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Abstract— This paper presents a Nonlinear Model Predictive 
Control (NMPC) for redundant robotic arms. Using NMPC, the 
end-effector of robotic arm tracks a predefined geometry path in 
the Cartesian space in such a way that no collision with obstacles 
in the workspace and no singular configurations for robot 
occurs. Nonlinear dynamic of the robot including actuators 
dynamic is also considered. Moreover, the on-line tuning of the 
weights in NMPC is performed using the fuzzy logic. The 
proposed method automatically adjusts the weights in cost 
function in order to obtain good performance. Numerical 
simulations of a 4DOF redundant spatial manipulator actuated 
by DC servomotors shows effectiveness of the proposed method. 

I. INTRODUCTION 
  oday, robotic manipulators are increasingly used in many    
  tasks such as industry, medicine and space. One of the 

main reasons for the development of manipulator robots is to 
replace human in doing long and repetitive operations and 
unhealthy tasks. In particular, these robots are needed to track 
a predefined path in such a way that no collision with 
obstacles in the environment occurs. High degrees of freedom 
for redundant manipulators lead to an infinity of possible joint 
positions for the same pose of the end-effector. Hence, for a 
given end-effector path in the Cartesian space, the robot can 
track it in many different configurations, among these, the 
collision free and singular free tracking must be selected. 
Finding feasible path for joints of redundant manipulators for 
a given end-effector path is called redundancy resolution [1]. 
Redundancy resolution and obstacle avoidance are already 
considered in papers. With gradient projection technique, 
redundancy can be solved considering obstacle avoidance [2]. 
In task-priority redundancy resolution technique, the tasks are 
performed with the order of priority. Path tracking is given the 
first priority and obstacle avoidance or singularity avoidance 
is given the second priority [3, 4]. This technique is locally 
optimal solution that is suitable for real-time redundancy 
control but not for large number of tasks. The generalized 
inverse Jacobin technique and extended Jacobin technique, 
which are used for redundancy solution, are time consuming 
[5, 6, 7]. Optimization techniques, which minimize a cost 
function subject to constraints, like end-effector path tracking 
and obstacle avoidance, are not suitable for on-line 
applications [4]. 

In this paper, Nonlinear Model Predictive Control (NMPC) 
method is presented for redundancy resolution, considering 
obstacles and singularity avoidance. Although Model 
Predictive Control (MPC) is not a new control method, works 
related to manipulator robots using MPC is limited. Most of 
the related works are about joint space control and end-
effector coordinating. The linear MPC is used in [8, 9, 10] and 
NMPC is used in [11, 12, 13, 14] for joint space control of 
manipulators.  

In this paper, using NMPC, the input voltages of DC 
servomotors of joints are obtained in such a way that the end-
effector of a redundant manipulator tracks a given path in the 
Cartesian space, considering obstacles and singularity 
avoidance. Moreover, using fuzzy logic, an automatic 
mechanism for the on-line tuning of the weights for the path 
tracking and obstacle avoidance terms in the cost function is 
proposed. 

This paper is organized as follows: Section II presents 
nonlinear dynamic of 4DOF spatial redundant manipulator 
including the actuators dynamic.  Section III describes the 
nonlinear predictive control. In Section IV, NMPC is 
implemented for path tracking and obstacle avoidance of a 
4DOF manipulator. Section V presents the proposed modified 
NMPC using fuzzy logic. Conclusions are drawn in Section 
VI. 

II. MANIPULATOR ROBOT DYNAMIC 
Schematic diagram of a 4DOF spatial redundant 

manipulator robot is shown in Fig. 1. 

 
Fig. 1 Schematic of a 4DOF spatial manipulator 

According to Denavit-Hartenberg parameters [15] of the 
shown robot in Table I, the position of the end-effector in 
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Cartesian space can be calculated in terms of joint angles as 
fallows: 

TABLE  I 
DENAVIT-HARTENBERG PARAMETERS OF ROBOT FIG.1 

Link αo a d θo 
1 90 0 0 1θ  

2 0 2l  0 2θ  

3 0 3l  0 3θ  

4 0 4l  0 4θ  
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The dynamic model of the robot manipulator can be 
obtained using the Lagrangian method as follows [15, 16]: 

τθθθθθθ =+++ )()(),()( GDCM &&&&                                      (2) 

where θi is the angle of the ith joint, M )(θ ∈Rn×n is the 
symmetric and positive definite inertia matrix, C ),( θθ & ∈Rn is 
the centrifugal and coriolis force vector, G )(θ ∈Rn is the 
gravity vector, D )(θ& ∈ Rn is the vector for joints friction of the 
links, τ ∈R n is the torque vector of joints, and n is the degree 
of freedom, which is equivalent to four for the robot 
considered in this paper. The above matrix and vectors are 
given in Appendix.   
    Friction for joint i is as follow [15]: 

)sgn()( idiV DDiD θθ && +=                                                      (3) 

 where Dv is the coefficient of the viscous friction and Dd is 
the coefficient of the dynamic friction.  

