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Abstract— The output tracking problem of periodic reference
signals (of known period) for single-input single-output observ-
able minimum phase uncertain linear time-invariant systems
with unitary relative degree is considered. A continuous global
iterative learning control via output error feedback is designed
which guarantees closed loop boundedness and asymptotic
output tracking, thus improving the L2 convergence achieved
in [6]. Its closed loop performances are then compared with
those obtained by using the adaptive learning control in [2] and
the adaptive regulator in [5]: in particular the effects of finite
memory implementation, measurement noise and uncertainties
in the period of the output reference signal are explicitly taken
into account in the simulations.

I. INTRODUCTION

The problem of tracking an output reference signal for

single-input single-output uncertain linear systems on the ba-

sis of the output tracking error only constitutes an important

and challenging control problem: when reference signals are

periodic (of known period), learning control techniques (see

for instance [7] and [9]) may be succesfully applied to reduce

the output tracking error. An adaptive iterative learning

control is designed in [6] for relative degree one systems with

known high gain sign: only L2 output tracking is guaranteed.

On the other hand, the global adaptive learning control

proposed in [2] for observable minimum phase systems of

any known relative degree and known high gain sign, by

relying on a Fourier series expansion of the uncertain input

reference signal, is able to achieve exponential convergence

of both output tracking and input estimation errors to a

residual set (containing the origin) whose size can be ar-

bitrarily reduced. The estimation of a possibly large number

of Fourier coefficients may be however required leading to

a high order dynamic control. An analogous problem may

arise when the global adaptive regulator recently designed

in [5] for minimum phase observable systems of any known

relative degree and known high gain sign is used to track

periodic reference signals generated by possibly uncertain

linear exosystems (and thus of possibly uncertain period).

The continuous global iterative learning control designed

in this paper guarantees, for observable minimum phase

systems of relative degree one and known high gain sign,

asymptotic output tracking (which improves the L2 output
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tracking in [6]) without requiring any resetting procedure:

since infinite memory is required to store the control input

exerted in the preceding trial, a tracking error is to be

expected when a finite memory implementation is used. Nev-

ertheless the simple structure of the controller and the small

number of design parameters to be tuned regardless of the

nature of the periodic output reference signal (provided that

its period is known) are definite advantages. The property of

asymptotic output tracking and the continuity of the designed

learning control allows us to compare its performances with

those of the adaptive learning control in [2] and the adaptive

regulator in [5]: the effects of finite memory implementation,

measurement noise and uncertainties in the period of the

output reference signal are explicitly evaluated.

II. PROBLEM STATEMENT AND PRELIMINARY

COMPUTATIONS

Consider the single-input single-output observable min-

imum phase uncertain linear time-invariant system with

relative degree ρ = 1 [ζ ∈ Rn is the state vector, u ∈ R

is the control input, y ∈ R is the output to be controlled]

ζ̇ = Fζ + gu (1)

y = hζ

with transfer function [s ∈ C, bi ∈ R+, ai ∈ R, 1 ≤ i ≤ n]

W (s) =
b1s

n−1 + . . .+ bn

sn + a1sn−1 + . . .+ an

(2)

under the following assumptions: i) the sign of the high

frequency gain b1 is assumed to be known (positive without

loss of generality); ii) the zeroes of the polynomial π(s) =
b1s

n−1 + . . .+bn all belong to C−; iii) the uncertain vectors

a = [a1, . . . , an]T and b = [b1, . . . , bn]T belong to the closed

ball B(0)(aM ) ⊂ Rn with center the origin and known radius

aM and to the known compact set Sb = {ξ = [ξ1, . . . , ξn]T ∈
Rn : 0 < bi,m ≤ ξi ≤ bi,M , 1 ≤ i ≤ n} ⊂ Rn, respectively.

Let yr(t) ∈ C2 be the periodic reference signal for the output

y which is assumed to satisfy

yr(t+ T ) = yr(t) ∀ t ≥ −T
|y(i)

r (t)| ≤ My,i ∀ t ∈ [0, T ), i = 0, 1

in terms of the known positive reals T , My,0, My,1.

