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Abstract—This paper establishes a method for force 
filtering, develops a dynamic process model, and 
designs and implements a general tracking controller 
to regulate the axial force for a variety of reference 
signals in Friction Stir Welding processes. Steady 
state and dynamic models are used to relate the input 
process parameters to the axial force. The general 
tracking controller is implemented in a Smith 
Predictor–Corrector Structure to compensate for a 
pure communication delay. The controller 
successfully performs bead–on–plate welds using a 
6061 aluminum alloy. Both constant and sinusoidal 
reference forces are tracked. 
 
I. INTRODUCTION 
Friction Stir Welding (FSW) is a solid state joining 
process that utilizes gross plastic deformation rather than 
a conventional welding flame to join material. The FSW 
process is unique in that it can be used to successfully 
join materials such as aluminum alloys that are difficult 
to join with other welding processes. 
 Then FSW joining process requires a non–
consumable tool, containing a shoulder and profiled pin 
region. The tool is plunged into the part at a specified 
spindle speed and plunge rate until the shoulder makes 
contact with the material to be joined. Following a brief 
dwell period, the rotating tool advances along the weld 
path at a specified traverse rate and spindle rotation 
speed. The combination of heat input and tool geometry 
cause the material along the boundaries of the weld 
region to deform and mix together to form a solid joint. 
A process schematic is shown in Figure 1. 
 Three common process parameters for the FSW 
process are traverse rate, v, spindle speed, ω, and plunge 
depth, d. Constant process parameter runs can result in 
poor quality welds due to improper fixturing of the work 
piece, machine geometric errors, and material 
inconsistencies (i.e., part slope) along the weld path. 
Cederqvist et al. [2008] fixed values of traverse rate and 
plunge depth and adjusted the spindle speed online with 
a Proportional plus Integral plus Derivative controller to 
regulate the tool pin temperature. The method is 
effective, but the closed–loop response is sluggish due to 
the inherent low bandwidth of thermal systems. Zhao et 
al. [2007] conducted a FSW process with constant 
traverse rate and spindle speed while varying the plunge 

depth to control the axial force. A polynomial pole 
placement technique was used to design a controller 
based on a desired characteristic equation. The controller 
was designed specifically to reject constant disturbances 
and allow tracking of constant axial forces. Kalya [2007] 
regulated the axial force in a similar manner using an 
adaptive neural network controller to account for 
variations in the model dynamics. The axial force is 
regulated in this paper to ensure the tool maintains 
proper contact with the part to avoid creating excessive 
flash and defects such as surface voids and wormholes. 
 
II. EXPERIMENTAL SYSTEM AND FILTERING 
An ABB IRB 940 Tricept Robot is retrofitted with a 
FSW spindle head to provide the desired rotational 
motion. The spindle is driven by a SLM115–368 servo 
motor and is rated at 10 hp with a range of ±3000 rpm. A 
six axis force/moment sensor (JR3 Inc. model 75E20S–
M125A–A 6000N1150) is used to record the lateral, 
normal and axial forces, as well as the respective 
moments. The physical setup is shown in Figure 2. The 
robot control unit is programmed through RAPID, which 
allows the operator to pre program the system motion 
and control algorithms. The code is typed in text format 
and uploaded to the control unit. Code is typically 
divided into subsections including: low–level formatting, 
primary welding loop, interrupt subroutines, and data 
collection. A teach pendant is used to load the file, select 
a welding vector and execute the code. 
 Tool eccentricity and sensor noise contribute to a 
large variance in the measured force signals; therefore, a 
first order stochastic process model is used in 
conjunction with a two–step Kalman filter to effectively 
reduce the axial force signal variance while preserving 
the phase and magnitude. The stochastic process model 
is 
 ( ) ( ) ( )1Tf k e f k w kλ−= − +  (1)  
where f is the axial force, k is the current iteration, T is 
the sample period, w is the process noise, and λ is a filter 
tuning parameter. Previous studies have found that λ = 0 
provides the best filtering capability in terms of steady–
state behavior. The process measurement is 
 ( ) ( ) ( )y k F k v k= +  (2) 

