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Abstract— The modeling of switching systems describing
networks where death and duplication processes occur is
described. A dissensus protocol, complementary to consensus
protocol, is introduced and the convergence or divergence of the
agents’ state evolution is studied. We discuss some properties
of the topology reached by the network when different rules of
duplication and inheritance are implemented.
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I. INTRODUCTION

Recently, a great interest has been devoted to consensus

problems (see, e.g., [1], [2] and the literature cited within).

In a consensus problem a set of n agents reach an agreement,

consensus, on the value of a given set of variables, typically

the ones describing the system state. To this aim each

agent can exchange information only with a subset (say

it neighborhood) of adjacent agents. In its simplest form

the consensus problem can be modeled as an autonomous

cooperative linear system where: each component xi of the

system state can be interpreted as the state of the ith agent

and the dynamic matrix is a symmetric Metzler matrix such

that the sum of its columns is equal to zero. Under these

hypotheses, it is easy to verify that the value of the system

state converges to a vector whose components are all equal

to the average of the values of the initial state components.

In this work, we study a switching system ([3], [5]) that

behaves in a complementary manner to the system described

above. Between two consecutive switchings, it appears as

an autonomous competitive linear system where, again, each

component xi of the system state can be interpreted as the

state of the ith agent, but with an opposite dynamic matrix

that is a symmetric Metzler matrix such that the sum of its

columns is equal to zero. If no switch occurs, the system

state diverges as all eigenvalues but one of the dynamic

matrix are strictly positive and the remaining one is null.

The system state remains bounded as at each switching time

either an agent dies or duplicates. In the former case the

agent is definitively removed from the system, whereas in

the latter case, the agent, say it a parent agent, divides

itself in two new children agents. Both the children initial
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states and neighborhoods are functions of the parent state

and neighborhood respectively.

The aim of this paper is to introduce a very simple model

to study the property of the dynamics of a set of agents

competing for a scarce resource. Here, the availability of the

resource to each agent is directly described by the agent state.

The agents that have a greater availability of the resource

are stronger (in some sense they better fit the environment)

and then can subtract further resource to the adjacent agents.

This kind of networks arises in many different problems,

such as averaging with finite capacity channels in sensor

networks or the load balancing in a processor network

(see [6] or [7]). We try our inspiration from biological

networks, where the description of the death and duplication

process (BMID) has been studied, in the modeling of the

genome evolution or the protein domains, or the genetic

epidemiological models have largely been studied. Here the

birth and death models are usefully introduced as stochastic

Markov chain processes (i.e. [9], [8], [10]). Note that in the

present approach we are considering deterministic models

and no probabilistic approach is taken into consideration. The

present system can be useful also to model the interactions

of a group of retailers shop in franchising of the same brand

that are working in competition on the territory. The death

of a node corresponds to the closing of the shop and the

duplication corresponds of the opening of a new one.

In the following section, the problem of interest is formal-

ized. Then in Section III some peculiar characteristics of the

system evolution are described and some open problems are

discussed. Finally some conclusions are drawn in Section IV.

II. THE DISSENSUS PROTOCOL

We consider a switching system describing the evolution

of a set of n agents Γ = {1, . . . , n}. Let a set of agents

Γ = {1, . . . , n(tk)} be given with the number of agents

n(tk) function of the time instants tk. For the easy of

notation, the dependence on tk is omitted, e.g. we write n
and not n(tk), when there is no risk of ambiguity. Each

agent exchange information only with a subset of neighbor

agents. More formally, we assume that the set Γ induces

a single component graph G = (Γ, E), called connection

graph, whose edgeset E includes all the non oriented couples

(i, j) of agents such that agent i exchanges information with

agent j. In this context, we define the neighborhood of an

agent i as the set Ni = {j : (i, j) ∈ E}.

Let the initial time t0 = 0, the evolution between two

consecutive switching time instants, tk and tk+1, can be

described as follows.
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Each agent i has a dynamic: its state evolves on the basis

of the local information implied by its and its neighbor

agents’ states.