According to Theorems 7.1.1 (and subsequent Remark 7.1.2

and proof of Theorem 7.1.2) in [4] [pgs. 282-285], system (1)
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is transformable by a linear change of coordinates [ηT , y]T =
Qζ (Q ∈ M(n,R)) into

η̇ =
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y
.
= Γη + βy (3)

ẏ = η1 +

(

b2

b1
− a1

)

y + b1u
.
= η1 + γy + b1u.

Define the reference subsystem [ηr = [ηr,1, . . . , ηr,n−1]
T ∈

Rn−1]

η̇r(t) = Γηr(t) + βyr(t) (4)

with the initial value [I ∈ M(n−1,R) is the identity matrix]

ηr(0) = −
(

eΓT − I
)−1

∫ T

0

eΓ(T−τ)βyr(τ)dτ. (5)

The following lemmas will be instrumental in proving the

main result of the next section.

Lemma 1: The signal ηr(t) is periodic of period T , that is

ηr(t+ T ) = ηr(t) ∀ t ≥ −T.

Proof: For any t ≥ −T we have

ηr(t) =

∫ t

0

eΓ(t−τ)βyr(τ)dτ + eΓtηr(0)

ηr(t+ T ) =

∫ T+t

T

eΓ(t+T−τ)βyr(τ)dτ + eΓtηr(T )

so that

ηr(t+ T )− ηr(t) = eΓt [ηr(T ) − ηr(0)] = 0

owing to the periodicity of yr(t). To conclude the proof, it

suffices to observe that the matrix
(

eΓT − I
)

is invertible

since, according to assumption ii), the spectrum σ(Γ) of the

matrix Γ is a subset of C−. �

Lemma 2: The signal ηr(t) satisfies, for any t ≥ −T , the

following inequality:

‖ηr(t)‖ ≤ e‖Γ‖T ‖β‖My,0T
[

1 +
∥

∥

∥

(

eΓT − I
)−1

∥

∥

∥
e‖Γ‖T

]

with
∥

∥

∥

(

eΓT − I
)−1

∥

∥

∥
≤ 1

1 − ‖eΓT ‖

when ‖eΓT ‖ < 1.

Proof: The thesis is a straightforward consequence of

Lemma 1 and of the following facts [t ∈ [0, T )]:

‖ηr(t)‖ ≤
∫ t

0

‖eΓ(t−τ)‖‖β‖My,0dτ

+‖eΓt‖‖ηr(0)‖
−

(

eΓT − I
)−1

= I − eΓT
(

eΓT − I
)−1

. �

On the basis of Lemma 2, a known bound of ‖ηr(t)‖ can

be computed according to the definition of Γ and β in (3)

and assumption iii), while Lemma 1 guarantees that the input

reference signal

ur(t) =
1

b1
[ẏr(t) − γyr(t) − ηr,1(t)] , t ≥ −T, (6)

which achieves perfect tracking (see [3])) when η(0) = ηr(0)
and y(0) = yr(0), is periodic of period T , that is

ur(t+ T ) = ur(t), ∀ t ≥ −T.
Owing to the uncertainties on vectors a and b, the periodic

signal ur(t) given by (6) is uncertain and it is to be

reconstructed. However, since

|ur(t)| ≤ 1

b1,m

[My,1 + |γ|My,0 + ‖ηr(t)‖] ≤Mu

a known bound Mu of |ur(t)| can be computed according

to the definition of γ in (3), Lemma 2 and assumption iii).