The dynamics of the armature-controlled DC servomotors 
that drive the links are expressed in the following form [15]: 
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    Where τe∈Rn is the vector of electromagnetic torque,           
KT∈Rn×n is the diagonal matrix of the motor torque constant, 
ia∈Rn is the vector of armature currents, Jm∈Rn×n is the 
diagonal matrix of the moment inertia, Bm∈Rn×n is the 
diagonal matrix of torsional damping coefficients, 

nRmmm ∈θθθ &&& ,, denote the vectors of motor shaft positions, 
velocities and acceleration, respectively, τm ∈ Rn is the vector 
of load torque, Vt∈Rn is the vector of armature input voltages, 
Ra∈Rn×n is the diagonal matrix of armature resistance, La∈Rn×n 
is the diagonal matrix of armature inductance and KE∈Rn×n is 
the diagonal matrix of the back electromotive force (EMF) 
coefficients. 
     In order to apply the DC servomotors for actuating an n-
link  robot manipulator, a relationship  between the robot joint 

 and the motor-shaft can be represented as: 
m

m

r
τθ

θ τ
= =                                                                           (5) 

where r∈Rn×n is a diagonal positive definite matrix of the 
gear ratios for n joints. According to the fact that the armature 
inductance is small and negligible, the Eq. (4) can be 
expressed as follow [15]: 
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Using Eq. (5) to eliminate θm and τm in Eq. (6) and then 
substituting for τ  from Eq. (2), the governed equation of n-
link robot manipulator including actuator dynamics can be 
obtained as:  
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According to Eq. (7), the armature input voltages are 
considering as control effort. The detailed parameters of the 
robot manipulator and DC servomotors are given as Table II 
and Table III, respectively. 

TABLE II 
MANIPULATOR ROBOT PARAMETERS 

Link 1 2 3 4 
l (m) 1 0.5 0.4 0.3 

m (kg) 1 0.5 0.4 0.3 

TABLE III 
DC SERVO MOTORS PARAMETERS 

Motor 1 2 3 4 
Ra 6.51 6.51 6.51 6.51 
KE 0.7 0.7 0.7 0.7 
KT 0.5 0.5 0.5 0.5 

Bm 41064 −×  41064 −×  41064 −×  41064 −×  
Jm 0.2 0.2 0.2 0.2 
R 1:100 1:100 1:10 1:10 
Vt 24 24 24 24 

III. MODEL PREDICTIVE CONTROL 
Unlike classical control schemes, in which the control 

actions are taken based on the past output of the system, the 
MPC is a model-based optimal controller, which uses 
predictions of the systems output to calculate the control law 
[17, 18]. 

At every sampling time k, based on measurements obtained 
at time k, the controller predicts the output of the system over 
prediction horizon NP in future using model of the system and 
determines the input over the control horizon NC ≤  NP, such 
that a predefined cost function is minimized. 

To incorporate feedback, only the first member of the 
obtained input is applied to system until the next sampling 
time [17]. Using the new measurement at next sampling time, 
the whole procedure of prediction and optimization is repeated. 

From the theoretical point of view, the MPC algorithm can 
be expressed as follow: 
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Where j∈[0 , NP-1],  x and u are states and input of the 
system and the notation a(m|n) indicates the value of a at the 
instant m predicted at instant n, x0 is the initial condition and  
fd and hd are the model of the system used for prediction.  
[xmin , xmax] and [umin , umax] stand for the lower and the upper 
bound of states and input, respectively. The cost function J is 
defined in terms of the predicted and the desired output of the 
system over the prediction horizon. MPC schemes that are 
based on nonlinear model or consider non-quadratic cost 
function and nonlinear constrains on the inputs and states are 
called Nonlinear MPC [17]. The optimization problem (8) 
must be solved at each sampling time k, yielding a sequence 
of optimal control law as )}|(),...,|({ ** kNkukku C+ . For 
optimization, the SQP method is used in this paper [19]. 

