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Abstract— This paper proposes a method to construct viabil-
ity kernels for single output nonlinear control systems affine in
the control. The safe set is a manifold with boundary and the
control is constrained to take values in a compact polyhedron.
The results make use of the Frankowska method and the
notion of viable capture basins. Three examples illustrate the
methodology: the inverted pendulum, a linear system, and a
fisheries management problem.

I. INTRODUCTION

The purpose of this paper is to develop a methodology

to construct viability kernels for nonlinear control systems.

The central problem can be roughly described as enforcing

a control system to evolve in a “safe set” of the state space

starting from any initial condition inside the set, by proper

assignment of the control input. When no control exists

to satisfy this requirement, then the problem is to find a

largest subset inside the safe set, called a viability kernel,

and an associated controller, called a viability controller, so

that the system remains inside the safe set, starting from

any initial condition in the viability kernel, using a viability

controller. The theory of viability kernels has been developed

over the last two decades by J.-P. Aubin and his co-workers

[1]. The viability problem is strongly linked to problems of

set invariance [16], [10] and control with state constraints.

The recent text by Blanchini and Miani [5] provides a

comprehensive treatment of methodologies for solving set

invariance problems. The notion of a viability kernel is also

closely related conceptually to that of controlled invariance.

Recently, viability kernels have been recognized to be of

theoretical importance in the development of generalizations

of nonlinear regulator theory [9]. Also several interesting

results have recently appeared on numerical methods to

compute viability kernels [3], [6], [7], [11], [12].

Despite substantial progress on viability theory and set

invariance in control theory, there remain many open ques-

tions. This paper explores how the geometric structure of

nonlinear systems can aid in constructing viability kernels.

We propose a framework for the problem, a set of reasonable

conditions (with respect to applications), and a constructive

methodology to build viability kernels for nonlinear systems.

In particular, we study the following situation: we have

a multi-input, single output nonlinear system affine in the

control. The safe set is the superlevel set of a smooth function

and geometrically is a manifold with boundary. We want to

find the viability kernel associated with the safe set, and a
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viability controller, assuming that the control is constrained

to take values in a compact, convex set. This scenario was

first studied in [13] with the aim to solve a viability problem

of collision avoidance. However, that theory was only for the

smooth case; an assumption which is generally unrealistic.

The problem considered here is a special case of the much

larger class of problems studied in [2]. However, our focus

is on constructing viability kernels for a class of systems,

whereas the aim in [2] was to characterize them. Finally,

this paper focuses on the basic results and examples; proofs

are omitted for brevity and are included in [8].

The proposed method to find viability kernels has several

advantages over traditional numerical methods to find viabil-

ity kernels: (1) it is exact, whereas numerical methods give

only an approximation of the viability kernel; (2) Numerical

methods generally do not allow the designer to specify up

front the class of control inputs with respect to which the

viability kernel is to be found; (3) Computing viability ker-

nels by hand calculations for low-dimensional (say less than

five) benchmark examples has significant pedagogical value;

(4) Extensions of our theory will allow the development of

viability kernels for bang-bang controls and other control

classes such as state feedbacks, of clear relevance to control

designers.

Notation. Let K ⊂ R
n be a set. The complement of the

set is ¬K := R
n \ K, the closure of the set is denoted K,

and the interior of the set is denoted K◦. The Bouligand

contingent cone or tangent cone of K at a point x ∈ K, is

denoted by TK(x) [1]. If f : R
n → R

n, g : R
n → R

n×m,

and h : R
n → R, then Lfh(x) = ∂h

∂x
f(x), LgLfh(x) =

∂(Lf h)
∂x

g(x), and we define recursively, L0
fh(x) = h(x) and

Lk
fh(x) =

∂(L
k−1
f

h)
∂x

f(x).

II. PROBLEM FORMULATION

Consider the multi-input, single-output nonlinear system

ẋ = f(x) + g(x)u

y = h(x) , (1)

where f ∈ R
n and g ∈ R

n×m are smooth and Lipschitz,

and h : R
n → R is a smooth submersion, i.e. the gradient

∇h is non-vanishing everywhere in R
n. The input space

is a compact, convex polyhedron U ⊂ R
m. A control

u : [0,∞) → U is a measurable function in t which takes

values in U . Let φ(t, x0) denote the unique solution of (1)

starting at x0 and using control u. The set of q vertices of

U is denoted as

V = {v1, . . . , vq} .
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Let I := {1, . . . , q} be the set of indices. A bang control is

a control that takes a single constant control value in V . A

bang-bang control is a control that is piecewise constant and

takes values in V .