III. ITERATIVE LEARNING CONTROL

The main result of this section, which is stated in the

following theorem, provides a continuous global iterative

learning control via output error feedback (ỹ = y − yr)

which, without requiring any resetting procedure, guarantees

boundedness of all closed loop signals and asymptotic output

tracking of the reference yr(t).
Theorem: Consider system (1) under the assumptions i)-

iii). For any initial condition ζ(0) ∈ Rn, boundedness of all

closed loop signals and the asymptotic property

lim
t→∞

[y(t) − yr(t)] = 0

are guaranteed by the continuous iterative learning control

u(t) = −kỹ(t) + ûr(t)

ûr(t) = ûr(t− T ) − µϕ(t)ỹ(t) (7)

ûr(q) = 0 ∀ q ≤ 0

in which ϕ(t) is a class C1 increasing function for t ∈ [0, T ]
with ϕ(0) = 0 and ϕ(T ) = 1, defined, for t > T , as

ϕ(t) =

{

1 if C∗1 or C∗2 or C∗3
(

1 − sat(ûr(t−T ))−Mu

δ

)

if C∗4 or C∗5
C∗1 : |ûr(t− T )| ≤Mu

C∗2 : ûr(t− T ) > Mu and ỹ(t) > 0

C∗3 : ûr(t− T ) < −Mu and ỹ(t) < 0

C∗4 : ûr(t− T ) > Mu and ỹ(t) ≤ 0

C∗5 : ûr(t− T ) < −Mu and ỹ(t) ≥ 0
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sat(q) is the saturation function

sat(q) =

{

|q| if |q| ≤Mu + δ

Mu + δ otherwise

k is a suitable positive control parameter while µ, δ are

arbitrary positive reals. Furthermore, if the resulting ûr(t)
is uniformly continuous for all t ≥ 0, then

lim
t→∞

[ur(t) − ûr(t)] = 0.

Proof: Define the tracking and estimation errors

η̃(t) = η(t) − ηr(t) = [η̃1(t), . . . , η̃n−1(t)]
T

ũr(t) = ur(t) − ûr(t)

so that by (3), (4), (6) and (7) we obtain [ỹ(t) = y(t)−yr(t)]

˙̃y(t) = η̃1(t) + γỹ(t) − b1kỹ(t) − b1ũr(t)

˙̃η(t) = Γη̃(t) + βỹ(t). (8)

Note that, according to the definition of ϕ(t) (see [8]) and

ûr(t) in (7), the control signal u(t) in (7) is a continuous

function.

Consider the quadratic function

Vη(η̃) = η̃TPη η̃ (9)

in which Pη ∈ M(n−1,R) is the positive definite symmetric

solution of the Lyapunov equation

PηΓ + ΓTPη = −I.

The time derivative of function Vη along the trajectories of

the closed loop system satisfies

V̇η(t) ≤ −‖η̃(t)‖2 + 2‖Pη‖‖β‖‖η̃(t)‖|ỹ(t)|
.
= −‖η̃(t)‖2 +Nη‖η̃(t)‖|ỹ(t)|. (10)

Following the ideas in [1], we consider the function

V (t) = Vη(η̃(t)) +
1

2b1
ỹ2(t) +

1

2µ

∫ t

t−T

ũ2
r(τ)dτ (11)

whose time derivative along the trajectories of the closed

loop system satisfies

V̇ (t) ≤ −‖η̃(t)‖2 + Ñη‖η̃(t)‖|ỹ(t)|

−
(

k − |γ|
b1

)

ỹ2(t) − ũr(t)ỹ(t)

+
1

2µ
ũ2

r(t) −
1

2µ
ũ2

r(t− T )

= −‖η̃(t)‖2 + Ñη‖η̃(t)‖|ỹ(t)|

−
(

k − |γ|
b1

)

ỹ2(t) − ũr(t)ỹ(t)

+
1

2µ
ũ2

r(t) −
1

2µ
[ũr(t) − µϕ(t)ỹ(t)]

2

≤ −‖η̃(t)‖2

2
− (k −Mη)ỹ2(t)

+ [ϕ(t) − 1] ũr(t)ỹ(t) (12)

with Ñη = Nη + 1
b1

and Mη is a known positive bound of
(

Ñ2

η

2 + |γ|
b1

)

according to assumption iii). Choose

k = ky + km

km ≥ Mη

so that, according to (7), we obtain

V̇ (t) ≤ −‖η̃(t)‖2

2
− ky ỹ

2(t)

+ [ϕ(t) − 1] [ur(t) − ûr(t− T )] ỹ(t)

+µ [ϕ(t) − 1]ϕ(t)ỹ2(t)

≤ −‖η̃(t)‖2

2
− ky ỹ

2(t) (13)

+ [ϕ(t) − 1] [ur(t) − ûr(t− T )] ỹ(t).