ẋi = ui(xi, x
(i)) ∀i ∈ Γ for tk ≤ t < tk+1 (1)

where:

• ui : R × R
n → R is differentiable and, as the model

describes a competitive system, ∂ui

∂xj
≤ 0 for j 6= i;

• x(i) is the state vector of the agents in Ni with generic

component j defined as follows,

x
(i)
j =

{

xj if j ∈ Ni,
0 otherwise.

Let us now describe the agents’ dynamic at the switching

time instants. A switching time instant occurs whenever an

agent reaches a critical state, that is, its state either becomes

zero or reaches a threshold B. More formally,

tk+1 = arg min{t ≥ tk : ∃i ∈ Γ s.t. xi(t) = 0 ∨ xi(t) = B}.

Without loss of generality, we may assume that, within each

interval tk ≤ t < tk+1, we renumber the agents so that the

agent reaching the critical state is always agent n. Then, at

the switching time instants the system evolves as follows.

• If xn(t−k+1) = 0, we say that agent n dies and is re-

moved from the system. The agents in the neighborhood

of n inherit the connections of n. No other changes

occur in the states and the neighborhoods of the agents.

More formally: for each single agent j ∈ Nn(tk), let

the connections inherited by j be Λj ⊂ Nn(tk) \ {j},

then we have

Nj(tk+1) =

{

Nj(tk) ∪ Λj ∀j ∈ Nn(tk)
Nj(tk) otherwise

xj(tk+1) = xj(t
−

k+1) ∀j ∈ Γ \ {n}. (2)

We impose the conditions that the union of all the con-

nections inherited by all neighbors of n must cover the

whole set of neighbors Nn(tk), that is,
⋃

j∈Nn(tk) Λj =

Nn(tk). We also impose that Λ̄j = Λj ∪ {j} define

a graph (Nn(tk), E) with a single component, being

E = {(r, s) : ∃j ∈ Nn(tk) s.t. r, s ∈ Λ̄j}.

Finally, the connection graph G evolves according to

the following equations:

Γ(tk+1) = Γ(tk) \ {n}

E(tk+1) = E(tk) ∪ {(j, i) : j ∈ Nn(tk) ∧ (3)

i ∈ Λj} \ {(j, n) : j ∈ Ni(tk)}.

• If xn(t−k+1) = B, we say that the parent agent n divides

producing two children agents n and n + 1. The two

children agents inherit the parent connections and state.

More formally: let the connections inherited by agents

n and n + 1 be Λn, Λn+1 ⊆ Nn(tk) ∪ {n, n + 1}

respectively. Then, we have

Nj(tk+1) =







Λn for j = n
Λn+1 for j = n + 1
Nj(tk) otherwise

xj(tk+1) =







α for j = n
β for j = n + 1
xj(t

−

k+1) otherwise
(4)

where α, β > 0 satisfying α + β = B = xn(t−k+1). We

also impose the additional conditions that Λn∪Λn+1 =
Nn(tk) and either Λn∩Λn+1 6= ∅ or n ∈ Λn+1, n+1 ∈
Λn. Finally, the connection graph G evolves according

to the following equations:

Γ(tk+1) = Γ(tk) ∪ {n + 1}

E(tk+1) = E(tk) ∪ {(n, i) : i ∈ Λn} ∪

{(n + 1, i) : i ∈ Λn+1} \

{(j, n) : j ∈ Nn(tk)}.

Given particular initial states, two or more agents can

reach a critical state at the same time instant tk. We deal with

these situations as limit cases of very close events. Then, we

consider that all the corresponding deaths and divisions occur

at the same time instant but in (an arbitrary) sequence.

In the rest of the paper, we discuss the evolution of the

system under consideration for different choices of Λj , α and

β. We assume that ui(·, ·) has the following linear structure

ui(xi, x
(i)) =

∑

j∈Ni

(xi(t) − xj(t)).

Then, between two switching time instants tk and tk+1, the

system evolves according to:

ẋi(t) =
∑

j∈Ni

(xi(t) − xj(t)), 0 < xi(tk) < B, ∀i ∈ Γ. (5)

For the short of notation, when we refer to system (5), we

understand a system that evolves according to state equa-

tions (5) between two consecutive switching times, and to

the above described death and division rules at the switching

times. Finally, we also understand that the system initial state

0 < xi(0) < B, for all i ∈ Γ(0).
Now, let the adjacency matrix A = [aij ] of a graph be

defined as aii = 0 and aij = 1 if(j, i) ∈ E where i 6= j; and

the Laplacian matrix of the weighted digraph be defined as

L = [ℓij ], where ℓii =
∑

j aij and ℓij = −aij where i 6= j.