The domain of the state space that we want to render

positively invariant by proper choice of control, called the

safe set, is

S = {x ∈ R
n | h(x) ≥ 0} . (2)

Assumption 1: There exists 1 < r ≤ n such that for all

x ∈ R
n and for all k < r − 1, LgL

k
fh(x) = 0.

Remark 2: The assumption says that each component of

the row vector LgL
k
fh(x) =

∂(Lk
f h)

∂x
g(x) is zero for k <

r − 1; that is, no input appears before r differentiations

of the output. One interpretation is that the system does

not have relative degree less than two at any point. The

condition arises from a structural property of the system. It is

a reasonable assumption for the given problem in the sense

that if Lgh(x) 6= 0 on some set, then the viability kernel is

trivially computable on that set. It is possible to formulate

the present problem even if the system had relative degree

one on some points, but it does not significantly contribute

to the ideas of the paper.

Assumption 1 implies that the derivative of h along solutions

of (1) is
dh(t)

dt
= Lfh(φ(t, x0)). Thus, we can define the set

of states where h is decreasing as

W := { x ∈ R
n | Lfh(x) < 0 } .

Definition 3: [1], [2] A subset K is said to be a viability

domain if for each x0 ∈ K, there exists a control u(t) such

that the unique solution φu(t, x0) of (1) stays in K for all

t ≥ 0. If K is not a viability domain, then there exists a

largest closed (possibly empty) viability domain V iab(K)
contained in K, which is called the viability kernel of K. A

control u which renders V iab(K) viable is called a viability

controller.

The notion of a viability kernel with target was introduced

in [15]. A related notion is that of viable capture basin of a

set.

Definition 4: Let C ⊂ K. The subset Capt(K, C), called

the viable capture basin is the set of initial states x0 ∈ K
such that there exists a control u(t) such that the solution of

(1) starting at x0 with control u stays in K until reaching C
in finite time.

We are interested in finding the viability kernel of the set
K := S ∩W , where S ∩W is the closed set of states where
the system is safe but in danger of reaching an unsafe state.
We also impose the practical requirement that the system
reach a target set C ⊂ K from the set K in finite time.
This formulation is meaningful if we can guarantee that the
system can remain in S after arriving at C. To do so, we
define the sets

C+ :=
˘

x ∈ R
n | h(x) ≥ 0, Lfh(x) ≥ 0, . . . , L

r−1
f h(x) ≥ 0

¯

C := C+ ∩ K . (3)

Assumption 5: For all x0 ∈ C, there exists an open-loop

control up : R
+ → U such that dr

dtr h(φup
(t, x0)) ≥ 0, for

all t ≥ 0.

Remark 6: When Assumption 5 holds we say that C+

is the viability core of S. Its importance is in providing

concrete termination conditions for the viability problem,

and it is inspired by applications in ecology, biology and

robotics, where a viability core often arises. Without such a

termination condition the computation of the viability kernel

is significantly more complex. Indeed existence of a viability

core can be used as a guideline for classifying the difficulty

of a given instance of a viability problem. One way in

which Assumption 5 can be achieved is by assuming a well-

defined uniform relative degree. However, relative degree is

too strong, as can be seen in applications [13]. Finally, we

note that up need not have any significance as a useful control

action.

Our viability problem is formally stated as follows.

Problem 1: Given a control affine system (1), the closed

set K = S ∩ W , and a target set C = C+ ∩ K, find u⋆,

a viability controller, and S⋆ := Capt(K, C), the viable

capture basin.

III. VIABLE CAPTURE BASIN

In this section we present a construction of the viable

capture basin for the set K with target C. Our construction is

centered on bang controls. This is motivated by the fact that,

under reasonable conditions, there always exists a subset of

K that can reach C in finite time via a bang control (for if

C is not reachable by bang control then it is not reachable

by bang-bang control). It is also motivated by applications

where it is often known that bang controls are the correct

controls for a particular domain, without having explicit

knowledge of system trajectories.