The definition of ϕ(t) guarantees that for t > T

V̇ (t) ≤ −‖η̃(t)‖2

2
− ky ỹ

2(t) (14)

while for t ∈ [0, T ], from (13) we can write

V̇ (t) ≤ −‖η̃(t)‖2

2
− ky ỹ

2(t) +
M2

u

2ky

. (15)

Accordingly, ỹ(t) and η̃(t) are bounded for all t ≥ 0 so

that (7) guarantees that ûr(t) is bounded for all t ≥ 0 (and

therefore u(t) is bounded for all t ≥ 0). Since, according

to (8), ˙̃y(t) and ˙̃η(t) are bounded for all t ≥ 0, ỹ2(t) and

‖η̃(t)‖2 are uniformly continuous for all t ≥ T and therefore,

according to (14), by Barbalat Lemma

lim
t→∞

[

ỹ2(t) + ‖η̃(t)‖2
]

= 0 (16)

which implies

lim
t→∞

[ỹ(t)] = 0.

If the resulting ûr(t) is uniformly continuous for all t ≥ 0,

then, according to (8), ˙̃y(t) is uniformly continuous for all

t ≥ 0 and therefore, by Barbalat Lemma,

lim
t→∞

[

˙̃y(t)
]

= 0

which, according to (8), implies

lim
t→∞

[ur(t) − ûr(t)] = 0.

Remark 1: The control algorithm (7) incorporates a data

storage mechanism and formally requires infinite memory.

In real applications, a finite-dimensional realization (for

instance Padé realization) of the delay operator may be

required. When the delay operator is approximated by a

linear finite-dimensional system and ϕ ≡ 1, the control

algorithm (7) reduces to a linear finite-dimensional system.
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IV. ADAPTIVE LEARNING CONTROL AND ADAPTIVE

REGULATOR

A. Adaptive Learning Control

The adaptive learning control law presented in [2] [c1 is a

suitable positive control parameter, c2 is an arbitrary positive

real, p > 1 is an odd integer, i = 1, ..., (p−1)
2 ]

u(t) = −c1ỹ(t) − ΦT (t)θ̂(t)
.
= −c1ỹ(t) + ûr(t)

˙̂
θ(t) = c2Φ(t)ỹ(t)

Φ(t) = [Φ1(t), . . . ,Φp(t)]
T (17)

Φ1(t) = 1

Φ2i(t) =
√

2 sin

(

2πi

T
t

)

Φ2i+1(t) =
√

2 cos

(

2πi

T
t

)

does not require previously stored data and relies on a Fourier

series expansion (with Fourier coefficients θi) of the uncer-

tain input reference ur(t). Under persistency of excitation,

the output tracking error is guaranteed to converge to a

residual set (containing the origin) which can be arbitrarily

reduced by increasing the number of the estimated Fourier

coefficients θ̂i(t), while exponential output tracking along

with uncertain input estimation may be achieved in the case

of finite Fourier series expansion of ur(t).

B. Adaptive Regulator

The adaptive regulator designed in [5] [kr, rΩ2
are suitable

positive control parameter, λ, ǫr are arbitrary positive reals,

m̄ ∈ N, Ī is the identity matrix in M(2m̄+ 1,R), Ej is a

vector of suitable dimension with all zero entries excepting

for the j-th unitary element (3 ≤ j ≤ 2m̄ + 1), D is a

Hurwitz matrix, grad(·) is the gradient vector]

u(t) = −kr ỹ(t) − χ̂1(t) − ν(t)T ϑ̂(t)
.
= −kr ỹ(t) + ûr(t)

˙̂χ(t) = Dχ̂(t) − d̄u(t)

ξ̇i(t) = Dξi(t) + [0, Ī]E2i+1u(t)

νi(t) = [1, 0, . . . , 0]ξi(t), 1 ≤ i ≤ m̄ (18)

˙̂
ϑ(t) = λProj[ν(t)ỹ(t), ϑ̂(t)]

χ̂(t) = [χ̂1(t), . . . , χ̂2m̄+1(t)]
T

ν(t) = [ν1(t), . . . , νm̄(t)]T

D =















−d2 1 0 · · · 0
−d3 0 1 · · · 0

...
...

