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Abstract—A Laser Metal Deposition (LMD) height 
controller design methodology is presented in this 
paper. The height controller utilizes the Particle 
Swarm Optimization (PSO) algorithm to estimate 
model parameters between layers using measured 
temperature and track height profiles. The process 
model parameters for the next layer are then 
predicted using Exponentially Weighted Moving 
Average (EWMA). Using the predicted model, the 
powder flow rate reference profile, which will 
produce the desired layer height reference, is then 
generated using Iterative Learning Control (ILC). 
The model parameter estimation capability is tested 
using a four–layer deposition. The results 
demonstrate the simulation based upon estimated 
process parameters matches the experimental results 
quite well. The experimental deposition using this 
methodology demonstrates good tracking of the 
height reference in terms of the finished track. 
 
I. INTRODUCTION 
Laser Metal Deposition (LMD) is an important Solid 
Freeform Fabrication (SFF) technology which allows 
functionally graded metal parts to be deposited from 
three dimensional computer models [1]. Unlike 
traditional machining operations which build parts by 
material subtraction, LMD is an additive process during 
which the part is deposited layer by layer [2].  
 To deposit a part with desired geometric quality, a 
closed–loop process control system should be used. 
Laser metal deposition is a complex process, which is 
governed by a large number of parameters. Among these 
parameters, powder flow rate, laser power, and travel 
speed are typically used to control the process properties, 
such as melt pool geometry, temperature, etc. Powder 
flow rate sensing and closed–loop control is 
implemented in [3] and [4]. Both controllers are capable 
of producing a steady powder flow rate. Heat input 
control in LMD is realized by adjusting laser power 
using an infrared image sensing camera as feedback [5]. 
The controller helps to overcome the effects of thermal 
variations and reduces cladding geometric variations. A 
PID controller is developed to control the clad height in 
[6]. The controller is designed based on a simplified 
process model. The laser power and powder flow rate are 
kept constant during the deposition, while the clad height 
is controlled by adjusting the travel speed. In addition to 

those controllers mentioned above, which are based on 
deterministic process models, there is a process 
controller based on statistical models. Response surface 
models are developed to minimize the heat affected zone 
(HAZ) in [7].  
 Process control usually requires a process model. 
Different models are proposed to describe the LMD 
process. A lumped–parameter, analytical model of 
material and thermal transfer is established in [8]. The 
model consists of three first order equations describing 
mass, momentum and energy balances. An elliptic shape 
melt pool is assumed. The model is validated by Gas 
Metal Arc Welding (GMAW) experiments through 
measurements by an infrared camera and a laser 
profilometry scanner. Another analytical model is 
developed and experimentally verified in [9]. The model 
concentrates on the mathematical analysis of the melt 
pool and establishes mass and energy balances based on 
one–dimensional heat conduction to the substrate. There 
are also some more complex models in the literature, 
such as the three dimensional model used to predict the 
thermal behavior and geometry of the melt pool in [10]. 
The Finite Element Method (FEM) is typically used to 
solve the equations in the complex models. The complex 
models usually require intense computational power, 
making them difficult to utilize in real time. The model 
complexity also hinders its usage for controller design.  
 The LMD process is characterized by an energy 
balance, which is affected by the part and substrate 
geometries, ambient temperature, etc. Therefore, the 
LMD process is sensitive to environmental conditions. 
The model parameters change as the part is being built, 
making a constant parameter model implausible. Also, 
constant height is difficult to achieve. To accommodate 
these limitations, a layer–to–layer height control 
methodology is proposed. The idea of layer–to–layer 
height control is to measure the part height profile 
between layers using a laser displacement sensor. The 
measured height profile and melt pool temperature are 
applied to identify the model parameters using PSO. The 
powder flow rate reference is then generated using ILC 
with respect to the reference height profile of the next 
layer. With the aid of layer–to–layer control, it is 
possible to make the deposition process automatic, 
which will help to increase productivity and reduce cost. 
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II. SYSTEM HARDWARE  
The LMD system consists of the following components: 
5–axis CNC machine, powder delivery system, 1 kW 
diode laser, National Instruments (NI) real–time control 
system, laser displacement sensor and temperature 
sensor. The system setup is shown in Figure 1. The laser 
displacement sensor (OMRON, model Z4M–W100) has 
a measurement range of ±40 mm and a minimum 
resolution of 8 µm. The temperature sensor (Mikron 
Infrared, model MI–GA 5–LO) has a measurement range 
of 400 to 2500 °C. The temperature sensor is mounted 
on the nozzle and is used to measure the melt pool 
temperature during deposition. The control system is 
coded in NI LabVIEW and implemented on an NI real–
time PXI system. A PXI 6602 counter/timer board is 
used for powder feeder motor angular position 
measurement. A PXI 6040E multifunction board with a 
range of ±10 V and 12 bits of resolution is used for 
temperature measurement and height measurement via a 
laser displacement sensor. A PXI 6711 analog output 
board with a range of ±10 V and 12 bits of resolution is 
used to input control signals to the laser and powder 
feeder motor amplifiers. 
 