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrC12.5

978-1-4244-4524-0/09/$25.00 ©2009 AACC 5576



where F is the measured axial force and v is the 
measurement noise. The process and measurement noise 
characteristics, respectively, are 
 ( ) ( )( ) ( )( )~ 0,

T
w N Q E w k w k Q⎡ ⎤ =

⎣ ⎦
 (3) 

 ( ) ( )( ) ( )( )~ 0,
T

v N R E v k v k R⎡ ⎤ =
⎣ ⎦

 (4) 

where R is the measurement variance determined by 
analyzing steady–state data and is 

 ( )2

1

1
1

N

i
i

R y y
N =

⎡ ⎤= −⎣ ⎦− ∑  (5) 

where yi is the steady–state force measurement at the ith 
iteration, y  is the measurement average, and N is the 
number of data points. The parameter Q is the model 
variance and is adjusted with respect to R to tune the 
filter. Experimentally, a value of Q = 0.05R is selected 
for this filter. The filter effectively reduces the signal 
variance by an order of magnitude while preserving the 
phase and magnitude. 
 
III. DYNAMIC MODELING 
A series of step tests are conducted to obtain a 
relationship between axial force and commanded plunge 
depth for use in designing the axial force controller. The 
tests are conducted using a 6061–T6 aluminum alloy 
with material composition: 97.9% Al, 0.60% Si, 0.30% 
Cu, 1.0% Mg, and 0.20% Cr. The tool is tapered, 
threaded, and contains three flats. The FSW bead–on–
plate method is conducted during the testing with a 
single solid 6.35 mm thick plate. This method does not 
involve the actual joining of parts; rather, the pin 
processes solid material. Bead–on–plate welding is 
commonly used in initial testing to analyze the process 
without disturbances generated by gaps between the 
parts. The input process parameters are selected as the 
plunge depth, traverse rate, and spindle rotation speed. 
Other factors, such as travel angle and work angle, are 
held as constant during all runs and, therefore, are not 
included in the modeling. During each run the transverse 
rate and spindle speed remain constant, while the plunge 
depth varies between 4.191–4.716 mm. Note that the 
shoulder contacts the part at a plunge depth of 4.17 mm. 
Based on empirical observations, the minimum and 
maximum traverse rates are 2.0 and 3.2 mm/s, 
respectively, and the minimum and maximum spindle 
rotation speeds are 1300 and 1900 rpm, respectively. The 
selected test conditions are based on a Central 
Composite Design of Experiments (DOE) and are shown 
in Table 1. 
 Measured axial force and plunge depth data, as well 
as commanded plunge depth data, are obtained for each 
run at a sample rate of 10 Hz. Results from runs 11 and 
12 had poor signal to noise ratios and, thus, were 
excluded from system modeling. This resulted from the 
runs being very cold, as shown by their low values of 
heat index in Table 1. An example of the collected force 
data is shown in Figure 3. The data indicates a positive 

correlation between measured axial force and 
commanded plunge depth. As the commanded plunge 
depth increases, the axial force increases and eventually 
reaches a steady value. The initial drop in the measured 
axial force signal represents an extra transient portion of 
the process present only in the beginning of the weld. 
This portion of the data is ignored in modeling to 
minimize error. Note the first and fifth sements, as well 
as the second and fourth segments, of measured axial 
force occur at the same depth but do not have the same 
average force. This is due to machine geometric errors 
and stiffness, as well as the amount of flash that is 
generated. As the amount of flash increases, the depth–
force relationship is affected due to less material being 
present in the weld path to resist the tool. 
 A static power model that relates the steady–state 
axial force to the input process parameters is 
 

aF C dα β γν ω=  (6) 
where C, α, β, and γ are model coefficients. Taking the 
natural log of both sides of equation (6) 
 ( ) ( ) ( ) ( ) ( )ln ln ln ln lnaF C dα ν β ω γ= + + +  (7) 
Using the Least Squares method the model parameters 
are determined to be C = 6.18·10–2, α = 0.185, β = –
0.374, and γ = 2.650. 
 An empirical second order model of the process and 
equipment dynamics is 
 ( )