...
. . .

...

−d2m̄+1 0 0 · · · 1
−d2m̄+2 0 0 · · · 0















d̄ = [d2, . . . , d2m̄+2]
T

Proj[ψ, ϑ̂] = ψ if pr(ϑ̂) ≤ 0

Proj[ψ, ϑ̂] = ψ if pr(ϑ̂) > 0 and 〈grad[pr(ϑ̂)], ψ〉 ≤ 0

Proj[ψ, ϑ̂] = Ξ if pr(ϑ̂) > 0 and 〈grad[pr(ϑ̂)], ψ〉 > 0

Ξ =

[

I − pr(ϑ̂)grad[pr(ϑ̂)]grad[pr(ϑ̂)]T

‖grad[pr(ϑ̂)]‖2

]

ψ

pr(ϑ̂) =
‖grad[pr(ϑ̂)]‖2 − r2Ω2

ǫ2r + 2ǫrrΩ2

achieves output tracking of reference signals and/or rejection

of disturbances generated by a linear uncertain exosystem:

asymptotic regulation is guaranteed when the exosystem is

overmodeled, while both exponential regulation and estima-

tion of the uncertain excited frequencies are obtained when

the exosystem is exactly modeled. Robustness with respect to

unmodeled exosystem dynamics is however guaranteed: the

output tracking error is exponentially reduced to a residual

set (containing the origin) whose size decreases as the order

of the unmodeled dynamics decreases.

Remark 2: The adaptive regulator (18) relies on an estimate

ϑ̂(t) of the uncertain exosystem parameters grouped in the

vector ϑ; in the case of periodic references the control algo-

rithm (18) shows a linear parameterization of the uncertain

period (not required to be known by the controller (18)), so

that when the exosystem is known and ϑ̂ ≡ ϑ the controller

(18) reduces to a linear one.

V. SIMULATION RESULTS

We consider the single-input single-output observable

minimum phase uncertain linear time-invariant system with

known relative degree ρ = 1 (see [2])

ẋ1(t) = x2(t) + bu(t) + a1y(t)

ẋ2(t) = bu(t) + a2y(t)

y(t) = x1(t)

with zero initial conditions and uncertain parameters a1 =
−2.5, a2 = −0.5, b = 2 belonging to the known compact

sets [−3, 3], [−4, 4], [1, 3], respectively. The control algo-

rithms (7), (17) and (18) are tested with control parameters:

k = 40, µ = 60, δ = 1, Mu = 6, ϕ(t) = t3

T 3 (0 ≤ t ≤ T ),

c1 = 22.13, c2 = 2, p = 7, kr = 2.3, λ = 110,

d̄ = [7, 21, 35, 35, 21, 7, 1]T , rΩ2
= 2, ǫr = 1, m̄ = 3. A

tenth order Padé realization of the delay operator is used for

the implementation of the iterative learning control (7). The

Bode diagrams of the closed loop system with the controllers

(7) and (17) (which are linear with ϕ ≡ 1 and ϑ̂ ≡ ϑ) are

reported in Fig. 1.

