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Abstract— This paper proposes a design method of discrete-
time reset control systems with the reset time instants pre-
specified. With a base linear system designed conventionally,
the discrete-time reset law design aims at improving the system
transient responses. The design method can guarantee the
system stability and the solution of the controller is obtained by
solving Riccati equations. The proposed reset controller design
method is applied to short-span and long-span track seeking
of a hard disk drive servo system. Experiment results show
that the proposed design is much more capable of improving
transient response than traditional control design methods.

Index Terms— Discrete-time reset control systems; reset law;
linear quadratic regulation; hard disk drive systems.

I. INTRODUCTION

Reset control was firstly proposed by Clegg [1] to over-

come limitations of linear control. This reset controller,

termed as Clegg-integrator, consists of an integrator and a

reset law which resets the output of the integrator to zero

when its input vanishes. From the basic idea of reset control,

one can see that reset control is helpful in reducing windup

caused by integration. Moreover, a Clegg integrator has a

similar magnitude-frequency response as a pure integrator,

but with 51.9o less phase lag. This favourable property

helps to increase the phase margin of a system. In [2],

Krishman and Horowitz developed a quantitative control

design procedure of Clegg integrator. In [3], Horowitz and

Rodenbaum generalized the concept of reset control to higher

order systems. More details can be found in [4].

A lot of work has shown the advantages of reset con-

trol over linear control. For instance, in [5], an example

is presented to show that reset control can achieve some

control specifications which cannot be achieved by any

ordinary linear control. Besides, [6] shows that reset control

can achieve much better sensor noise suppression without

degrading disturbance rejection or losing margins. These

advantages make reset control an important technique for

performance improvement. See [7], [8] and [9] for instance.

Recently, reset control was introduced to hard disk drive

servo systems [10], [11].
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There are in general two steps in reset control design

[12]: linear compensator design and reset element design.

Linear compensator is designed to meet all performance

specifications other than output overshoot, then reset element

is designed to reduce the overshoot. As we know, a reset

controller can improve closed-loop performance only when

the reset law interacts well with the base linear system.

In other words, if the reset controller is not appropriately

designed, it may have little contribution to the performance

improvement, or even cause performance degradation. For

example, reset control may destroy the stability of the closed-

loop system if it does not cooperate well with the base linear

system.

In reset control system design, there are three basic

problems: stability analysis, base linear system design and

reset law design.

For the stability analysis, there are many papers in litera-

ture addressing this issue, see [13], [14], [15], [16], etc. Most

of these existing results require the base linear systems to be

stable. However, stability of a reset control system depends

on both the base linear system and the reset actions. Each of

these two factors can contribute to or destroy the stability of

the overall system. Note that reset control systems are also

known as impulsive systems and their stability issues have

been addressed in [17].

For the reset control law design, most efforts are put on the

design of base linear system in existing literatures [4], [6],

[10]. The reset law adopted is in general the traditional one,

i.e., reset the state of controller to zero when tracking error

crosses zero. Base linear system is then designed to interact

well with the reset law. We refer to this kind of reset control

as the traditional reset control in this paper. Actually, reset

control can be more general, for instance, the time and the

amount of reset can both be designed so that the reset law

and the base linear system can cooperate better with each

other.

The purpose of this paper is to propose a novel approach

to reset control law design for a reset control system and

apply the proposed method to improve the transient response

of hard disk drive (HDD) systems. We focus on systems

of which the base linear systems are already appropriately

designed and the reset time instants are pre-specified. The

design of the reset law aims to minimize some performance

index and its solution is obtained by solving a Riccati

equation. In case of equidistant reset control, we show that

the resulting reset law is time invariant. Our previous work

[18] gives a solution for a continuous form of reset control

law, but this form cannot be directly used in digital signal
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control system. This paper shows discrete-time reset control

law design method which is suitable for digital sampling

control system.

This paper is arranged as follows. In Section II, we set

up the problem studied in this paper. In Section III, we

investigate optimal reset law design problem. Section IV

gives the application of the proposed design method to HDD

systems. Some concluding remarks are made in Section V.

II. PROBLEM SETTING

A typical reset control system is depicted in Fig. 1. The

dynamics of the plant is described by
{

ẋ = Ax + Bu

y = Cx,
(1)

where x ∈ R
n is the state, u ∈ R

j the control input and y ∈
R

p the output of the system. The zero-order-hold equivalent

description of the plant (1) with the sampling time Ts is

given by
{

x(i + 1) = Adx(i) + Bdu(i)

y(i) = Cx(i),
(2)

where Ad = eATs , Bd =
∫ Ts

0
eA(Ts−τ)Bdτ .
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Fig. 1. Block diagram of a reset control system.