 
Figure 1: Laser metal deposition process system. 

 
III. LMD PROCESS MODEL  
A. Model description 
For on–line process control, a simplified model is more 
desirable due to its computation efficiency. The model 
used in this paper is composed of three equations derived 
from mass, momentum and energy balances [8]. 
 The mass balance equation is given by 
 ( ) ( ) ( ) ( )mV t A t v t m tρ ρ μ= − +  (1) 
where ρ is material density (kg/m3), V is bead volume 
(m3), A is cross sectional area in the direction of 
deposition (m2), v is table velocity in the direction of 
deposition (m/s), µm is powder catchment efficiency, and 
m is powder flow rate (kg/s). The bead is assumed to be 
elliptical; thus, the volume and cross sectional area in the 
direction of deposition, respectively, are 
 ( ) ( ) ( ) ( )

6
V t w t h t l tπ

=  (2) 

 ( ) ( ) ( )
4

A t w t h tπ
=  (3) 

where w, h, and l are, respectively, the bead width, 
height, and length (m). The momentum balance is 
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where the parameter α is given by 
 ( ) [ ]1 cos GL SLα θ γ γ= − −⎡ ⎤⎣ ⎦  (5) 

where θ is the wetting angle (rad), γGL is the gas to liquid 
surface tension coefficient (N/m), and γSL is the solid to 
liquid surface tension coefficient (N/m). The energy 
balance is 
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 (6)  

where T is the average melt pool temperature (K), cs is 
the solid material specific heat (J/(kg·K)), Tm is the 
melting temperature (K), T0 is the ambient temperature 
(K), hSL is the specific latent heat of fusion–solidification 
(J/kg), cl is the molten material specific heat (J/(kg·K)), β 
is the laser–surface coupling efficiency, µQ is the laser 
transmission efficiency, Q is the laser power (W), αs is 
the convection coefficient (W/(m2·K)), αG is the heat 
transfer coefficient (W/(m2·K)), ε is the surface 
emissivity, and σ is the Stefan–Boltzmann constant 
(W/(m2·K4)). The bead width–length relationship for the 
steady–state conductive temperature distribution subject 
to a heat source moving with constant velocity is given 
by 
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where k is the thermal conductivity constant (W/(m·K)). 
 The experiments conducted in this paper use H13 
tool steel as the deposition material. The model 
parameters for H13 tool steel are listed in Table 1 [9]. 
 

Table 1: H13 properties and deposition conditions. 
Parameter Symbol Value 

density (kg/m3) ρ 7760 
wetting angle (rad) θ π/2 

gas to liquid surface tension 
coefficient (N/m) γGL 1.94237 

solid to liquid surface tension 
coefficient (N/m) γSL 1.94246 
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solid material specific heat 
(J/(kg·K)) cs 460 

melting temperature (K) Tm 1730 
ambient temperature (K) T0 292 

specific latent heat of fusion–
solidification (J/kg) hSL 2.5·105 

molten material specific heat 
(J/(kg·K)) cl 480 

heat transfer coefficient 
(W/m2·K) αG 24 

surface emissivity ε 0.53 
Stefan–Boltzmann constant 

(W/m2·K4) σ 5.67·10–8 

thermal conductivity 
constant(W/m·K) k 29 

laser transmission efficiency µQ 0.8 
laser–surface coupling 

efficiency β 0.15 

 
B. Model Simplification 
Letting ( )

( )( )02
QQ t

f
k T t T
βμ

π
=

−
, mathematical analysis 

shows that f is maximum when Q is maximum (1 kW) 
and T is minimum (1730 K). In this case, fmax = 4.58·10–4 
m. Experiments show that the track width is close to the 
laser spot diameter, which is approximately 2.54·10–3 m 
at a nozzle standoff distance of 1.27·10–2 m. Therefore, 
equation (7) becomes 
 ( ) ( )l t w t=  (8)  
 
