affecting the 
accuracy of the integration algorithm, Hilber et al. [16] 
proposed the α-method for numerical integration. This 
algorithm is used here with the restoring force: 

 
( )1 1n n n n n− −= + −r r K d d  (4) 

In hybrid simulations, implementation of a fully implicit 
iterative integration procedure is difficult because of: (i) the 
required online estimation of experimental tangent stiffness 
matrix, (ii) the potential for unwanted damage to the 
experimental substructure through application of iterative 
displacements, and (iii) uncertainties in convergence of 
iterative scheme in nonlinear simulations involving 
numerical and experimental errors. 

Iterative integration procedures are preferred for 
numerical simulation of large systems with distributed 
nonlinearities. Here, it is attempted to provide an efficient 
implicit integration procedure for hybrid simulations of large 
structural systems that can accurately capture large 
nonlinearities distributed throughout the structure. 

III. PROPOSED IMPLICIT INTEGRATION ALGORITHM 
Each step of the proposed implicit integration procedure 

begins with calculation of the desired displacement vector. 
For this purpose, the predictor displacement vector l

nd%  is 
obtained from Equation (2) by temporarily setting 0β = : 

( )2
1 1

1
2n n n nt t− −= + Δ + Δd d v a%  (5) 

and transforming the result to actuator local coordinate 
system. This displacement vector is applied on the 

experimental substructure and measurements are fed back to 
the numerical simulation module. Next, these measurements 
are used to solve the time discrete form of (1) iteratively. 
The restoring force vector is updated in each iteration 
according to the new iterative displacement vector and then 
used to estimate the stiffness matrices of numerical and 
experimental substructures using: 

( )e,l e,l e,l l l,m
n n n n n= + −r r K d d%%  (6) 

In (6) , e,l
nr%  is the measured experimental restoring force, 

l,m
nd%  is the measured displacement vector, and e,l

nK  is the 
experimental tangent stiffness matrix, all expressed in 
actuator local coordinates. Note that in the conventional 
operator-splitting method, this correction is made once in 
each integration step using the initial stiffness matrix of the 
experimental substructure. Here, iterations are repeated until 
a specified convergence criterion is satisfied. The 
implementation procedures of the proposed algorithm are 
explained further in the following sections. 

A. Estimation of Experimental Restoring Forces 
The experimental restoring forces can be updated without 

physically imposing iterative displacements by interpolation 
and extrapolation of the most recent force and displacement 
measurements [17]. The experimental restoring forces are 
estimated using second-order polynomials fitted to the last 
four points of force and displacement measurements of each 
actuator. As shown in Fig. 1, the iterative displacement in 
actuator coordinate system is first used to estimate its 
corresponding time at which the displacement was achieved. 
This time value is then substituted in the force polynomial to 
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Fig. 1. Estimation of measured force at target iterative displacement 
using polynomials fitted to experimental data 
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give an estimate of the restoring force. The increments of 
displacements and estimated restoring forces from previous 
step are used to update the experimental tangent stiffness 
matrix following the procedure outlined in the next section. 

It should be noted that the accuracy of the estimated 
restoring forces is reduced as the extrapolation time 
increases. For this reason, limits should be placed on the 
time parameter to avoid excessive extrapolations. It is 
proposed to keep the experimental tangent stiffness matrix 
unchanged when force estimation is not possible within the 
allowed time variation range. 

The above-mentioned approach eliminates the need for 
physical application of iterative displacements on 
experimental substructure. As a result, potential 
displacement reversals during iterations will not damage the 
experimental substructure or lead to erroneous experimental 
energy dissipation. Importantly for geographically 
distributed testing, data exchange between numerical and 
experimental subsystems occurs only once in each 
integration step. 

B. Online Estimation of Tangent Stiffness Matrix 
Methods for updating the tangent stiffness matrix of the 

numerical substructure during the simulation are well 
established [18]. These methods normally take advantage of 
information about element internal forces and plasticity 
states, which are not available for experimental 
substructures. Here, an efficient method for estimation of 
experimental tangent stiffness matrix is presented. It should 
be considered that in a typical hybrid simulation, a large 
portion of the test structure is numerically modeled, while 
the experimental substructures consist of only a few degrees 
of freedom. 

