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Abstract— The stability of a feedback interconnection of
a linear time invariant (LTI) system and a slope-restricted
nonlinearity is revisited. Unlike the normal treatment of this
problem, in which multipliers are explicitly chosen and then
stability conditions checked, this paper derives existence con-
ditions for a sub-class of these multipliers, namely those which
are L1 bounded, stable, causal and of order equal to the LTI
part of the system. It is proved that for the single-input-single-
output (SISO) case, these existence conditions can be expressed
as a set of linear matrix inequalities (LMIs) and thus can be
solved efficiently with modern optimisation software. Examples
illustrate the effectiveness of the results.

I. INTRODUCTION

Many researchers have studied the feedback interconnec-
tion of an LTI system and a nonlinearity of a given form; for
example see [1], [2], [3], [4], [5], [6], [7] and the references
therein. When all that is known is that the nonlinearity is
sector bounded, the Circle Criterion gives an efficient method
for stability analysis. When the nonlinearity is also time
invariant, the Popov Criterion may be used to study stability.
When, in addition, the nonlinearity is slope restricted, it
is well known that asymptotic stability can be established
by proving the existence of an L1 bounded diagonally
dominant multiplier [2], [8], [9], [1]. Such systems are of
tremendous importance in control engineering because many
control problems of practical interest are fundamentally of
this form. One is particularly reminded of constrained control
problems, where the saturation element is the nonlinearity
under consideration (see for example [10], [11], [12]); and
the anti-windup problem, where effectively the deadzone
nonlinearity is typically used (see for example [13], [14] and
the references therein).

Over recent years, the integral quadratic constraint (IQC)
method [1], [9], [15] has become a convenient way of both
framing and solving problems involving systems containing
LTI parts and slope-restricted nonlinearities. Reference [15]
is particularly relevant as this allows the stability analysis
problem to be solved by seeking multipliers which are
L1 bounded and diagonally dominant (rather than just diag-
onal), enabling the conservatism of the previous results to be
reduced. Work by Safanov and colleagues ([7], [16]) proved
that the whole class of multipliers which one can choose
for stability analysis does not even have to be symmetric
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and thus, by judicious choice of multiplier, one could prove
stability of systems which were hitherto not proven to be
stable despite being suspected of being so.

Although the work of [15] and [7], [16] proves that there
exists a very large class of multipliers which can enable
a system of the above type to be proved stable, there is
currently no systematic way of choosing these multipliers.
Typically, engineering judgement is used to “guess” the
multiplier structure (e.g. order, pole location) and then,
for example, the IQC toolbox [9] can be used to check
whether indeed a given system can be proved stable - with
that particular selection of multiplier. A similar approach
is proposed in [17] where again the engineer is required
to choose multipliers of a given form and then iterate
in order to compute a satisfactory solution. While these
approaches seem effective for simple systems and while
useful improvements in the stability margins/L2 gains have
been demonstrated, it is likely that, for complex systems, a
more systematic way of choosing multipliers is required.

In contrast to the above, Park [6] has studied the same
problem by proposing a new type of Lur’e-Postnikov Lya-
punov function. The examples included in [6] demonstrate
that the method proposed therein is one of the least con-
servative methods for the Lur’e problem and, moreover,
it is convex. The solution given in [6] is derived in a
similar manner to the standard Popov criterion, although
the manipulations involved are more intricate and care is
required in casting the problem as a linear matrix inequality.
Furthermore, effectively Park’s method imposes a certain
choice of multiplier on the system and hence, although it
is more general than the Popov Criterion, does not exploit
the full freedom in multiplier choice which is present in the
work of [2] (or the later results of [15], [16], [17]).

This paper improves on the current results (notably [6]) by
translating the choice of multipliers to an existence problem
using LMIs. Although some conservatism is introduced in
this translation (the multipliers are restricted to be causal and
of order equal to that of the linear part of the system), the
method proposed is systematic and requires few parameters
to be chosen when the criterion is applied. We emphasise
that we do not actually wish to compute these multipliers,
we simply wish to prove that they exist - which is all that is
required in order to prove stability. The problem is cast in
an IQC framework and then a nonlinear change of variables
as proposed by [18], along with standard “tricks” popular
in convex optimisation, are used to “linearise” the matrix
inequalities. We only treat SISO systems in this paper but the
results are, in principle, extendable to multivariable systems.