Define Tr as the reset period. We assume that the reset

interval Tr is at every n sampling intervals, i.e., Tr = nTs,

as illustrated below.

|

Ts
︷ ︸︸ ︷

−−− |

Ts
︷ ︸︸ ︷

−−− |...|

Ts
︷ ︸︸ ︷

−−−
︸ ︷︷ ︸

Tr=n×Ts

|

The notations k and i are used to represent the time instant

t = kTr + iTs with i = 0, 1, 2, · · · , n− 1. We then introduce

the following discrete reset controller:






z(k, i) = Dz(k, i − 1) + Ee(i − 1),

z(k, 0) = ρk(x(k − 1, n − 1), z(k − 1, n − 1), r),

u(k, i) = Gx(k, i) + Hz(k, i) + Me(k, i),
(3)

where z ∈ R
q is the dynamic state in the controller, r is the

reference signal which is assumed to be constant, ρk(x, z, r)
is the reset value at time instant t = kTr and it is the so-

called the reset law. D, E, G, H and M are all constant

matrices with compatible dimensions. e(k, i) = r − y(k, i)
is the tracking error.

Next we combine (2) and the reset controller (3) as

follows.






x̄(k, i) = Āx̄(k, i − 1) + B̄r,

z(k, 0) = ρk(x(k − 1, n − 1), z(k − 1, n − 1), r),

ȳ(k, i) = C̄x̄(k, i),
(4)

where x̄(k, i) = (x(k, i)T z(k, i)T )T , C̄ = (C, 0p×q),

Ā =

(

Ad + BdG − BdMC BdH

−EC D

)

, B̄ =

(

BdM

E

)

.

(5)

Before we introduce a cost function for the reset controller

design, we need to make an assumption on the steady state

of the system (4).

Assumption 1: For any r ∈ R
p, there exists x̄r =

(xT
r , zr

T )T ∈ R
n+q, such that

Āx̄r + B̄r = x̄r,

C̄x̄r − r = 0.
With the above Assumption, the control input ur in the

steady state is given by

ur = Gxr + Hzr. (6)

For each time instant t = kTr + iTs, we define a cost

function J(k, i) as

J(k, i) = eT (k, i)Qk,ie(k, i) + (u(k, i) − ur)
T Rk,i

(u(k, i) − ur)

Here Qk,i and Rk,i are positive semi-definite matrices. The

optimal reset law (ORL) design problem considered in this

paper is thus formulated as follows.

Problem 1: Design ρk, such that the resulting control

system is asymptotically stable and meanwhile the cost

function J(∞) is minimized, where

J(∞) :=
∞∑

k=0

n−1∑

i=0

J(k, i) (7)

III. DISCRETE-TIME OPTIMAL RESET LAW DESIGN

In this section, we suppose to solve the ORL problem

stated in the previous section. It will be proved that this

problem can be equivalently converted into a standard linear

quadratic regulation (LQR) problem.

We make a coordinate transformation as follows.
{

ξx(k, i) = x(k, i) − xr

ξz(k, i) = z(k, i) − zr
(8)

where the steady-state values xr and zr are defined in

Assumption 1. From (4), we have






ξ(k, i + 1) = Āξ(k, i)

ξz(k, 0) = ρ̄(k, 0)

e(k, i) = −C̄ξ(k, i)

(9)
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where ξ(k) = (ξx(k)T ξz(k)T )T and ρ̄(k, 0) = ρ(k, 0)− zr.

From (3 and (6), it follows that

u(k) − ur = [ G − MC H ]

(

ξx(k)

ξz(k)

)

. (10)

Let N =
[

G − MC H
]
. For a reset interval

(iTr, (i + 1)Tr], the cost function should be

∑n−1
i=0 J(k, i) =

∑n−1
i=0 eT (k, i)Qk,ie(k, i)

+(u(k, i) − ur)
T Rk,i(u(k, i) − ur)

=
∑n−1

i=0 ξT
x (k, i)CT Qk,iCξx(k, i)

+ξ(k, i)T NT Rk,iNξ(k, i)

=
∑n−1

i=0 ξT (k, i)(C̄T Qk,iC̄+

NT Rk,iN)ξ(k, i)

=
∑n−1

i=0 ξT (k, 0)(ĀT )i(C̄T Qk,iC̄+

NT Rk,iN)(Ā)iξ(k, 0)

= ξT (k, 0)
∑n−1

i=0 [(ĀT )i(C̄T Qk,iC̄+

NT Rk,iN)(Ā)i]ξ(k, 0)