( )
dna z

azaz
bzbv

zU
zF −

++
+

=
21

2
21βαω  (8) 

where Fa(z) is the axial force, U(z) is the control signal, 
nd is the number of delay periods, and b2, b1, a2, and a1 
are model coefficients. The delay is due to an inherent 
communication delay between the processor 
implementing the force controller that determines the 
reference plunge depth and the processor that regulates 
the plunge position. The control signal and plunge depth 
are related by 
 ( ) ( )u z d zγ=  (9) 
Equation (8) is transformed into a difference equation 
and solved for Fa(k) 

 ( ) ( ) ( )
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 (10)   

A Recursive Least Squares (RLS) algorithm is used to 
solve for the unknown coefficients of equation (10). The 
collection of known system inputs and measured system 
outputs is 

 ( ) ( ) ( )

( ) ( )

1 2

1 2
T

d d

k f k f k

u k n u k n

= − − − −⎡⎣

− − − − ⎤⎦

φ  (11) 

where f(k) is the filtered force measurement at iteration 
k. The parameter estimates are 
 [ ]1 2 1 2

Ta a b b=η  (12) 
where the initial values are selected to be unity. The gain 
matrix is 
 ( ) ( ) ( ) ( ) ( ) ( ) 1

1 1 1Tk k k k k k
−

⎡ ⎤= − + −⎣ ⎦q P φ φ P φ  (13) 
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The parameter estimates are 
 ( ) ( ) ( ) ( ) ( ) ( )1 1Tk k k y k k k⎡ ⎤= − + − −⎣ ⎦η η q φ η  (14) 

The matrix covariance is 
 ( ) ( ) ( ) ( )1Tk k k k⎡ ⎤= − −⎣ ⎦P I q φ P  (15) 

where the diagonals of the initial covariance matrix are 
all set to 100. If any of the diagonals of the covariance 
matrix fall below ten percent of their initial value, a 
covariance reset is employed to ensure that the 
covariance matrix does not wind down. The number of 
delay periods is determined to be nd = 5. This number is 
determined based on the average delay observed in the 
data sets. 
 The RLS algorithm is applied to runs 1–10 and the 
values of the coefficients for each model are determined. 
These ten sets of coefficients are then averaged to 
determine the overall system model, as shown in Table 
2. The system model is 
 ( )

( )
5

2

0.0122
0.8476 0.0477

aF z z z
U z z z

−=
− +

 (16) 

The open loop transfer function contains two real roots 
located at 0.787 and 6.06·10–2, corresponding to time 
constants of 0.418 and 3.57·10–2 s, respectively. There is 
a zero at z = 0. The system is stable and exhibits an 
overdamped response dominated by the slower time 
constant. The steady–state gain of equation (16) is 
6.10·10–2, which is 1.29% less than the value of C. 
 Next, the dynamic model is validated through 
experimental runs using process parameters in the range 
used to construct the model. Two process parameter sets, 
v = 2.6 mm/s and ω = 1600 rpm, and v = 2.18 mm/s and 
ω = 1810 rpm, are selected for use in validation 
experiments due to minimal observable flash. Figure 4 
shows the axial force measurements taken from varying 
the plunge depth in a sinusoid manner with a frequency 
of 0.2 Hz. The maximum error is approximately 6%. 
Figure 5 shows the axial force measurements taken from 
varying the plunge depth in a triangular manner at a 
frequency of 0.1 Hz. The maximum error is 
approximately 4%. Unlike the previous experiment, the 
error appears as more evenly distributed about zero. 
These frequencies of 0.2 Hz and 0.1 Hz were chosen 
based on operator experience due to rate limits imposed 
on the plunge depth. 
 