Notation. Notation is standard throughout. The L2 norm
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of a vector valued function x(t) is defined as ‖x‖2 :=√
∫
∞

0
‖x(t)‖2dt where ‖x‖ denotes a vector’s Euclidean

norm; the space of functions where this norm is finite is
denoted L2. Likewise, the L1 norm is defined as ‖x‖1 :=
∫
∞

0
‖x(t)‖dt; the space where this norm is finite is denoted

L1 . The space of real rational transfer function matrices,
bounded on the imaginary axis is denoted by RL∞; the
subspace of RL∞ which is analytically continuous in the
right half complex plane is denoted RH∞. With some abuse
of notation we say that a transfer function matrix H(s) ∈ L1

if its impulse response, h(t) is in L1 . An operator H is
described as bounded if ‖H(u)‖ ≤ γ‖u‖ for all u ∈ L2

and some γ > 0. A function φ(.) is said to have a slope
restriction [0, α] if

0 ≤
φ(x) − φ(y)

x − y
≤ α ∀x, y ∈ R, α > 0

We use the shorthand notation φ ∈ ∂[0, α] to indicate that
a function has this property. Note that the slope restriction
is stronger than the related sector condition ([19]). Simply
multiply all terms of the slope inequality by (x − y)2 > 0
and set y = 0. Then if φ(0) = 0 it follows that

φ(x)x ≤ αx2

and thus every slope restricted nonlinearity is also sector
bounded.

II. IQC FRAMEWORK

PSfrag replacements

φ(.)

P (s)
+

u y

Fig. 1. System under consideration

Consider Figure 1 in which P (s) is the LTI part of the
system with state-space realisation

P (s) ∼

[
Ap Bp

Cp Dp

]

(1)

where Ap ∈ R
n×n, Bp ∈ R

n×1, Cp ∈ R
1×n, Dp ∈ R

1×1

and φ : R 7→ R is a static nonlinearity satisfying the
following assumption.

Assumption 1: φ(.) : R 7→ R satisfies the following
properties:

i) It is bounded, odd and φ(0) = 0
ii) It has slope restriction ∂φ ∈ [0, α]

A φ(.) which satisfies the above is said to belong to NS .
Without loss of generality, the lower gradient of the slope

is assumed to be zero; if this is not the case, loop-shifting

can be used to pose an equivalent problem where the “loop-
shifted” nonlinearity, φ̃ is such that ∂φ̃ ∈ [0, α̃]. It is now
reasonably well known ([9], [1], [15]) that φ(.) ∈ NS

satisfies the IQC defined by
∫

∞

−∞

[
ŷ(jω)
û(jω)

]?

Π(jω)

[
ŷ(jω)
û(jω)

]

dω ≥ 0 (2)

where û(jω) and ŷ(jω) are the Fourier Transforms of u(t)
and y(t) respectively, and Π(jω) is given by

Π(jω) =

[
0 αM?(jω)

αM(jω) −M?(jω) − M(jω)

]

(3)

The transfer function M(s) - the “multiplier” - belongs to
the following class, MS , of functions, normally referred to
as the Zames-Falb multipliers ([2]).

Definition 1: A transfer function M(s) := H0 − H(s) ∈
RL∞ is said to belong to the set MS if H0 > 0 and H(s) ∈
L1 is such that ‖H(s)‖1 ≤ H0.
When M(s) ∈ MS , the IQC (2)-(3) captures the largest class
of “multipliers” for φ(.) ∈ NS . In the more general case
that φ(.) is vector valued, [15] has provided more general
multipliers and more recently [16] has derived the largest
class of multipliers. For our work, M(s) ∈ MS will be
sufficient. The basic stability result (stated in an IQC context)
for the system in Figure 1 can therefore be stated by re-
writing the results in [1], [15] as the following Theorem.

Theorem 1: Consider Figure 1 where P (s) ∈ RH∞ and
φ ∈ NS satisfies the IQC defined by (2) and (3) where
M(s) ∈ MS . Assume that the closed loop system is well-
posed. Then the system is asymptotically stable if

[
P (jω)

I

]?