= ξT (k, 0)Θkξ(k, 0).
(11)

with Θk =
∑n−1

i=0 [(ĀT )i(C̄T Qk,iC̄ + NT Rk,iN)(Ā)i].
Hence J(∞) is the sum of ξT (k, 0)Θkξ(k, 0) at each reset

time instant kTr, and given by

J(∞) =
∞∑

k=0

ξT (k, 0)Θkξ(k, 0) (12)

On the other hand, with the reset interval Tr as sampling

interval the system (9) can be written as

(

ξx(k + 1, 0)

ξz(k + 1, 0)

)

= (Ā)n

(

ξx(k, 0)

ρ̄(k, 0)

)

(13)

Partition (Ā)n as follows,

(Ā)n =

(

ΓA ΓB

∗ ∗

)

, (14)

then we have

ξx(k + 1, 0) = ΓAξx(k, 0) + ΓB ρ̄(k, 0) (15)

Note that system (15) is simply a linear discrete system

with state variable ξx and control input ρ̄. Consider the

following linear quadratic regulation (LQR) problems of

system (15).

Problem 2: Design a control sequence ρ(i), i = 0, 1, ...,
for system (15) such that the resulting system is asymptot-

ically stable and the the following quadratic performance

index is minimized,

J(∞) =
∞∑

k=0

(

ξx(k, 0)

ρ̄(k, 0)

)T

Θk

(
ξx(k, 0)T ρ̄(k, 0)T

)T
.

Proposition 1: Suppose that there exist positive numbers

ε > 0 such that

λmin(ΓT
BΓB) ≥ ε > 0. (16)

Then the ORL Problem 1 is equivalent to LQR Problem 2.

Proof: We only need to prove that under the above

condition, system (15) is asymptotically stable if and only

if system (9) is asymptotically stable. It is obvious that

if system (9) is asymptotically stable, then system (15)

is asymptotically stable. In the following, we assume that

system (15) is asymptotically stable. Then we have

lim
k→∞

ξx(k, 0) = 0,

lim
k→∞

ΓB ρ̄(k, 0) = 0.

According to condition (16), we have

lim
k→∞

ρ̄(k, 0) = 0.

Note that ξz(k, 0) = ρ̄(k, 0), we have

lim
k→∞

ξ(k, 0) = 0,

and thus system (9) is asymptotically stable. 2

According the above proposition, to solve the ORL

problem we only need to solve the corresponding LQR

problem 2, which is standard linear quadratic regulation

problems, and thus we can obtain the optimal solutions

directly by solving some Riccati equations. Partition Θk as

Θk =

(

Q̄ T̄

T̄T R̄

)

(17)

Define

Γ̄A = ΓA − ΓBR̄−1T̄T ,

Q̃ = Q̄ − T̄ R̄−1T̄T
(18)

The solution of the LQR problem can be obtained immedi-

ately as follows [20].

Proposition 2: Assume that (ΓA, ΓB) is controllable and

the matrices R̄ and Q̃ are positive definite. Then the optimal

reset law which stabilizes system (1) and minimizes J(∞)
is given by

ρ∗(k, 0) = −K(x(k, 0) − xr) + zr, (19)

where K is determined by

K = (ΓT
BSΓB + R̄)−1(ΓT

BSΓA + T̄T ) (20)

and S is the solution of the Riccati equation

S = Q̃+Γ̄T
ASΓ̄A − Γ̄T

ASΓ̄B(ΓT
BSΓB + R̄)−1ΓT

BSΓ̄A. (21)

Furthermore, the minimum of J(∞) is given by

J∗(∞) = (x(0) − xr)
T S(x(0) − xr). (22)
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Fig. 2. Frequency response of the VCM actuator.

IV. APPLICATION TO HDD SERVO SYSTEM

A. System modeling

The frequency responses of a HDD voice coil motor

(VCM) actuator have been measured using a Laser Doppler

Vibrometer (LDV) and a Dynamic Signal Analyzer (DSA).

Based on the measured frequency responses of the actuator,

its transfer function is obtained as follows

P (s) = 2.4819× 108

s2 + 452.4s + 5.685× 105
×

s2 + 1109s + 1.922× 108

s2 + 1936s + 2.603× 108

×
s2 + 14830s + 8.795× 108

s2 + 5931s + 2.188× 109

(23)

whose frequency responses have been plotted in Fig. 2.

We apply notch filters FN1(s) and FN2(s) to compensate

the resonance modes.

FN1(s) = s2 + 1936s + 2.603 × 108

s2 + 1.936 × 104s + 2.603 × 108

FN2(s) = s2 + 3181s + 2.188 × 109

s2 + 59310s + 2.188 × 109

The system is then simplified as a 2nd order system, which

is called the nominal plant and whose frequency response

can be seen in Fig 3. The model of the nominal plant is

described by







ẋ1 = x2

ẋ2 = −ax1 − bx2 + cu,

y = x1,

(24)

where a = 5.6849× 105, b = 407.1, c = 7.3647× 107. Our

target is to design a seeking controller for the VCM actuator

to have fast positioning without overshoot.