IV. CONTROLLER DESIGN 
In this section a controller is designed to regulate the 
axial force signal. A general tracking controller with 
constant disturbance rejection is selected and tuned to 
allow the system to robustly track any desired reference 
force. General tracking control is a method of 
combination feed–forward feedback control that 
theoretically guarantees proper tracking regardless of the 
reference axial force. The constant disturbance rejection 
is necessary due to process repeatability issues (i.e., 
machine stiffness) as a basic general tracking controller 
does not contain integral action. The controller is 

implemented in a Smith Predictor–Corrector (SPC) 
Structure to allow the system to properly account for the 
pure communication delay. If the inherent 
communication delay is ignored, the system model 
becomes 
 ( )

( )
( )
( )

1 2
2

1 2

aF z b zb z b
U z z a z a a z

+
= =

+ +
 (17) 

The error is 
 ( ) ( ) ( )R aE z F z F z= −  (18) 
where FR(z) is the reference axial force. Equation (18) is 
rearranged and substituted into equation (17) 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )v z a z E z v z a z R z b z U z= −  (19) 
where v(z) is the disturbance generating polynomial 
 ( ) 1−= zzv  (20) 
A dummy control variable, μ(z), is defined as 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )z g z E z v z a z R z b z U zμ = = −  (21) 
where g(z) is 
 ( ) 32

2
1 gzgzgzg ++=  (22) 

The coefficients g1, g2, and g3 are chosen to shape the 
closed–loop error dynamics. The closed–loop 
characteristic equation is 
 ( ) ( )3 2

1 1 2 1 2 2 31 0z a g z a a g z a g+ − − + − − − − =  (23) 
The desired closed–loop system has a pole with a time 
constant of τ = 300 ms and two poles having a natural 
frequency of ωn = 30 rad/s and a damping ratio of ζ = 
0.9. These closed–loop poles were determined by trial 
and error and were found to (1) reduce control signal 
saturation during the transient portion of the response 
and (2) reduce the natural frequency and increase the 
damping ratio to decrease the system overshoot, settling 
time, and oscillations. The desired closed–loop 
characteristic equation is 

00245.02177.01076.1 23 =−+− zzz         (24) 
Comparing equations (23) and (24), g1 = –0.74, g2 = 
0.6776, and g3 = –0.0232. The controller is implemented 
in a SPC structure to account for the system 
communication delay. A block diagram of the system 
with the general tracking controller implemented in the 
SPC structure is shown in Figure 6. The signal E1(z) is 
 ( ) ( )

( ) ( )5
1 1

b z
E z z U z

a z
−⎡ ⎤= −⎣ ⎦

 (25) 

Transforming equation (25) into the difference domain 

 
( ) ( ) ( )

( ) ( )
( ) ( )

1 1 1 2 1

1

2

1 2

1 1 5

2 2 5

e k a e k a e k

b u k u k

b u k u k

= − − − −

+ − − − −⎡ ⎤⎣ ⎦
+ − − − −⎡ ⎤⎣ ⎦

 (26) 

Combining equations (19), (21), and (25) and 
transforming into the difference domain, the control 
signal is 
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( ) ( ) ( )

( ) ( ) ( )
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− −
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− − − −⎡ ⎤⎣ ⎦
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− − −⎡ ⎤⎣ ⎦

 (27) 

 
V. EXPERIMENTAL STUDIES 
In this section, a series of bead–on–plate experiments are 
conducted to validate the general tracking controller. The 
traverse rate and spindle rotation speed are constant 
during each experimental run and saturation limits are 
imposed on the plunge depth between 4.17 mm and 4.8 
mm to ensure that the tool maintains proper contact with 
the part. A rate limit on the plunge depth is set at ±0.5 
mm/s to prevent tool breakage. Two runs have reference 
force signals consisting of a series of step changes, and 
one run contains a sinusoid reference. The reference 
force signal magnitudes are selected to utilize a 
significant portion of the plunge depth range. 
 The results for an experiment with a constant 
reference force of 3.7 kN are shown in Figure 7. The 
standard deviation is 48.1 N, 1.23% of the reference. The 
second run is conducted by varying the reference axial 
force in a step–wise manner over a range of different 
inputs. These results are shown in Figure 8. The average 
standard deviation over this collection of step inputs is 
107.2 N, less than 2.89% of the reference force. The 
results of the third run are shown in Figure 9. The 
reference frequency is 0.2 Hz and the average absolute 
value of the errors is 0.1248 kN. 
 The control signal for the first constant input run is 
shown in Figure 7. Note that significant variations are 
present in the plunge depth to maintain a constant 
reference force. These variations are due to machine 
geometric errors, imperfection of the fixturing method, 
changes in the thermal boundary conditions as the tool 
advances along the weld path and a number of other 
factors. The general tracking controller provides an 
effective means to compensate for these errors and 
successfully track a number of desired reference forces. 
 