Π(jω)

[
P (jω)

I

]

< 0 ∀ω ∈ R (4)

Thus stability of the system essentially reduces to finding
suitable H0 > 0 and H(s) ∈ L1 such that inequality (4)
holds. Our first result, which is derived in a similar manner
to [15] shows how (4) can be interpreted as a (nonlinear)
matrix inequality.

Proposition 1: The system depicted in Figure 1 is stable
if there exists a real symmetric matrix P = P ′, a scalar
H0 > 0 and a transfer function

U(s) ∼

[
Au Bu

Cu Du

]

(5)

where ‖U(s)‖1 ≤ 1 such that the following matrix inequality
is satisfied.

[
A′

IP + PAI PBI + C ′

IH0

? −H0DI − D′

IH0

]

< 0 (6)

where the matrices AI , BI , CI , DI are defined in the ap-
pendix.

Proof: See appendix.
Remark 1. Inequality (6) closely resembles the Cir-

cle Criterion but instead of the original plant ma-
trices (Ap, Bp, Cp, Dp), an “extended” set of matrices
(AI , BI , CI , DI) is involved instead. In fact, when U(s) ≡
0, inequality (6) does indeed reduce to the Circle Criterion.
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



S11Ap + A′

pS11 S11Ap + A′

pP11 − αC ′

pBu

′ + Au

′
S11Bp + αC ′

p − αC ′

pDu + C
′

u

? A′

pP11 + P11Ap − BuαCp − αC ′

pBu

′
P11Bp + Bu(I − αDp) + αC ′

p − αC ′

pDu

′

? ? −(I − Du)(I − αDp) − (I − αDp)
′(I − Du)′



 < 0(9)

[
−Au − Au

′ + λ(P11 − S11) Bu

? −µ

]

< 0 (10)





λ(P11 − S11) 0 Cu

′

? 1 − µ Du

′

? ? 1



 > 0 (11)











ApQ11 + Q11A
′

p

Ap + Q11A
′

pP11

−αQ11C
′

pB
′

uP ′

12
+ Q12A

′

uP ′

12

Bp + αQ11C
′

pH0

−αQ11C
′

pD
′

uH0 + Q12C
′

uH0

?
P11Ap + A′

pP11

−αP12BuCp − αC ′

pB
′

uP ′

12

P11Bp + P12Bu(I − αDp)
+αC ′

pH0 − αC ′

pD
′

uH0

? ?
−(I − αDp)

′(I − D′

u)H0

−H0(I − Du)(I − αDp)











< 0 (14)











S11Ap + A′

pS11

S11Ap + A′

pP11

−αC ′

pB
′

uP ′

12
+ S11Q12A

′

uP ′

12

S11Bp + αC ′

pH0

−αC ′

pD
′

uH0 + S11Q12C
′

uH0

?
P11Ap + A′

pP11

−αP12BuCp − αC ′

pB
′

uP ′

12

P11Bp + P12Bu(I − αDp)
+αC ′

pH0 − αC ′

pD
′

uH0

? ?
−(I − αDp)

′(I − D′

u)H0

−H0(I − Du)(I − αDp)











< 0 (15)

III. MAIN RESULTS

The results as they appear in Proposition 1 are not con-
venient for checking existence of multipliers because they
involve, explicitly, the state-space matrices of the multiplier
in inequality (6) and then the transfer function U(s) must
then be checked to ensure that ‖U(s)‖1 ≤ 1. In general,
U(s) may be of arbitrary order and may be non-causal. In
order to manipulate inequality (6) into a more tractable form,
we restrict our attention to a limited class of multipliers. Thus
throughout the remainder of the paper we make the following
assumption.