IV. CONTROLLER DESIGN 
A height controller is designed based on the model 
described above. The height controller consists of three 
major parts: measurement (height and temperature), 
system identification, and powder flow rate reference 
generation. The height and temperature profiles are 
measured using the laser displacement and temperature 
sensors, respectively. The measurement data, together 
with the measured powder flow rate during the previous 
layer, are used as inputs to the system identification 
program, which is based on PSO [11], to estimate model 
parameters. Since the estimated model parameters are 
only applicable to the deposition of the last layer, they 
are further predicted using EWMA so the model can be 
used to predict the deposition of the next layer. The 
powder flow rate reference profile, which will produce 
the designated layer height reference, is then generated 
using ILC. 
 
A. System identification based on PSO 
Particle swarm optimization is an evolutionary 
computational technique based on swarm intelligence. In 
the particle swarm algorithm, the trajectory of each 
particle (i.e., candidate solution to the optimization 
problem) in the search space is adjusted according to its 
own experience and the experience of the other particles 

in the swarm. In this paper, it is applied to estimate the 
model parameters based on measured height and 
temperature profiles. The LMD process is governed by a 
number of process parameters, among which heat 
transfer coefficient, surface emissivity, thermal 
conductivity constant, convection coefficient, powder 
catchment efficiency, etc, are sensitive to the 
environment. Limited by the process feedback (height 
and temperature), only two process parameters, 
convection coefficient and powder catchment efficiency, 
are estimated. These two parameters play important roles 
in determining the melt pool temperature and height. 
Also in comparison with the other parameter 
combinations, this combination produces an excellent 
match with the experimental data.  
 The PSO algorithm is applied to determine the 
optimal values of αs and µm based on the height and 
temperature feedback. Assume the swarm consists of n 
particles and the position and velocity vectors of particle 
i are given by [ ], , 1,2, ,i si miX i nα μ=    =  and 

, , 1, 2, ,
s mi i iV v v i nα μ⎡ ⎤=    =⎣ ⎦ , respectively. The position 

vector represents the current solution found by each 
particle, while the velocity vector shows how the 
solution will change in the next iteration. 

The identification algorithm steps are as follows: 
 
(1) Randomly initialize the position and velocity vectors 

of particle i as ( ) ( ) ( )0 0 , 0i si miX α μ= ⎡ ⎤⎣ ⎦  

and ( ) ( ) ( )0 0 , 0 , 1, 2, ,
s mi i iV v v i nα μ⎡ ⎤=    =⎣ ⎦ , 

respectively, and compute the fitness J of each 
particle by comparison of the height and 
temperature feedback with the deposition process 
simulation results using a 4th order Runge–Kutta 
method. In this paper, the fitness J is
 

( ) ( )( ) ( ) ( )( )2 2

1 1

N N

h m s T m s
j j

J w h j h j w T j T j
= =

= − + −∑ ∑  (9) 

where N is the total sample number, wh is the height 
error weight, hm is the measured height, hs is the 
simulated height, wT is the temperature error weight, 
Tm is the measured temperature, and Ts is the 
simulated temperature. Take the current position of 
each particle as its initial personal best position Pi(0) 
with best fitness JPbesti(0), i = 1,2,…,n, and 
compare the fitness of all particles in the group to 
find the initial global best position Pg(0) and 
corresponding initial global best fitness JGbest(0).  

(2) Update the current iteration number b and inertial 
weight with w(b) 

 1b b= + ， ( )
max

i f
i

w w
w b w b

b
−⎛ ⎞

= − ⋅⎜ ⎟
⎝ ⎠

 (10) 

where bmax is the maximum iteration number. The 
initial and final values of the inertia weight, 
respectively, are 0.9 and 0.4. 
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(3) Update the position and velocity, respectively,  of 
each particle 

 ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

1 1

2 2

1

, 1,2, ,
i i i i

g i

V b w b V b c r P b X b

c r P b X b i n

+ = + −

+ −    =
 (11) 

 ( ) ( ) ( )1 1 , 1,2, ,i i iX b X b V b i n+ = + +    =  (12) 
The acceleration coefficients c1 and c2, respectively, 
are 0.2 and 0.2. The parameters r1 and r2 are random 
numbers in the range [0,1]. 