Consider x0 ∈ R
n and for each i ∈ I , define φi(t, x0)

to be the unique solution of the autonomous system ẋ =
f(x)+g(x)vi with initial condition x0. For x0 ∈ R

n, define

the hitting time ti(x0) to be the first time when φi(t, x0)
reaches C before possibly leaving K. If φi(t, x0) does not

reach C or it leaves K before reaching C, set ti(x0) = ∞.

For x0 ∈ C, set ti(x0) = 0. Define the set Xi := {x0 ∈
R

n | ti(x0) < ∞}. It can be shown that for each i ∈ I , ti
is lower semicontinuous on Xi [1].

Next, for x0 ∈ R
n, we define hi(x0) to be the value of

h at ti(x0), i.e., hi(x0) := h(φi(ti(x0), x0)). If ti(x0) =
∞, set hi(x0) := −∞. Notice that by construction hi is

constant when evaluated along the trajectory φi(t, x0) over

the interval [0, ti(x0)].
For x ∈ K, define the set of indices

I⋆(x) = argmaxi∈I{ hi(x) | ti(x) < ∞} . (4)

Note the cardinality of this set may vary with x. Define the

function µ⋆ : K → V by µ⋆(x) := vj , where j ∈ I⋆(x) is

selected arbitrarily. Finally, for each initial condition x0 ∈ K
we define

u⋆(t, x0) := µ⋆(x0) , t ∈ [0, t(x0)] , (5)

where t(x0) := tj(x0) if µ⋆(x0) = vj . Intuitively, this choice

of controller maximizes the first local minimum value of h

on an interval [0, t], by using only a single control value
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in V . The controller u⋆ terminates at the time t when, by

construction, ḣ = 0 and the target C is reached.

Define a function h⋆ : R
n → R by

h⋆(x) = max
i∈I

{ hi(x) } .

Finally, we define

S⋆ := {x ∈ R
n | h⋆(x) ≥ 0} . (6)

Assumption 7: h⋆ is continuous on Dom(h⋆) := {x ∈
R

n | ‖h⋆(x)‖ < ∞} and S⋆ is closed.

Note that S⋆ ⊂ K, because if x0 6∈ K then ti(x0) = ∞,

∀i ∈ I . Our aim is to show that S⋆ is the viable capture basin

solving Problem 1, and we do so in three steps depending

on the class of controls: bang controls, bang-bang controls,

and measurable controls. Our main theoretical tool is the

following characterization of viable capture basins, adapted

from [2].

Theorem 8: Let K and C be closed sets such that C ⊂ K.

The viable capture basin Capt(K, C) is the unique closed

subset D satisfying C ⊂ D ⊂ K and

(i) For each x0 ∈ D, there exists a control u(t) such that

the trajectory starting at x0 and using control u reaches

C in finite time without first exiting D.

(ii) D is backward invariant relative to K. That is, for every

x0 ∈ D and every solution φ(·, x0), if there exists T > 0
such that φ(t, x0) ∈ K for t ∈ [−T, 0], then φ(t, x0) ∈
D for t ∈ [−T, 0].

Remark 9: Theorem 8 is a version of Frankowska’s
method [14] which gives a unique characterization of vi-
ability kernels and capture basins. We use Theorem 8 in
the following way. First we show in Lemma 10 that by
construction u⋆ satisfies condition (i). Second, we replace
condition (ii) by equivalent tangential conditions (see [2])
given by:

− (f(x) + g(x)u) ∈ TD(x) , ∀x ∈ D ∩ K◦
, ∀u ∈ U (7)

− (f(x) + g(x)u) ∈ TD(x) ∪ T¬K(x) ,∀x ∈ D ∩ ∂K, ∀u ∈ U .
(8)

These are then adapted to obtain our main condition (9)

which guarantees backward invariance of S⋆ relative to K.

The difference between (7)-(8) and (9) is that (9) is more

precise about identifying those controls important in assuring

backward invariance, based on I⋆. The most important

consequence of this is that computationally, (9) is a finite

test, where (7)-(8) generally are not.

Lemma 10: Given a system (1), a safe set (2), and a target

set (3), suppose that Assumptions 1, 5, and 7 hold. For each

x0 ∈ S⋆, the trajectory starting at x0 and using control u⋆

reaches C in finite time without first exiting S⋆.

A. Bang-Bang Controls

In this section we study the special case when only bang

or bang-bang controls are allowed. Due to the properties of

bang controls and the special structure of S⋆, we have the

following straightforward result.