For an undirected graph, the Laplacian matrix is symmetric

positive semi-definite. Then, the state equations (5) can be

rewritten as

ẋ = −Lx, 0 < x(tk) < B (6)

where L = [lij ] is the graph Laplacian of the network.

State equations (5) make agents’ states diverge, we can

say that the state of each agent tries to run away from its

neighbor states. For this reason, we call this policy dissensus

protocol as opposite to a consensus protocol, where the states

try to converge to a common group decision value.
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Example 1: Fig. 1 shows an example of connection

network and state evolution before the first switching

time instant, that is in the interval 0 ≤ t < t1,

for a set of 8 agents whose initial state is x(0) =
[1.5, 1.0, 1.1, 1.2, 0.5, 0.8, 1.3, 0.9]T .
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Fig. 1. An example of connection network with 8 agents.
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Fig. 2. The state evolution of a system of 8 agents.

In Fig. 1 and 2, we observe that agent 5 is the first one

that reaches a critical state. In particular, x5(t
−

1 ) = 0. Then

in t1, agent 5 dies.

We conclude this section observing that we can describe

the systems under consideration as a simple hybrid system.

In particular, we could be interested in studying the evolution

of the discrete time variable n(tk) that describes the number

of agents alive at the switching time instants as a function

of the evolution of the continuous system (5). Hereafter, we

use the term alive to stress the fact that agents must have a

state strictly greater than zero to be considered as an element

of the system.

III. PROPERTIES

A. Basic properties

The first basic property is that in system (5) the sum of

the components xi(t) of the system state is invariant:

∑

i∈Γ

xi(t) =
∑

i∈Γ

xi(0)=̇χ, ∀t. (7)

It is apparent that
∑

i∈Γ xi(t) =
∑

i∈Γ xi(tk), for tk ≤
t < tk+1 as the vector (1, 1, . . . , 1) is a left eigenvector, as-

sociated to the null eigenvalue, of the Laplacian matrix L [4].

At a switching time instant tk, when agent n dies, its state

is xn(t−k ) = 0, whereas the states of the other agents remain

unchanged. When a division occurs, the sum of the states of

the children agents is equal to the state of the parent agent

xn(tk) + xn+1(tk) = xn(t−k ) and, again, the other agents’

states remain unchanged.

Here note that, differently from the case in which a linear

consensus problem is implemented, condition (7) does not

imply that the average value of the system state is preserved

as the number of agents varies with time.

The invariance of (7) implies that, at each time, the number

of agents is bounded from below according to

n(tk) ≥
⌈ χ

B

⌉

, ∀tk. (8)

As the connectivity of graph G is preserved during deaths

and divisions (as it will be shown in the next paragraph),

condition (8) depends critically on the values of α and β in

(4). We next justify the choice α + β = B by showing that

if the latter does not hold true, then the number of agents

converges to one or diverges to infinity. Before doing this,

let us recall the notion of equilibrium for the system under

consideration.

If G has a single component, the system is in an equilib-

rium point x∗ only if all the agents have the same state, that

is xi(t) = χ/n for all i ∈ Γ. Given the matrix L, equilibrium

x∗ is trivially unstable when there are two or more agents

alive.

Now, if, for each tk, α + β < xn(tk) = B then

either the system reaches an unstable equilibrium point or

limk→∞ n(tk) = 1. Here note that, by the system definition,

the system is always in equilibrium when it includes a single

agent. Differently, if, for each tk, α + β > xn(tk) = B then

either the system reaches an unstable equilibrium point or

limk→∞ n(tk) = ∞. With the above reasoning in mind, the

choice α+β = B appears the only one that makes the model

useful to describe situations different from the two critical

cases discussed above.

We next expand more on the connectivity property of the

division rule (4) and of the death rule (2).