VI. SUMMARY AND CONCLUSIONS 
Empirical models were constructed from a series of 
experiments do determine steady–state and dynamic 
relationships between the input process parameters and 
the axial force for use in controller design for Friction 
Stir Welding processes. Following model validation, a 
general tracking controller with disturbance rejection 
was designed to robustly track a variety of desired 
reference axial forces with zero steady–state error. The 

controller was implemented in a Smith Predictor–
Corrector structure to account for an inherent 
communication delay in the FSW system due to the 
method of controller interrupt. 
 The controller was validated through a collection of 
step tests and sinusoid references to demonstrate the 
ability to track non–constant references. The 
experimental results demonstrate excellent tracking of all 
reference signals with minimal error most likely due to 
the physical limitations of the process (i.e., rate limit due 
to material stiffness). The standard deviation of the 
controlled response was found to be approximately one 
percent of the reference signal magnitude. 
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Table 1: Process Parameters for Step Testing of 
Plunge Depth. 

1 2.6 1600 98.5
2 2.6 1900 138.8
3 2.18 1810 150.3
4 3.02 1390 64.0
5 2.6 1600 98.5
6 3.02 1810 108.5
7 2.18 1390 88.6
8 3.02 1390 64.0
9 2.18 1810 150.3
10 2 1600 128.0
11 3.2 1600 80.0
12 2.6 1300 65.0

Traverse 
Rate, v 
(mm/s)

Rotational 
Speed, ω 

(rpm)

Heat 
Index 

(rpm2/ipm
RUN

 
 

Table 2: Dynamic Model Coefficients. 
Run a1 a2 b1 b2

1 -7.42E-01 -9.33E-02 -1.31E-02 2.36E-02
2 -1.46E+00 5.61E-01 -1.99E-04 6.63E-03
3 -1.05E+00 2.37E-01 6.73E-03 5.24E-03
4 -8.70E-01 1.15E-01 2.56E-02 -1.04E-02
5 -5.91E-01 -2.25E-01 2.49E-02 -1.43E-02
6 -8.32E-01 5.23E-02 7.66E-03 5.59E-03
7 -7.20E-01 -1.52E-03 1.97E-02 -2.64E-03
8 -7.33E-01 -4.27E-02 2.19E-02 -8.07E-03
9 -9.87E-01 1.48E-01 1.63E-02 -7.24E-03
10 -4.94E-01 -2.74E-01 1.26E-02 1.41E-03
11 n/a n/a n/a n/a
12 n/a n/a n/a n/a

avg -8.48E-01 4.77E-02 1.22E-02 -2.57E-05  
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Figure 1: Friction Stir Welding Schematic. 
 

 
Figure 2: ABB IRB 940 Tricept Robot with FSW 
Head. 
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Figure 3: Step Test Force Results and Filter 
Estimates for Run 1 with v = 2.6 mm/s and ω = 1600 
rpm. 
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Figure 4: Model Validation Run 1 with v = 2.6 mm/s 
and ω = 1600 rpm. 
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Figure 5: Model Validation Run 2 with v = 2.18 mm/s 
and ω = 1810 rpm. 
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Figure 6: Closed–Loop System Block Diagram with 
General Tracking Controller in SPC Structure. 
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 Figure 7: Controller Validation Run 1 with v = 2.18 
mm/s and ω = 1810 rpm. 
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 Figure 8: Controller Validation Run 3 with v = 2.6 
mm/s and ω = 1600 rpm. 
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 Figure 9: Controller Validation Run 5 with v = 2.18 
mm/s and ω = 1810 rpm. 
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