Proposition 11: Given a system (1), a safe set (2), and a

target set C, suppose that Assumptions 1, 5, and 7 hold. Then

S⋆ is the viable capture basin of K with target C under the

restriction of bang controls, and u⋆ is a viability controller.

It is interesting to consider the differences between the

previous result, which requires no additional assumptions

on S⋆, and Frankowska’s method. To apply the Frankowska

method, we must show that conditions (i)-(ii) of Theorem 8

hold. Condition (i) holds by Lemma 10. The following

example shows that, instead, condition (ii) does not generally

hold even though S⋆ is the viable capture basin using bang

controls.

Example 12: Consider the system

ẋ1 = x2

ẋ2 = −1.5x2
1x2 + (1 + 1.5x2

1x2)u .

with U := [−1, 1]. Let h(x) = x1, so S = { x ∈ R
2 | x1 ≥

0} and W = { x ∈ R
2 | x2 < 0 }. The target set is C = { x ∈

R
2 | x1 ≥ 0, x2 = 0 }. Now it can be seen that t1(x0) = ∞

for x0 ∈ S ∩ W because the vector field corresponding to

v1 is (0,−1) along C so trajectories cannot reach C from

S ∩ W . Also, it is easily verified that for all x0 ∈ S ∩ W ,

t2(x0) = |x2(0)| and h2(x0) := x1(0)− 1

2
x2

2(0). Therefore,

S⋆ = { x ∈ R
2 | x1 ≥ 1

2
x2

2, x2 ≤ 0}

and a viability controller is u⋆ = 1. Let p(x) := (−1, x2)
be the outward normal vector of S⋆ at x ∈ ∂S⋆ ∩W . Then,

TS⋆(x) = { v ∈ R
2 | 〈v, p(x)〉 ≤ 0}. Now consider the

point x̃ := (1,−
√

2) ∈ ∂S⋆ ∩ W . The vector field with

control v1 = −1 evaluated at x̃ is (−
√

2, 3
√

2−1). Now we

verify (9) at x̃. We have
[ √

2 −3
√

2 + 1
]

[ −1

−
√

2

]

=

−2
√

2 + 6 > 0 . Therefore we have a situation in which

Frankowska’s second condition is violated, even though S⋆

is the viable capture basin under the restriction of bang

controls.
Let ∂W∩S be partitioned as the disjoint union ∂W∩S =

∂W1e ∪W1o ∪ ∂W2 ∪ C where

∂W1e =



x ∈ ∂W ∩ S ∩ ¬C | (∃ 2 ≤ k(x) ≤ r − 1, k(x) even)

Lfh(x) = · · · = L
(k(x)−1)
f h(x) = 0, L

k(x)
f h(x) < 0

ff

∂W1o =



x ∈ ∂W ∩ S ∩ ¬C | (∃ 2 < k(x) ≤ r − 1, k(x) odd)

Lfh(x) = · · · = L
(k(x)−1)
f h(x) = 0, L

k(x)
f h(x) < 0

ff

∂W2 = {x ∈ ∂W ∩ S ∩ ¬C | (∃ 2 ≤ k(x) ≤ r − 2)

Lfh(x) = · · · = L
(k(x)−1)
f h(x) = 0, L

k(x)
f h(x) > 0

o

.

Note that for r = 2, ∂W1e = ∂W1o = ∂W2 = ∅, and for

r = 3, ∂W1o = ∂W2 = ∅.

Lemma 13: S⋆ ∩ ∂S ∩W = ∅.

Lemma 14: Trajectories arrive at S∩∂W1e only from ¬K.

Lemma 15: S⋆ ∩ ∂W2 = ∅.

Remark 16: Lemma 13 and 15 show that, moreover, for

all x0 ∈ (∂S ∩W) ∪ ∂W2 and for all trajectories φu(t, x0),
there exists δ > 0 such that φu(t, x0) ∈ ¬K, ∀t ∈ (0, δ).
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Theorem 17: Given a system (1), a safe set (2), and a

target set (3), suppose that Assumptions 1, 5, and 7 hold.

In addition, suppose that for all x ∈ ∂S⋆ ∩ ¬C and for all

j 6∈ I⋆(x),

−(f(x) + g(x)vj) ∈ TS⋆(x) . (9)

Then S⋆ is the viable capture basin of K with target C under

the restriction of bang-bang controls, and u⋆ is a viability

controller.