Assume that G(tk) has a single component at time tk and a

division occurs in tk−1. Then, the division rule (4) preserves

the connectivity of G. If agent n is in the component of all

the other agents in t−k+1, then at time tk+1, rule (4) imposes

that each agent is in the same component of either to n or

to n + 1. In addition, as Λn ∩ Λn+1 6= ∅ implies that n and

n+1 are both adjacent to a common agent j and then are in

a same component, then the transitivity property guarantees

that G(tk+1) also has a single component.

The death rule (2) preserves the connectivity of G, too.

Since graph (Nn(tk), E) has a single component, then each

pair of agents r and s in Nn(tk), if (r, s) ∈ E , are either

adjacent to a same agent j or, if there exists an agent v
that belongs to a path from r to s in (Nn(tk), E), they are

indirectly connected being both connected to v.
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Generally speaking, both rules (2) and (4) are sufficient,

but not necessary, conditions to preserve the connectivity of

the graph G at the switching time instants. As an example, in

case of death, the connectivity of G would be preserved even

if Λj = {j} for all j ∈ Nn(tk), if all j ∈ Nn(tk) are adjacent

to a common agent v /∈ Nn(tk). However, the two rules (2)

and (4) become also necessary conditions if the connectivity

must be guaranteed by agent n before dying or dividing

on the basis of its local information only, that is, knowing

only the agents and the connections implied by the set Nn.

Consider the division rule, if Λn ∪Λn+1 6= Nn(tk) then, the

information locally available to agent n could not guarantee

that an agent j in Nn(tk) \ Λn ∪ Λn+1 does not remain

disconnected from the remaining ones after agent n division.

If Λn ∩ Λn+1 = ∅, then the agents in Λn could remain

disconnected from the agents in Λn+1. Similar arguments

hold for the proof of the necessity of the death rule.

B. Specific rules

Let us now discuss some properties of specific division

and death rules.

Initially consider the division rule which makes both

children inherit all the parent connections and connect to

each other. Formally

Λn = Nn(tk) ∪ {n + 1}

Λn+1 = Nn(tk) ∪ {n}. (9)

With such a rule, if G(0) is a complete graph then G(tk)
are complete graphs for every tk, whatever death rule is

implemented. When G(tk) is a complete graph, if at time

tk+1 a death occurs, no agent inherits any new connection,

as each one is already adjacent to all the other agents. If at

time tk+1 a division occurs, condition (9) imposes that the

two new agents are adjacent (neighbors) to each other and

to all the other agents.

If rule (9) is implemented and α and β are defined as

follows, α = min{xj(t
−

k+1) : 0 < xj(t
−

k+1) < B}, β =
B − α then the number of agents may diverge. Consider,

as an example, the evolution of a system where n(0) = 2
and x1(0) = B/2 and x2(0) = 3B/4. By property (8), we

have n(tk) ≥ 2 for all tk. Then, at t1 only a division can

occur, obtaining x1(t1) = x2(t1) = B/4 and x3(t − 1) =
3B/4. From t1 on agents 1 and 2 are twins, in the sense

that x1(t) = x2(t) for t ≥ t1. Again, as n(t2) ≥ 2 must

hold, then at t2 only a division can occur because 1 and

2 cannot both die and a third twin is generated, indeed we

have x1(t2) = x2(t2) = x3(t2) = B/8 and x4(0) = 7B/8.

Iterating the above argument we have that only divisions may

occur and at tk there are k + 1 twin agents with x1(tk) =
x2(tk) = . . . = xk+1 = B/4K and the k + 2 agent with

xk+2 = B(1−1/4K). Simple but cumbersome computations

show that tk+1 − tk converges to zero with rate 1/k. This

means that switching time instants tk exist for any k ∈ N and

limk→∞ tk = ∞. In turn, this implies that limtk→∞ n(tk) =
∞.

Differently, if rule (9) is implemented and α = β = B/2
then the system may reach an equilibrium point. Note that

in this case each division generates twin agents. Consider,

as an example, the same system as above. At time t1, we

have x1(t1) = B/4 and x2(t1) = x3(t1) = B/2. At time

t2, the agent 1 dies (we have not renumbered the agents for

the easy of exposition) and the remaining two twin agents

reach an equilibrium corresponding to a state value equal to

5B/8.