The online estimation of experimental tangent stiffness is 
difficult due to the contamination of measurements required 
for the computation, and the limited data available for 
establishing the full stiffness matrix. To address the first 
issue, the experimental tangent stiffness matrix is updated 
only in steps with displacement increment sufficiently larger 
than a specified threshold selected as the greater of: 10 times 
the RMS of displacement noise or a value that results in a 
force (using initial stiffness) 10 times greater than the RMS 
of force noise [6]. The stiffness matrix remains unchanged 
in integration steps with small displacement increments. 

A second issue in online estimation of experimental 
tangent stiffness matrix is the limited number of 
measurements (equal to the number of actuators and load 
cells, m ) compared to the number of elements of the 
stiffness matrix (up to 2m ). In order to address this problem, 
Ahmadizadeh and Mosqueda [6] proposed reducing the 
number of unknowns using the information regarding the 
element configuration and geometric properties of the 
experimental substructure. This was achieved using a 
transformation matrix pT  that reduced the m m×  stiffness 
matrix of the experimental substructure to a diagonal matrix 

nP  in an intrinsic coordinate system, consisting of 
parameters that constitute the sources of resistance and 
nonlinear behavior of the experimental substructure: 

e,l T
p pn n=K T P T  (7) 

where e,l
nK  is the experimental tangent stiffness matrix at 

step n  expressed in actuator local coordinate system. By 
dividing the incremental forces by incremental 
displacements in parameter coordinate system and using the 
above transformation, the tangent stiffness can be obtained 
in actuator local coordinates. The transformation 

e T e,l
n n=K T K T  can then be used find this stiffness matrix in 

global coordinates, where T  transforms displacements from 
global to actuator local coordinate system. 

The above procedure is generalized here by following the 
classical method of diagonalization of stiffness matrix. An 
m m×  matrix is diagonalizable if it has m  linearly-
independent eigenvectors. This is the case when the matrix 
has m  distinct eigenvalues [19]. Given these conditions, the 
following relation can be used to diagonalize the tangent 
stiffness matrix at step n : 

1 e,l
n n n n

−=P KΦ Φ  (8) 

in which: 

[ ]1 2n m n
LΦ = φ φ φ  (9) 

is a matrix of normalized eigenvectors (modal matrix) of the 
local stiffness matrix at step n , e,l

nK . In addition to the 
above, the symmetry of the stiffness matrix results in the 
orthogonality of eigenvectors (or the dynamic mode shapes 
with an identity mass matrix) [20], which further facilitates 
the diagonalization process by changing Equation (8) to: 

T e,l
n n n n=P KΦ Φ  (10) 

Hence, a general choice of the transformation matrix pT  
is the transpose of the eigenvectors matrix: 

T
p n=T Φ  (11) 

Since this transformation matrix is square, the number of 
stiffness parameters to be estimated in the diagonal matrix 
will be equal to m .  

It should be noted that since the stiffness matrix is 
updated in each integration step, the mode shapes may also 
change, and the transformation matrix needs to be updated 
accordingly. That is, an eigenvalue problem involving the 
tangent stiffness matrix should be solved in each integration 
step. Furthermore, since the stiffness matrix changes within 
an integration step after being used to derive the 
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transformation matrix, an iterative procedure is necessary to 
simultaneously update the stiffness and transformation 
matrices. In order to avoid these iterations, the tangent 
stiffness matrix in the previous step l

1n -K  can be used to 
derive the mode shapes and the transformation matrix. This 
simplification slightly reduces the update rate of the 
experimental tangent stiffness matrix, which has been 
observed to be insignificant. 

The experimental tangent stiffness matrix obtained using 
the above diagonalization approach can then be used in (6) 
to update the experimental restoring force used in numerical 
integration. Ideally, the results of this equation should match 
those found from the fitted polynomials used to estimate 
force increments. However, the calculation of forces through 
(6) ensures the use of the most accurate data, and that the 
symmetry and positive-definiteness of the stiffness matrix is 
considered in calculation of the restoring forces, as 
described above. 