This result means that the Frankowska method can be used

to distinguish when a viable capture basin can be constructed

using only bang controls, even if bang-bang controls are per-

mitted. For instance, suppose we find the viable capture basin

K⋆ and therefore condition (9) holds on K⋆, but (our) u⋆ is

not a viability controller. A candidate viability controller is

instead a bang-bang control with possible switching points.

The key observation is that K⋆ 6= S⋆, and that condition (9)

fails for S⋆. We can summarize by saying that, if K⋆ is the

viable capture basin of K with target C, v⋆ is a bang-bang

viability controller, and S⋆ 6= K⋆, then (9) fails on at least

one point of S⋆ and v⋆ is not a bang viability controller.

B. Measurable Controls

In this section we extend the previous results to show

that S⋆ is the viable capture basin even when measurable

controls are permitted. We would like to retain the finite

test in (9). From applications it is observed that the form

of h⋆ is typically independent of the level value of h

which determines the safe set. Similiarly, (9) typically can

be verified independently of the level value of h⋆ which

determines the viability kernel. These observations lead to

a suitable notion of robustness of viability kernels (which

are inherently fragile): if the level value of h defining the

safe set is perturbed by a sufficiently small value, then the

new viability kernel is determined by a perturbed level value

of h⋆.

Let ǫ ∈ R and define the sets Sǫ := {x ∈
R

n | h(x) ≥ ǫ}, Kǫ := Sǫ ∩ W , C+
ǫ :=

{

x ∈ R
n | h(x) ≥ ǫ, Lfh(x) ≥ 0, . . . , Lr−1

f h(x) ≥ 0
}

,

and Cǫ := C+ ∩Kǫ. For x0 ∈ R
n and i ∈ I , define t

ǫ

i(x0) to

be the first time when φi(t, x0) reaches Cǫ before possibly

leaving Kǫ. If φi(t, x0) does not reach Cǫ or it leaves Kǫ

before reaching Cǫ, set t
ǫ

i(x0) = ∞. For x0 ∈ Cǫ, set

t
ǫ

i(x0) = 0. Also, define h
ǫ

i(x0) := h(φi(t
ǫ

i(x0), x0)). If

t
ǫ

i(x0) = ∞, set h
ǫ

i(x0) := −∞. Finally, for x ∈ Kǫ, define

h⋆
ǫ (x) := maxi∈I{ h

ǫ

i(x) }.

Remark 18: It is easy to show that for all ǫ ≤ 0 and for

all x0 ∈ S⋆ ∪ S⋆
0 , h⋆(x0) = h⋆

ǫ (x0).
Given ǫ < 0, define Nǫ := {x ∈ R

n | ǫ < h⋆
ǫ (x) < 0}. Also

for each δ ∈ [ǫ, 0], define S⋆
δ := {x ∈ R

n | h⋆
ǫ (x) ≥ δ}.

Assumption 19: There exists ǫ < 0 such that h⋆
ǫ is

continuous on Dom(h⋆
ǫ ) := {x ∈ R

n | ‖h⋆
ǫ (x)‖ < ∞}.

For each δ ∈ [ǫ, 0], S⋆
δ is closed and ∂S⋆

δ ∩ W = {x ∈
W | h⋆

ǫ (x) = δ}.

Theorem 20: Given a system (1), a safe set (2), and a

target set (3), suppose that Assumptions 1 and 5 hold. In

addition, suppose there exists ǫ < 0 such that Assumption 19

holds; for all x ∈ Nǫ ∩¬Cǫ and for all j 6∈ I⋆
ǫ (x), −(f(x)+

g(x)vj) ∈ TS⋆
ǫ
(x); and for all x ∈ ∂W1o ∩ C and u ∈

U , −(f(x) + g(x)u) ∈ TS⋆(x) ∪ T¬K(x). Then S⋆ is the

viable capture basin of K with target C, and u⋆ is a viability

controller.

IV. EXAMPLES

Example 21: We illustrate the steps of the design for a

second-order model of the pendulum on a cart assuming

the cart mass is neglible with respect to the pendulum mass

and all parameters are set to 1. If x1 is the position of the

pendulum from the upright vertical and x2 is its angular

velocity, then the model is:

ẋ1 = x2

ẋ2 = sin x1 − u cosx1 ,

where x ∈ R
2 and U := [−1, 1] ⊂ R. We assume that

the pendulum angle x1 is unwrapped, meaning that we

distinguish between angles differing by multiples of 2π.