Until now, we have assumed the graph complete. Let us

now consider the asymptotic behavior of the system with a

generic connecting graph G(0) when rule (9) is implemented,

provided that the number of agents does not diverge and the

system does not reach an equilibrium. To this aim, let us

define as degree of agent i the cardinality of the set Ni.

Then observe that when rule (9) is implemented, at each

division the degrees of the children agents are equal to the

degree of the parent node plus one. The degrees of agents

adjacent to the parent node increase by one, too. Whichever

death rule is implemented, at each death the degree of the

agents adjacent to the dying node may at maximum decrease

by one.

Let us also define n̄ = limτ→∞ max{n(tk) : tk ≥ τ}. If

the number of agents does not diverge and the system does

not reach an equilibrium, then n̄ < ∞ and sup{tk : n(tk) =
n̄} = ∞. Consider now the generic time instant tk such that

n(tk) = n̄, necessarily n(tk−1) = n(tk+1) = n̄ − 1. We

show that, under appropriate assumptions, either G(tk−1) is

a complete graph or the expected value of the cardinality of

E(tk+1) is greater than the cardinality of E(tk−1).
To this end, denote by r and q respectively the agent

that divides at time tk and the agents that dies at time

tk+1. This denomination avoid possible ambiguities given by

the renumbering of agents. Now observe that |E(tk+1)| =
|E(tk−1)| + (|E(tk)| − |E(tk−1)|) + (|E(tk+1)| − |E(tk)|).
If we denote by ∆E(tk) = |E(tk)| − |E(tk−1)|, we have

∆E(tk) = |Nr(tk−1)| + 1

∆E(tk+1) =







|Nq(tk−1)| + 1 if q ∈ Nr(tk−1)
|Nr(tk−1)| + 1 if q child of r
|Nq(tk−1)| otherwise

.

As a consequence, if q is a child of r then |E(tk−1)| =
|E(tk+1)|, otherwise, if we can assume that the expected

value of |Nq(tk−1)| is equal to the expected value of

|Nr(tk−1)|, the expected value of |E(tk+1)| is greater than

the expected value of |E(tk−1)| unless G(tk−1) is complete.

In this latter situation, |Nr(tk−1)| = |Nq(tk−1)| and r ∈
Nr(tk−1), then |E(tk+1)| = |E(tk−1)|.

Following an analogous line of reasoning we can show

that the expected value of |E(tr)| is greater than the expected

value of |E(ts)|, if tr > ts and n(tr) = n(ts). This means

that, asymptotically, the connecting graph of the system tends

to become complete, provided an equilibrium point is not

reached before.

As a word of caution, we must point out that we are not yet

able to assess how reasonable is the main assumption of the

previous argument, i.e, that the expected value of |Nq(tk−1)|
is equal to the expected value of |Nr(tk−1)|. However,

our simulations seem to confirm such a result, unless very
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particular initial states were fixed. As an example, the system

in Fig. 1, when rule (9) is applied and α is fixed equal to

β = B/2, converges to a complete graph first and then to

an equilibrium point, where eight agents, each one adjacent

to the other ones, all assume a state equal to 1.0375. Here

note that an equilibrium point is reached as the division rule

implemented creates twins.

Let us now consider the division rule which equally

divides the parent’s connections between the two children.

Formally,

Λn = pick(Nn(tk)) ∪ {n + 1}

Λn+1 = Nn(tk) \ Λn ∪ {n}. (10)

Where function pick(Nn(tk)) returns a random subset of

⌊|Nn(tk)|/2⌋ elements of Nn(tk). With such a rule, if G(0)
is a hole graph, respectively a chain graph (see Fig. 3), then

G(tk) are hole graphs, respectively chain graph, for every

tk, whatever death rule is implemented. A graph G(tk) is

a hole, respectively a chain graph, if its is connected and

all the agents have degree two, respectively all the agents

have degree two a part from two agents at the extreme of

the chain whose degree is one. Assume that at time tk+1 a

death occurs, if n is not an extreme of a chain, the two agents

adjacent to n are connected, otherwise n is simply removed

and no new connection is introduced. Then, if n is not an

extreme of a chain, the degree of the remaining agents is not

changed, otherwise an agent with degree two becomes of

degree one to replace the degree one of the agent just dead.