A. Case 1

The class C2 output reference signal (see Fig. 2(a)) [p0 =
−0.5, p1 = 1.0, p̄1 = 0.2, p2 = −1.5, p̄2 = 1.7, p3 = 2.3,

p̄3 = −0.8, q0 = −1.7, q1 = −6.3, q̄1 = 0.2, q2 = −1.5,

q̄2 = 1.7, q3 = 2.3, q̄3 = −0.8]

yr(t) =

{

p0 +
∑3

i=1 (pi sin(ωit) + p̄i sin(ωit)) if t ≤ 4T

q0 +
∑3

i=1 (qi sin(̟it) + q̄i sin(̟it)) if t > 4T

with ωi = 2πT−1 and ̟i = 2π(T + ∆T )−1 (i = 1, 2, 3)

is periodic of period T = 20 s (which is known to the

controllers (7) and (17) and uncertain to the controller (18))
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for t ≤ 80 s and periodic of period T +∆T = 18 s (which is

unknown to the controllers (7) and (17) and uncertain for the

controller (18)) for t > 80 s. In this case, the uncertain input

reference signal ur(t) is generated by a third order exosystem

and admits a finite Fourier series expansion so that exponen-

tial output tracking and uncertain input estimation can be

achieved by the controller (17) when the period T is known

and by the controller (18) even in the case of uncertain period

T . Figures 2(b)-2(d) show the output tracking error ỹ(t)
while the uncertain input reference signal ur(t) along with

the corresponding estimation errors are reported in Figs. 3(a)-

3(d). While satisfactory performances are achieved by the

control algorithms (7) and (17), only the adaptive regulator

(18) is able to guarantee exponential output tracking despite

period T perturbations. The estimates θ̂i(t) of the Fourier

coefficients θi of the uncertain input reference signal ur(t)
provided by the controller (17) are reported in Fig. 4(a):

while parameter identification is obtained when the period T

is known, estimation errors appear when period perturbation

occurs. On the other hand, the adaptive regulator (18), which

does not require the exosystem knowledge, achieves good

estimation of the uncertain exosystem parameter vector ϑ

(see Fig. 4(b)) even in the perturbed case.

B. Case 2

The class C2 (square wave-type) output reference signal

(see Fig. 5(a)) is periodic of period T = 20 s (which is

known to the controllers (7) and (17) and uncertain to the

controller (18)). In this case, the adaptive learning control

(17) (with p = 7) does not incorporate a sufficient number of

Fourier coefficient estimates while the adaptive regulator (18)

(with m̄ = 3) undermodels the exosystem, so that non-zero

steady-state output tracking errors appear (see Figs. 5(c)-

5(d)). On the other hand, the iterative learning control (7) is

able to achieve satisfactory output tracking (see Fig. 5(b)).

The good performances obtained by the iterative learning

control (7) in comparison with the control algorithms (17)

and (18) can be still guaranteed even when white noise (see

Fig. 6(a)) affects the output tracking error measurement: as

Figs. 6(b)-6(d) show, a steady-state output traking error of

about 10% appears.

VI. CONCLUSIONS

A solution to the output tracking problem for the relative

degree one system (1) has been presented: the continuous

global iterative learning control (7) guarantees, without re-

quiring any resetting procedure, asymptotic output tracking

of periodic reference signals (of known period) along with

closed loop boundedness. The effects of finite memory

implementation, measurement noise and uncertainties in the

period of the output reference signal have been evaluated

by a comparative study with respect to the adaptive learning

control in [2] and to the adaptive regulator in [5]. Satisfactory

performances are obtained, which, along with the simple

structure of the controller and the small number of design

Fig. 1. Bode diagrams: uncontrolled system (solid); closed loop system
with the iterative learning control (dash); closed loop system with the
adaptive regulator (dot).

parameters to be tuned make the proposed solution suitable

for applications.

Fig. 2. (a) Output reference signal yr(t). Output tracking error ỹ(t):
(b) iterative learning control; (c) adaptive learning control; (d) adaptive
regulator.
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Fig. 5. (a) Output reference signal yr(t). Output tracking error ỹ(t):
(b) iterative learning control; (c) adaptive learning control; (d) adaptive
regulator.

Fig. 6. (a) White noise affecting ỹ(t). Output tracking error ỹ(t):
(b) iterative learning control; (c) adaptive learning control; (d) adaptive
regulator.
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