Let v1 = −1 and v2 = 1. The viability problem is to

keep the pendulum in a region about the upright (unstable)

equilibrium such that x1 ∈ [−c, c] where c > 0. To simplify

the computations, we assume c <
π

4
. We choose h(x) =

c2 − x2
1 so that S = {x ∈ R

2 | c2 − x2
1 ≥ 0}. (Note this

choice of h is consistent with the convention that angles are

unwrapped.) Assumption 1 holds with r = 2 so W = { x ∈
R

2 | x1x2 > 0 } and C = {x | c2 − x2
1 ≥ 0, x1x2 = 0}. It

is easily verified that Assumption 5 holds.

It can be determined that for u = ±1, the set of initial

conditions in S ∩W that can reach C in finite time are:

X1 = {x ∈ S ∩W : |x2| <

√

2
√

2 + 2 sinx1 − 2 cosx1},

X2 = {x ∈ S ∩W : |x2| <

√

2
√

2 − 2 sinx1 − 2 cosx1}.

To obtain formulas for hi, we note that for constant values of
u the system admits a first integral 1

2x2
2+cosx1+u sinx1 =

a, where a ∈ R is determined by the initial condition
(x1(0), x2(0)). We set a = 1

2x2
2(0)+cos x1(0)+u sinx1(0).

Second, solve for x1(t) at the first time the trajectory reaches
∂W . (Because arccos(·) and arcsin(·) appear in this step,
care must be taken so that the range of x1 allows to use
the principle values Arccos(·) and Arcsin(·)). Finally, the

expressions for x1 are substituted in h to yield hi. For
x ∈ X1 ∪ X2,

h
⋆
(x) = c

2−
»

π

4
+ Arcsin

„

− 1
√

2
x
2
2(0) −

1
√

2
cos x1(0) −

1
√

2
|sin x1(0)|

«–2

.

The final step of the design is to verify condition (9). Since
the computations are symmetric we only consider the region
x1 ∈ [−c, 0], where the boundary of the viable capture basin

is given by h1(x) = 0. Since h1 is differentiable, condition
(9) reduces to verifying that for all x ∈ ∂S⋆ ∩¬C and x1 ∈
[−c, 0], ∇h1(x) · (f(x) + g(x)v2) ≤ 0. We obtain ∇h1(x) ·
(f(x) + g(x)v2) =

2cx2
s

1 −

„

sin

„

x1 −

π

4

«

−
1

2
√

2
x2
2

«2

"

cos

„

x1 −

π

4

«

−

1
√

2
(sin x1 − cos x1)

#

.
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Now for x1 ∈ [−c, 0] with c ∈
(

0,
π

4

)

, we have that

cos
(

x1 −
π

4

)

≥ 0 and sinx1 − cosx1 ≤ 0; therefore the

last term is positive. However, since x2 ≤ 0 for this region

of the boundary of ∂S⋆, we obtain the desired result.

Example 22: We consider a fourth-order single output

linear system given by:

ẋ =









1 0 −1 −1
0 1 0 1
1 −1 −1 −1
0 −1 0 −1









x +









0
0

−1
1









u , (10)

y =
[

1 −1 −1 −1
]

x . (11)

Define U := [−1, 1] ⊂ R and let v1 = −1 and v2 = 1. The
viability problem is to maintain h(x) := y − c ≥ 0, where
c ∈ R is a given constant. Then S =

{

x ∈ R
3 | y − c ≥ 0

}

and since Assumption 1 is satisfied we compute W =
{

x ∈ R
3 | x2 < 0

}

. The first step is to compute ti and
for this we first compute the system trajectories for constant
u. We obtain x1(t) = 1

24ut4+ 1
6 (x20+x40+u)t3+ 1

2 (2x20+
x40)t

2+(x10−x30−x40)t, x2(t) = 1
2ut2+(x40+x20)t+x20,

x3(t) = 1
24ut4+ 1

6 (x40+x20)t
3+ 1

2x20t
2+(x10−x20−x30−

x40−u)t+x30, x4(t) = − 1
2ut2 +(u−x40−x20)t+x40. To

solve for ti, we set x2(t) = 0 and solve for t. For x0 ∈ S∩W
this yields

t1(x0) =

8

>

>

>

<

>

>

>

:

x20 + x40 −
p

(x40 + x20)2 + 2x20 ,

if x40 + x20 ≥ 0, (x40 + x20)
2 + 2x20 ≥ 0

−∞ ,

otherwise .