IV. PATH TRACKING AND OBSTACLE AVOIDANCE                              
USING NMPC 

The purpose of the path tracking and obstacle avoidance of 
robot manipulators is to obtain a control law such that the end-
effector tracks a given geometry path in the Cartesian space 
and at the same time collision between the end-effector and 
links is avoided. To achieve this purpose, the NMPC is 
implemented in this section. Block diagram of NMPC is 
shown in Fig. 2. According to the NMPC algorithm, an 
appropriate cost function must be determined in order to 
obtain the control law. For path tracking, the cost function 
must have direct relation with the tracking error between the 
end-effector coordination and the given path in the Cartesian 
space; on the other hand, for obstacles avoidance the cost 
function must have inverse relation with the distance between 
the obstacle and the manipulator. One of the proper candidates 
for the cost function can be introduced as: 

∑
= ++

+++=
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j OO
PP kjkDkjkD

RkjkQDkjkDJ
1 )|()|(

)|()|(      (10) 

where DP is the Euclidean distance between the end-
effector and the geometry path in  the Cartesian space, DO is 
the minimum Euclidean distance between the manipulator and 
obstacles, notation a(m|n) indicates the value of a at the 
instant m predicted at instant n and Q ≥ 0, R ≥ 0 are the 
weighting parameters. According to Eq. (10), the path 
tracking term of the cost function is described as distance but 
the obstacle avoidance term of the cost function is described 
as the inverse of distance. Hence, it is important to notice that 
the distance is bounded in the workspace, but the inverse of 
the distance is unbounded. 

 
                                      Fig. 2 Block diagram of NMPC 

    Therefore, combination of these two inconsistent terms as a 
cost function is not appropriate for an optimization problem. 
To tackle this problem, these two terms are normalized to     
[0 1] using a nonlinear map. Hence, the modified cost function 
takes the following form: 
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   Where [DPmin , DPmax] and [DOmin , DOmax] are the range of 
variations for DP and DO, respectively. According to the 
length of manipulator links the value for DPmin and DPmax is 0 
and 2.4 meter and the value of DOmin and DOmax is 0 and 1.2 
meter. Predictive controller discussed in this paper uses a 
nonlinear dynamic model of the manipulator in the 
optimization of the cost function. Substituting (θ (k +1) -θ (k)) 
/T forθ&  in the dynamic Eq. (7), a one-step ahead prediction 
for joints angle can be expressed as: 

))(),(()1( kVkfk td θθ =+                                                    (12) 

where k is the sampling time and T is the sampling rate, 
which is equivalent to 0.5 s in this paper. Using forward 
kinematics as Eq. (1), a one-step ahead prediction of the end-
effector position can be obtained. However, in the predictive 
control, multi-step predictions are used over prediction 
horizon by applying one-step prediction recursively. Next, 
constraints in the optimization problem are considered. 
Considering the fact that the amplitude of input voltages is 
limited, one of the constraints is: 

maxmin ttt VVV ≤≤                                                                 (13) 

where  Vt min  and  Vt max stand for the lower and the upper 
bound of input voltages of servo DC motors, respectively       
(-24 and 24 as Table III shows). Besides, considering the fact 
that in a singular configuration, for the case of limited velocity 
for the end-effector, the joint velocities are infinite. Therefore, 
the following constraint must be taken into account: 

maxmin θθθ &&& ≤≤                                                                     (14)                   

    where minθ& and maxθ& are the lower and the upper bound of 
the joints velocity, respectively, which are -400 and 400 
degree/s, considering the robot and motors parameters. By 
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incorporating constrains (13) and (14) into the cost function, 
the optimization problem can be solved. Solving this 
optimization problem at each sampling time, the input 
voltages of DC servomotors of joints are obtained in such a 
way that the end-effector of a redundant manipulator tracks a 
given path in the Cartesian space considering obstacles and 
singularity avoidance. Simulation results for a rectangular 
path in the Cartesian space with obstacles inside the work 
space are shown in figures 3 to 7. In this case, NP = 5, NC = 1, 
Q = 10 and R = 0.8. Figures 8 to 9 show the case, where the 
obstacle is located on the path. In this case, NP = 5, NC = 1. 
However, the best results are obtained when Q = 10 and R = 
1.3. That is, when the coordinates of obstacles are changed, 
the weights in the cost function must be customized 
accordingly. 