B. Reset control law design

The controller structure is depicted in Fig. 4.
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Fig. 4. The structure of reset controller.

The reset controller is given by






z(k, i) = Dz(k, i − 1) + Ee(k, i − 1),

z(k, 0) = ρk(x(k − 1, n − 1), z(k − 1, n − 1), r),

v(k, i) = αe(k, i) + βx2(k, i) + γz(k, i),
(25)

with D = 1, E = Ts, α = 0.5, β = 4×10−4, and γ = 6000.

The base linear controller is given by the first and the third

equations in (25). For the reset law design, we assume Rk,i

and Qk,i are time-invariant. The reset law is given by

ρ∗k = −k1(x1 − r) − k2x2 +
a

cγ
r. (26)

In the reset controller (26), the velocity x2 is replaced with

its estimated value x̂2. An state observer is needed to obtain

the estimated velocity.

C. Simulation result

The input disturbance, output disturbance and measure-

ment noise are added in the simulation. output the sampling

period Ts is 2.5 × 10−5sec and Q = 1, R = 17. The reset

interval Tr = 2 × Ts. The reset law is given by (26). By

solving Riccati equation (21) and (20), we have

k1 = −3.6049 × 10−5,

k2 = −4.6124 × 10−8.

Fig. 5 gives the step responses for the base linear control,

traditional reset control and the optimal reset control. We can
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Fig. 5. Step responses for base linear control, traditional reset control and
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see that the proposed optimal reset control almost removes

the overshoot completely and at the same time reduces the

rise time significantly.

Fig. 6 gives the responses for different reset intervals Tr =
2Ts, 5Ts, 20Ts respectively. The transient performance is

better when reset interval is smaller. In Fig. 7, step responses

for different R and fixed value Q = 1 are given.

Compared with our previous work in [19], the main

advantage of the proposed optimal reset control in this paper

is that the design process is more simple. We do not need

to worry about the stability since the stability is naturally

assured.

Remark 1: In the short-span seeking, we find that the

performance is not sensitive to Tr (Tr = nTs) with n ≤ 3.

But if n > 3, the performance will become worse. Since

the optimal cost function weights R and Q should be set

for different input levels, in order to tradeoff the ratio of

input and error signal. we need different values of R/Q
for different reference levels r so as to achieve the best

performance.

Remark 2: For case of Tr = 20Ts in Fig. 6, when reset

is injected, sharp changes in the output of the reset element

occur, and then the abrupt responses cause big spikes in the

control signal.

In the long-span seeking control, we choose Q = 1 and

R = 12. We add the control signal saturation |u| < 2.5 as

the bounded input effort. We found that in this range, the

control input has great efficient during rising stage (see the

control input signals in Fig. 8). Compared to the design of

optimal time control, we do not need to design a transitional

controller to smooth the input in order to avoid chattering,

thus the design process is more simple.

Remark 3: In simulations, the performance is also not

sensitive to Tr (Tr = nTs) with n ≤ 10. But if n > 10,

the performance will become worse. In the long-span seeking

control, the performance is not sensitive to R/Q. The control

signal will not be amplified boundless as a result of the

saturation part, so the R/Q can be fixed without changing

the performance.
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for r = 1.
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D. Experimental Results

The discrete optimal reset control law is verified via

implementation in the HDD servo system and the seeking

performance is investigated.

Fig. 9 shows the seeking result for r = 0.25µm with

comparison to the linear PID control. It is seen that the

rising time of the linear controller and the reset controller

are similar, but when reaching the target, the response with

the ORL method is swiftly settled to the target with less

overshoot. The settling time is 0.33ms. Fig. 10 shows the

seeking performance for r = 4µm. The performance of

this longer span seeking with the reset control is also much

better than that with the PID control. No overshoot is noticed

and the settling time is less than 0.5 ms. The control effort

of ORL method have much more efficiency since it is

minimized via the cost function including the control input

term.

V. CONCLUSION

In this paper, we have studied discrete optimal reset

law design of reset control systems. Firstly, we transferred

closed-loop reset control system to discrete linear system
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with reset value as control input. Then we proved that ORL

design problem is equivalent to LQR problem. Based on

this, the optimal reset laws were given in terms of Riccati

equations. The design process of the proposed reset law is

very simple. The resulting reset law is of feedback form and

thus can easily be implemented online.

The proposed design was applied to seeking control of

single-stage hard disk drive systems. Both short-span and

long-span seeking control were studied. Simulation results

show that the proposed design can achieve better seeking

performance.
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