(12)

t2 = −x20 − x40 +
q

(x40 + x20)2 − 2x20 . (13)

The analysis shows that for u = ±1, the set of initial
conditions in S ∩W that can reach ∂W in finite time are:

X1 =
˘

x ∈ S ∩W
˛

˛ x4 + x2 ≥ 0, (x4 + x2)
2 + 2x2 ≥ 0

¯

.

X2 = S ∩W .

We observe that Assumptions 5 and 7 are satisfied on K.

Next we want to compute hi(x) = x1(ti)−x2(ti)−x3(ti)−
x4(ti) − c. We obtain

h1(x) = x1 − x2 − x3 − x4 + x2(x4 + x2) +
1

3
(x2 + x4)

3

− 1

3
(x2

2 + 2x2x4 + x2
4 + 2x2)

3
2 − c .

h2(x) = x1 − x2 − x3 − x4 − x2(x4 + x2) +
1

3
(x2 + x4)

3

− 1

3
(x2

2 + 2x2x4 + x2
4 − 2x2)

3
2 − c .

The next step is to compute h⋆(x) = max{h1(x), h2(x)}
for all x ∈ S ∩W. On X2 \X1, h⋆(x) = h2(x). On X1 ∩X2

we must calculate which is larger. Let ck :=
( 3

2
k

)

. Skipping

some algebraic steps, we obtain

h2(x) − h1(x) = −2x2
2 − 2x2x4 −

1

3
(x2

2 + 2x2x4 + x2
4 − 2x2)

3
2

+
1

3
(x2

2 + 2x2x4 + x2
4 + 2x2)

3
2 =

16

3
c3(x2 + x3)

−3x3
2

+
32

3
c5(x2 + x3)

−7x5
2 +

64

3
c7(x2 + x3)

−9x7
2 + · · · .

Now we know that on X1 ∩X2, x2 ≤ 0 and also ck < 0 for

k = 3, 5, 7, . . .. Therefore every term in the sum above is

positive. Thus we obtain that h⋆(x) = h2(x) and u⋆ = +1
for all x ∈ S ∩W.

The final step of the design is to verify condition (9). For

all x ∈ ∂S⋆ ∩W , we have that I⋆(x) = {2}. Therefore, for

all x ∈ S ∩ W, the boundary of the viable capture basin is

given by h2(x) = 0 and since h2 is differentiable, condition

(9) reduces to verifying that for all x ∈ ∂S⋆ ∩W , ∇h2(x) ·
(f(x) + g(x)v1) ≤ 0. We obtain

∇h2(x) ·
(

f(x) + g(x)v1
)

=

2
[

x2 − (x2 + x4)
2 + (x2 + x4)((x2 + x4)

2 − 2x2)
1
2

]

.

Now we observe that

0 ≤ (x2 + x4)[(x2 + x4)
2 − 2x2]

1
2

=
ˆ

(x2 + x4)
4 − 2x2(x2 + x4)

2˜ 1
2

≤
ˆ

(x2 + x4)
4 − 2x2(x2 + x4)

2 + x
2
2

˜ 1
2

= −(x2 − (x2 + x4)
2) .

Therefore condition (9) is satisfied.

Example 23: We consider an example of fisheries man-

agement adapted from [3], which models the effect of fishing

activity on a prey-predator system. Let x1 denote the popula-

tion level of a prey species, let x2 denote the population level

of a predator species and let x3 denote the effort expended by

humans in fishing the predator species. We assume that in

the absence of any predation, the prey population follows

an exponential growth model with intrinsic growth rate

r1 > 0. Similarly, in the absence of any fishing activity,

the predator population follows an exponential growth model

with intrinsic growth rate r2 > 0. We do not assume any

carrying capacity limitations on either the prey or predator

populations. The system model is given by

ẋ1 = (r1 − x2)x1

ẋ2 = (r2 − x3)x2

ẋ3 = u

where x ∈ R
3 and U := [−1, 1] ⊂ R.

Let v1 = −1 and v2 = 1. The viability problem is to keep

the stock level of the prey above some positive level c > 0.