Assume now that at time tk+1 a division occurs, condition

(10) imposes that, if n is not an extreme of a chain, each

of the two new agents are adjacent only to each others and

to one of the agents adjacent to their parent, otherwise the

two new agents are adjacent to each others and just one of

them is adjacent to the only agent adjacent to their parent.

Then the degree of the agents different from n is not changed

and, if n is not an extreme of a chain, the two children have

degree two, otherwise one of them has degree two and the

other one degree one.

�
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Fig. 3. A hole graph and a chain graph.

Let us now consider the asymptotic behavior of the system

with a generic connecting graph G(0) when the division rule

(10) is implemented provided that the system does not reach

an equilibrium. In particular, we assume that the death rule

(2) is, for each j ∈ Nn(tk), defined by

Λj =

{

Nn(tk) \ {j∗} if j = j∗

{j∗} if j 6= j∗
(11)

where j∗ ∈ Nn(tk) is arbitrarily picked. In other words,

the death rule assigns all the connections of a dying agents

to just one of its adjacent agents. From a practical point of

view, these choices for Λj are the simplest ones to implement

that guarantee the connectivity of G after the removal of the

dying node.

It is immediate to see that, if at tk a division occurs,

|E(tk)| = |E(tk−1)| + 1; if at tk a death occurs, |E(tk)| ≤
|E(tk−1)| − 1 as at least the connection (n, j∗) is not

substituted by a new connection. It is also apparent that the

considered division and death rules forbid the creation of

new cycles in the connection graph. If γ(tk) is the number

of cycles present in G(tk) then γ(ts) ≤ γ(tr) for ts > tr.

As a consequence, if n(tk) diverges for tk → ∞, in the

long run the number of divisions must exceed the number

of deaths, hence limtk→∞ |E(tk)|/n(tk) = 1, i.e., the

connection graph, although connected, becomes sparser and

sparser. If n(tk) does not diverge for tk → ∞, we say that the

density of the connection graph cannot increase in the sense

that if ts > tr and n(ts) = n(tr) then |E(ts)| ≤ |E(tr)|.
Note that, a part for particular initial states or particular

choices of j∗ in presence of death events, the density of the

connection graph indeed decreases until G presents a single

or no cycle at all. The condition |E(tk)| ≤ |E(tk−1)| − 1
holds strictly whenever Nn(tk)∩Nj∗(tk) 6= ∅, situation quite

common if the graph is not sparse.

Our simulations show that, in general, G(tk) converges

to a hole graph or a chain graph, but a formal proof is still

missing. It is also still an open problem if rules (10) and (11)

make always the system converge. The authors conjecture is

that, differently from rule (9), this is always the case. The

idea that supports the conjecture is that n(tk) may diverge

if, most of the times, an agent can increase its state to reach

the threshold B without pushing any other agent toward a

certain death. This situation may occur if the state increase

of the considered agent n is distributed at the expenses of the

states of a sufficient number of agents adjacent or in any case

not very distant from it. The agents cannot be very distant

from n, since the state of n increases with exponential speed.

In case of a sparse connecting graph, on the average, each

agent is close only to a limited number of other agents, then

the previously described situation should not occur.

Fig. 4 reports the evolution of the system described in

Section 1 when the above described division and death rules

are implemented. In particular j∗ in the death rule is chosen

as the agent adjacent to the dying agent with higher value

of the state, j∗ = arg min{xi(t
−

k+1) : i ∈ Nn(tk)}.

IV. CONCLUSIONS

In this paper we formalize the notion of dissensus in

opposition to the well known concept of consensus. The main

idea is that, given a network of dynamic agents, the state of

each single agent diverges from the states of its neighbors.
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Fig. 4. Evolution of the value of n(tk) when rule (10) is applied.

As soon as it reaches a lower or an upper bound the agents

either dies or divides in two new agents. Thus, the topology

of the network is time varying and evolves according to some

pre-defined rules. The aim of our current research is to look

at the system as a switching/impulsive system and analyze

its properties (stability, connectivity, topology) by using the

tools of the switching and impulsive theory.
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