(4) Evaluate the fitness of each particle Ji(b), and 
compare it with its previous personal best fitness 
value JPbest(b–1). If J(b) < JPbest(b–1), then Pi(b) 
= Xi(b) and JPbesti(b) = Ji(b). Compare Ji(b) with 
the previous global best fitness JGbest(b–1). If Ji(b) 
< JGbest(b–1), then Pg(b) = Xi(b) and JGbest(b) = 
Ji(b). 

(5) Compare JGbest(b) with JGbest(b–1). If JGbest(b) 
= JGbest(b–1), then let c = c+1. If JGbest(b) ≠ 
JGbest(b–1), then c = 0. If c > Cset, then randomly 
select δ(≤n) particles from the group and reinitialize. 
Here Cset is a designated natural number. If there is 
no fitness improvement in the past Cset iterations, the 
reinitializing process will be activated. 

(6) If b < bmax, then go to step (2), otherwise stop. 
 
Similar to other optimization algorithms such as genetic 
algorithm, simulated annealing, etc., PSO can also 
become trapped at a local minimum. Here step (5) is 
employed to avoid local minima. The idea originates 
from the mutation operation used in genetic algorithms. 
In genetic algorithms, mutation is a random modification 
of a randomly selected potential solution. It guarantees 
the possibility of exploring the space of solutions for any 
initial solution space and avoiding local minima. Here 
the reinitializing process is designed to fulfill the same 
purpose.  
 
4.2 Model parameters prediction using EWMA 
With the PSO algorithm described above, the parameters, 
αs and µm, are estimated for the current layer; however, 
they are not applicable to the next layer. To predict the 
parameter values at the next layer, Exponentially 
Weighted Moving Average (EWMA) is used. The 
prediction is described by 
 ( )1 , 2,l l lP A E I A P l+ = ⋅ + − ⋅   =  (13) 
 

2 1P E=  (14) 
where l is the layer number, 

( ) ( )1 1 , 1l sp mpP l lα μ+ ⎡ ⎤= + +⎣ ⎦ is the vector of predicted 

parameters at layer l+1, ( ) ( ),l se meE l lα μ= ⎡ ⎤⎣ ⎦  is the 

vector of estimated parameters using PSO at layer l, I is 
the 2×2 identity matrix, and A is a 2×2 diagonal matrix 
consisting of smooth factors for each parameter. In this 
paper 0.5 0

0 0.5
A

     ⎡ ⎤
= ⎢ ⎥      ⎣ ⎦

, which is selected empirically. 

 

4.3 Powder Flow Rate Generation using ILC 
Iterative Learning Control (ILC) has been widely applied 
in robotics for tracking repeated motion contours. The 
idea is to adjust the controller output according to the 
tracking error in the previous iterations and, since the 
motions are usually repeated, the controller output will 
converge to a certain value which will produce an 
acceptable tracking result.  

The control law is 
 ( ) ( )1 1, , , , , ,j j j j n j j nu i f e e e u u+ − − −=  (15) 

so that the learning convergence, i.e., lim 0jj
e

→∞
→ and 

*lim 0jj
u u

→∞
− →  is achieved at an acceptable rate. The 

parameter j is the iteration number, and i is the sample 
index. 
 Unlike the usual applications described above, ILC 
is used to generate the powder flow rate reference profile 
in this paper. The control law applied in this paper was 
first proposed by Arimoto et al. [12] and is 
  ( ) ( ) ( )1 1j j jm i m i e iγ+ = + +  (16) 
 The powder flow rate at time i and iteration j+1 is 
calculated from the powder flow rate at time i and the 
previous iteration j and a corrective term which is a 
learning gain γ multiplied by the shifted tracking error 
ej(i+1) from the previous iteration. One thing that should 
be noted is that in this procedure ILC utilizes virtual 
deposition (with the help of process model) to generate 
the powder flow rate reference. 
 