We define h(x) = x1 − c, so Lfh(x) = (r1 − x2)x1 and

S =
{

x ∈ R
3 | x1 − c ≥ 0

}

. Assumption 1 holds with r =
3, so W =

{

x ∈ R
3 | (r1 − x2)x1 < 0

}

. If x0 ∈ S ∩W ,

then x1(0) ≥ c > 0 and x2(0) > r1 > 0. Thus, we compute

C+ = {x : x1 ≥ c, x2 ≤ r1, (r1−x2)
2x1−(r2−x3)x1x2 ≥

0} and C = {x : x1 ≥ c, x2 = r1, x3 ≥ r2}. Using the

expression for C it can be easily verified that Assumption 5
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holds with up = 1.

Define the functions m1(t) :=
∫ t

0 e(r2−x3(0))τ+ 1
2 τ2

dτ

and m2(t) :=
∫ t

0
e(r2−x3(0))τ− 1

2 τ2

dτ . Note that these

are expressible in terms of the error function erf(x) =
2√
π

∫ x

0
e−t2 dt. For constant values of u we have that

x1(t) =

{

x1(0)er1t−x2(0)m1(t) , if u = v1

x1(0)er1t−x2(0)m2(t) , if u = v2 .
(14)

x2(t) = x2(0)e(r2−x3(0))t− 1
2ut2 (15)

x3(t) = ut + x3(0) . (16)

To compute ti, we remark that for u = ±1 the set
{

x ∈ R
3 | x1 = 0

}

is an asymptote of the system and hence

the x1 = 0 component of ∂W cannot be reached in finite

time. Therefore, we must consider (15) to determine if

there exists a time ti such that x2(ti) = r1. Substituting

x2(ti) = r1 in (15) and solving for ti we get

t1 = −(r2 − x3(0)) −
√

(r2 − x3(0))2 + 2 ln
r1

x2(0)
. (17)

t2 = (r2 − x3(0)) +

√

(r2 − x3(0))2 − 2 ln
r1

x2(0)
. (18)

The analysis shows that for u = ±1, the set of initial
conditions in S ∩W that can reach C in finite time are:

X1 =



x ∈ S ∩W

˛

˛

˛

˛

x3 ≥ r2 +

r

−2 ln
r1

x2

ff

.

X2 = S ∩W .

Finally, substituting (17) and (18) into the expression for h

we get

h1(x0) = x1(0)er1t1−x2(0)m1(t1) − c ,

h2(x0) = x1(0)er1t2−x2(0)m2(t2) − c .

It can be shown that h⋆(x) = h2(x) for all x ∈ S ∩ W ;
therefore, u⋆ = 1. The final step of the design is to verify
condition (9). For all x ∈ ∂S⋆ ∩W , we have that I⋆(x) =
{2}. Therefore, for all x ∈ S ∩ W, the boundary of the

viable capture basin is given by h2(x) = 0 and since h2 is
differentiable, condition (9) reduces to verifying that for all
x ∈ ∂S⋆ ∩ ¬C, ∇h2(x) · (f(x) + g(x)v1) ≤ 0. We obtain

∇h2(x)·(f(x)+g(x)v1) =
`

(r1 − x2) − (r2 − x3)x2m2(t2)
´

2c .

For x ∈ S ∩ W , we have that x2 ≥ r1 > 0. Moreover,
since erf(·) is an increasing function, the value of m2(t2)
is always nonnegative (this is also obvious from the integral
definition of m2(t)). Therefore, if (r2 − x3) ≥ 0 the result
follows immediately. Now, if (r2 − x3) < 0, then

(r1 − x2) − (r2 − x3)x2m2(t2)

≤ (r1 − x2) − (r2 − x3)x2

Z t2

0

e
(r2−x3)τ

dτ

= (r1 − x2) − (r2 − x3)x2
1

(r2 − x3)

“

e
(r2−x3)t2 − 1

”

≤ r1 − x2e
(r2−x3)t2−

1
2

t22 ≤ 0 .

Therefore condition (9) is satisfied.

V. CONCLUSION

The paper proposes and solves a viability problem for

control affine systems. The problem formulation is based

on the notion of viable capture basins, it is shaped by the

practical concern to be able to conclude execution of the

viability controller in a finite time, and it is relevant in

almost all nonlinear control applications of current interest.

An explicit formula for the viability kernel and a viability

controller are derived, and these formulas are shown to be

valid using the Frankowska method, which provides the

essential backward invariance condition to obtain the result.

A natural next step would be to extend the results to multi-

output systems.
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