C. Simulation Continuity 
Convergence of iterations cannot be guaranteed in 

integration of nonlinear problems, particularly when they 
involve both experimental and numerical errors. Since the 
experimental substructures may have already been damaged, 
the simulation cannot be restared due to convergence failure. 
Hence, the unconverged solutions need to be handled using 
an alternate approach to maintain the continuity of the 
simulation. In the integration algorithm presented in this 
paper, it is proposed to revert to the solution of operator-
splitting method using numerical and experimental tangent 
stiffness matrices to complete integration steps where 
convergence fails. In this case, the states are updated only 
once, and instead of using fitted polynomials, actual 
increments of displacements and forces are used to update 
the experimental tangent stiffness matrix. It has been 
observed that the accuracy and stability of the simulation are 
not significantly affected when the integration steps with the 
above alternative solution are sparsely distributed through 
the simulation [21]. 

IV. EXPERIMENTAL VERIFICATIONS 
In this section, the effectiveness of the proposed 

integration algorithm is demonstrated through an actual 
hybrid numerical and experimental simulation. The hybrid 
simulation test system at Structural Engineering and 
Earthquake Simulation Laboratory (SEESL) at University at 
Buffalo consists of the test setup, actuator controllers, 
simulation host PC (running Simulink® [22]), and xPC 
target computers (real-time environments). For fast online 
simulations, the simulation components communicate 
through Shared Common Random Access Memory Network 
(SCRAMNet). The actuator commands and measurements in 
this hybrid simulation system are updated at a rate of 1024 
Hz. 

 
The test structure, shown in Fig. 2, is a 15-story shear 

building with a setback at the third story level. The 
experimental substructure is selected as the two-story 
exterior columns of the lower levels. The connections of 
these columns to the rigid floors are assumed to be pinned. 
The remaining part of structure is modeled numerically. 
Bouc-Wen hysteretic models [23, 24] are selected to relate 
the story shear and story drifts of the numerical substructure. 
The structure is assigned a stiffness of 8.86 kN/mm with a 
yield displacement of 3.6 mm with the exception of the first 
story with a stiffness of 1.77 kN/mm. Note that the 
experimental substructures will provide additional stiffness 
to the first two stories. The floor weights are selected to 
achieve a fundamental period of 1.0 s. The structure is 
assumed to be viscously damped with a damping ratio of 2% 
of critical. 

The two-degree-of-freedom experimental substructure 
representing the two-story columns is shown in Fig. 3. Thel 
specimen consists of two columns and two clevises mounted 
on top of each other. The lateral resistance at the clevis is 
provided using replaceable coupons that can be inserted in 
the clevises. The columns are designed to remain elastic, 
thus limiting the yielding to the coupons for low-cost 
nonlinear simulations. With two pairs of coupons in the 
lower clevis and one pair in the upper one, the initial 
stiffness of the experimental substructure is measured to be: 

 
e,l
0

4.86 1.41
kN/mm

1.41 0.68
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
K  (12) 

which is doubled in the numerical simulation to account for 
both columns shown in Fig. 2. It should be noted that the 
experimental substructure behavior is governed by rotations 
at clevises or flexure of columns, rather than shear 
deformations. The delay was measured to be about 15 ms in 
both actuators, and was compensated using Equation (5) 
with an adjusted time step [17].  

Test Structure Laboratory Setup

1

2

3

4

14

15

 
Fig. 2. Fifteen story hybrid structural model used in experimental 
simulations with experimental substructures indicated 
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The response of the test structure is simulated for 1940 El 
Centro earthquake (peak ground acceleration = 0.32g) with 
an integration time step of 10/1024 s. The displacements at 
two lower stories along with the top floor displacements are 
shown in Fig. 4. This graph shows that the structure 
undergoes a small permanent deformation. In this 
simulation, all of the integration steps were completed with 
successful iterations (all iterations converged before the 
maximum number of iterations). However, the experimental 
tangent stiffness matrix was updated in 69.5% of integration 
steps. In other integration steps, the displacement increments 
were small, or estimation of forces corresponding to iterative 
displacements failed within the predetermined time variation 
range. The number of iterations and steps with successful 
experimental stiffness matrix updates are shown in Fig. 5 
during a short period of simulation. In this figure, the flag 
variable shown as small circles takes values of 0 or 1, 
showing the status of experimental stiffness matrix update. 
As illustrated, convergence is normally achieved after only 
two iterations, occasionally requiring three iterations. The 
number of iterations may be more in larger structures, or 
structures with more complex behavior.  