V. EXPERIMENTAL STUDIES 
A. Process model parameter estimation 
To test the model parameter identification methodology, 
a four–layer single track wall is deposited using H13. 
The powder flow rate is 0.83·10–4 kg/s, the laser power is 
700 W, the table travel velocity is 2.1·10–3 m/s, and the 
nozzle standoff is 1.27·10–2 m. The track length is 
approximately 60 mm. The measured track height and 
melt pool temperature are shown in Figure 2. 
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Figure 2: Measured track height and temperature 
profiles for four layers. 
 
The model parameters (αs and µm) are estimated using 
the PSO algorithm for all four layers. The identification 
program implemented with Visual C++ 6.0 runs on a 
computer platform with the following settings: CPU – 
Celeron M (1.40 GHz), Memory – 448 MB, System – 
Windows XP professional edition (2002). The particle 
number and iteration number are both 100. The average 
computation time is 68.8 seconds and the standard 
deviation is 2.9 seconds. The estimated parameter values 
are given in Table 2. The experimental results are 
compared with the simulation results in Figure 3.  
 
Table 2: Estimated model parameters for all four 
layers. 

Layer αs (W/m2·K) µm 
1 2.46·104 0.62 
2 1.87·104 0.56 
3 3.55·104 0.35 
4 2.59·104 0.43 
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Figure 3: Experimental and simulation results for 
layers 1 and 2. 

The results show that the simulation results using 
estimated parameters match the experimental results 
quite well except for slight variations, which are due to 
unmodeled process dynamics. It should also be noted 
that parameters experience significant changes between 
layers indicating the necessity of parameter prediction.  
 
5.2 Layer–to–Layer Height Control Experimental  
 
With the system parameter estimation capability and 
powder flow rate reference generation successfully 
verified, the layer–to–layer height control methodology 
is implemented and a single track with a desired height 
of 4 mm is deposited. The height reference profile for 
each layer is generated using the following equation 

hr(k) = ha+0.5-hm(k)               (17) 
where hr is the height reference profile for the next layer, 
ha and hm are the average track height and track height 
profile of the current layer, respectively. The deposition 
results are shown in Figure 4. 
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Figure 4: Height profile of each layer in a single track 
deposition with height control. 
 
The total layer number is 10 and average height of the 
finished track is 4.04 mm. The average height error and 
the error standard deviation of each layer are listed in 
Table 3. 
 
Table 3: Height error average and standard deviation 

Layer Average height 
error (mm) 

Error standard 
deviation (mm) 

1 N/A N/A 
2 0.095 0.10 
3 0.10 0.12 
4 0.078 0.10 
5 0.097 0.11 
6 0.17 0.14 
7 0.15 0.12 
8 0.15 0.12 
9 0.067 0.078 

10 0.081 0.12 
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To show how the methodology works between layers, 
the results for layer 9 are shown in Figure 5. Good 
tracking of the height reference is shown in the top 
subplot. The corresponding powder flow rate 
measurement and reference profiles are shown in the 
bottom subplot. The average height error is 0.067 mm 
and the standard deviation is 0.078 mm. The large height 
errors, which happen at the start and end of the 
deposition, are due to the laser displacement sensor, 
which averages the height in its measurement window. 
Due to the slow response of the powder delivery system, 
the powder feeder controller cannot track a fast changing 
reference very well. The height tracking error is due to a 
combination of following causes: unmodeled process 
dynamics, powder flow rate reference tracking errors, 
and model parameter prediction error. 
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Figure 5: comparison between height/powder flow 
rate reference and their measured value 
  
 
VI. SUMMARY AND CONCLUSIONS 
A LMD height controller design methodology is 
presented in this paper. The height controller utilizes the 
PSO algorithm to estimate the model parameters from 
measured temperature and track height profiles between 
layers. The model parameters are then further predicted 
using EWMA to account for the process parameter 
variations. With the predicted model, the powder flow 
rate reference profile, which will produce the designated 
layer height profile, is then generated using ILC. The 
model estimation capability of the methodology is 
verified experimentally. The experimental result of a 
single track deposition demonstrates a good tracking of 
the height reference regarding the finished track, 
although the height controller performance may vary 
between layers. 
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