 
Fig. 3 Desired and actual end-effector path 

 
Fig. 4 Positions of manipulator joints 

 
Fig. 5 Velocities of manipulator joints 

 
Fig. 6 Input voltages of servo DC motors 

 
Fig. 7 Path following of a 4DOF manipulator with obstacles in the workspace 

 
Fig. 8 Desired and actual end-effector path 

 
Fig. 9 Positions of manipulator joints 

V. PATH TRACKING AND OBSTACLE AVOIDANCE  USING 
FUZZY NMPC 

    In the previous section, it was observed that for different 
paths and different positions of obstacles, the weights Q and R 
must be changed and finetuned in order to produce 
satisfactory results, thereby following the desired path as 
closely as possible and avoiding the obstacles at the same 
time. To provide a proper solution to this problem, fuzzy logic 
is employed in this paper for the on-line tuning of these 
weights. The proposed fuzzy system uses minimum distance 
between the manipulator and the obstacle and the rate of 
change of this distance as the inputs. The outputs of the fuzzy 
system are the weights Q and R. To design the fuzzy system, a 
boundary around each obstacle is considered in such a way 
that the control algorithm does not care about obstacles unless 
the end-effector or any links of the manipulator enter this 
boundary region. Parameters of fuzzy systems are tuned in 
such a way that when the manipulator is outside the obstacle 
regions, R is equal to zero and when the manipulator is inside 
this region, R is increased and Q is decreased adaptively. 
Fuzzy rules, membership functions, and fuzzy operations are 
shown in figures 10 to 13 and Tables IV and V.  
     Using the proposed fuzzy system, when the distance 
between the manipulator and the obstacle is more than 0.2 m, 
R = 0 and Q = 10 and for distances less than 0.2 m, 5 ≤ Q < 10 
and 0 < R   ≤ 5. In each step in prediction over prediction 
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horizon, Q and R are changed by fuzzy system and 
consequently each terms of cost function are calculated with 
different Q and R. 

 
Fig. 10 Membership functions of distance 

 

Fig. 11 Membership functions of distance variation 

 
Fig. 12 Membership functions of weight Q 

 
Fig. 13 Membership functions of weight R 

TABLE  IV 
FUZZY OPERATIONS 

And Implication Aggregation Defuzzification 

min prod max lom 

TABLE V   
FUZZY RULES 

OD           OD&  Positive Zero Negative 

Very Far Q=VBig 
R=VSmall 

Q=VBig 
R=VSmall 

Q=VBig 
R=VSmall 

Far Q=VBig 
R=VSmall 

Q=VBig 
R=VSmall 

Q=Big 
R=Small 

Medium Q=Big 
R=VSmall 

Q=Big 
R=Small 

Q=Medium 
R=Medium 

Near Q=Big 
R=Small 

Q=Medium 
R=Big 

Q=Small 
R=Big 

Very Near Q=Medium 
R=Medium 

Q=VSmall 
R=VBig 

Q=VSmall 
R=VBig 

Simulation results of the proposed fuzzy NMPC are shown 
in figures 14 to 17. As these figures show, the manipulator can 
follow the desired path with better accuracy as compared to 
the previous case. Moreover, Fig. 17 shows that the fuzzy 
system effectively changes the weighting parameters in the 
optimization process for better path following and obstacle 
avoidance. 

 
Fig. 14 Desired and actual end-effector path 

 
Fig. 15 Positions of manipulator joints 

 
Fig. 16 Path following of a 4DOF manipulator with obstacles in the 

workspace  

 

Fig. 17 Tuning of weights Q and R in cost function 

VI. CONCLUSION  
To achieve better path tracking and obstacle avoidance for 

robotic arms, the NMPC method was proposed in this paper.  
For this reason, two terms were introduced in the cost function, 
one for the tracking problem and the other one for the obstacle 
avoidance. Moreover, by introducing constraints to the joints 
velocities, singularities were avoided. Furthermore, on-line 
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tuning of the weighting factors in NMPC was achieved using 
fuzzy logic. The proposed fuzzy system automatically adjusts 
the path tracking and obstacle avoidance weights in the cost 
function for obtaining better performance. Using the tuning 
mechanism, obstacles do not affect performance of the 
manipulator unless they enter the predefined boundary regions 
around obstacles. Future works in this area include 
considering moving obstacles, robustness of the method 
against changes in the system parameters and stability analysis 
of closed loop system. 
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    where, li and mi (i=1,…,4) are the length and mass of the ith 
link, respectively, θi and iθ& are the angular position and the 
angular velocity of the ith joint, respectively, and ci = cos(θi), 
si = sin(θi ),  cij = cos(θi +θj),  sij = sin(θi +θj), and so forth. 
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