The elements of the estimated experimental tangent 
stiffness matrix are shown in Fig. 6 during a short period of 
simulation. As illustrated, the estimates contain a fair 
amount of noise, which is far smaller than when 
displacement increment threshold is not taken into account. 
The noise may be further reduced by using better 
instrumentation, or using equivalent low-pass filters on force 
and displacement measurements, taking care not to alter 

their phase agreement. A detailed examination of Fig. 6 
indicates that the stiffness reductions are gradual and 
coincide with large drifts. On the other hand, stiffness 
matrix elements are shown to sharply increase in 
displacement reversals, which correspond to elastic 
recovery. 

 

 

As a measure of accuracy, the hysteretic behavior of the first 
story hinge is shown in Fig. 7 using two different sets of 
data. The actual hysteretic behavior of this hinge is plotted 
using measurements without any modifications, that may be 
performed on the measurements for error compensation or 
signal correction.  

The converged hysteretic behavior of the first story hinge 
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Fig. 6. Time variation of stiffness matrix elements during a short time 
window of the simulation 
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Fig. 5. Number of iteration in each integration step and indication of 
steps providing updated experimental tangent stiffness 

0 5 10 15 20 25 30 35
-120

-100

-80

-60

-40

-20

0

20

40

60

Time, s

D
is

pl
ac

em
en

t, 
m

m

 

 

DOF 1 DOF 2 DOF 15

 
 
Fig. 4. Displacement response of hybrid numerical and experimental 
model subjected to 1940 El Centro earthquake 

 
 
Fig. 3. Two-degree of freedom experimental substructure consisting 
of cantilever with two horizontal actuators 
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is also shown in Fig. 7 which is obtained using states at the 
end of the iterative corrections. Through these iterations, the 
estimated tangent stiffness of the experimental substructure 
is used to modify the experimental restoring force and 
update the states. Hence, the fact that the converged 
hysteretic behavior does not show any significant distortion 
from the actual behavior demonstrates the effectiveness of 
the proposed procedure for estimation of the experimental 
stiffness matrix and restoring forces.  

V. CONCLUSIONS 
An iterative implicit integration procedure was proposed 

for hybrid simulation. Through polynomial interpolations 
and extrapolations, this integration method eliminates the 
need for physical application of the iterative displacements 
on the experimental substructure. In this integration method, 
the tangent stiffness matrix of the numerical substructure 
can be determined using the conventional methods of 
numerical simulation. An efficient method was also 
proposed for online estimation of experimental tangent 
stiffness matrix. This method requires minimal information 
about the experimental substructure, and only uses the 
readily-available force and displacement measurements to 
update the stiffness matrix. Using this method, the 
estimation of experimental tangent stiffness matrix is carried 
out only in steps with significant displacement increments, 
to avoid the excessive contamination of results by 
experimental errors and measurement noise. An alternative 
solution procedure was also adopted to complete integration 
steps with failed iterations and maintain the continuity of the 
simulation. The proposed integration method together with 
the procedure introduced for estimation of experimental 
tangent stiffness was shown to have excellent performance 
in accurately capturing the behavior of the experimental 
substructure and maintaining the energy balance of the 
simulation for testing relatively large and nonlinear 
structures. Future studies will examine the implementation 
of this approach in finite element software, allowing for 

more complex modeling of the numerical model. 
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Fig. 7. Hysteretic behavior of lower plastic hinge and difference 
between actual measured behavior and behavior observed by numerical 
model based on final converged displacement. 
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