Assumption 2: The transfer function U(s) is stable with
state-space realisation

U(s) ∼

[
Au Bu

Cu Du

]

where Au ∈ R
n×n, Bu ∈ R

n×1, Cu ∈ R
1×n and Du ∈

R
1×1.
The above assumption ensures that U(s) is stable, causal

and is of the same order as P (s).
In [18] it was proved that a transfer function matrix U(s)

was such that ‖U(s)‖1 ≤ ξ if there exist a matrix Y = Y ′ >
0 and scalars λ > 0 and µ > 0, such that the following
inequalities hold:[

A′

uY + Y Au + λY Y Bu

? −µI

]

< 0 (7)




λY 0 C ′

u

? (ξ − µ)I D′

u

? ? ξI



 ≥ 0 (8)

Although this is conservative in the sense that the above
inequalities are only sufficient for ‖U(s)‖1 ≤ ξ, they are

relatively straightforward to check and may be combined
conveniently with inequality (6). Thus the aim is to combine
inequality (6) (the basic “stability” inequality) with the “L1 ”
inequalities (7) and (8) to arrive at a convenient way of
proving the existence of a multiplier which ensures the
stability of the system depicted in Figure 1. The following
is the main result of the paper.

Proposition 2: Under Assumption 2, Theorem 1 is sat-
isfied if there exist positive definite symmetric matrices
S11 > 0,P11 > 0, (unstructured) matrices Au,Bu,Cu,
Du, and scalars µ > 0 and λ > 0 such that inequalities (9),
(10) and (11) are satisfied.

Proof: There exists a transfer function U(s), where
‖U(s)‖1 ≤ 1, if inequalities (7) and (8) are satisfied with
ξ = 1. Furthermore, from Proposition 1, we know that
if in addition to ‖U(s)‖1 ≤ 1, inequality (6) holds, then
Figure 1 is stable. Thus the proof is essentially one of
converting inequalities (6), (7) and (8) into those given in
the Proposition. It proceeds in several stages.

Main congruence transformation. Taking inspiration from
[18], we consider the matrix P = P ′ > 0 (with P = P ′

following from Proposition 1) and its inverse P−1 =: Q. By
Assumption 2, U(s) is the same order as P (s) and thus it
follows that Q,P ∈ R

2n×2n. Partitioning these into n × n
sub-matrices it follows that

[
Q11 Q12

Q′

12
Q22

] [
P11 P12

P ′

12
P22

]

=

[
I 0
0 I

]

(12)

where P11, P22, P12, Q11, Q22, Q12 are all full rank. Next
consider the full rank matrices
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[
Q12A

′

uP22Q
′

12
/H0 + Q12P22AuQ′

12
/H0 + λQ12P22Q

′

12
/H0 Q12P22Bu/H0

? −µ

]

< 0 (22)

[
−Q12A

′

uP ′

12
Q11/H0 − Q11P12AuQ′

12
/H0 − λ(Q11 − Q11P11Q11)/H0 −Q11P12Bu/H0

? −µ

]

< 0 (23)

[
−S11Q12A

′

uP ′

12
/H0 − P12AuQ′

12
S11/H0 − λ(S11 − P11)/H0 P12Bu/H0

? −µ

]

< 0 (24)

Π1 :=

[
Q11 I
Q′

12
0

]

Π2 :=

[
I 0

P11 P12

]

(13)

It follows by direct calculation that Π′

1
P = Π2.

Main stability LMI. Applying the congruence transforma-
tion diag(Π′

1
, I) to inequality (6) we obtain, after some ma-

nipulations, inequality (14). Applying a further congruence
transformation diag(Q−1

11
, I, I) =: diag(S11, I, I) then leads

to (15). Dividing inequality (15) by H0 > 0 (as H0 is scalar),
and defining

S11 := S11/H0 (16)
P11 := P11/H0 (17)
Au := P12AuQ′

12
S11/H0 (18)

Bu := P12Bu/H0 (19)
Cu := CuQ′

12
S11 (20)

Du := Du (21)

then yields the first LMI in the Theorem.
First L1 LMI. Assuming that Y = P22/H0 in inequality

(7) and using the congruence transformation diag(Q12, I)
gives inequality (22). Next, from equation (12) it follows that
Q12P22 = −Q11P12. Using this in (22) and noting further
from equation (12) that Q11P12Q

′

12
= Q11(I − P11Q11),

then yields (23). Then, using the congruence transformation
diag(Q−1

11
,−I) = diag(S11,−I) yields (24). Using equa-

tions (16)-(19), then yields inequality (10) in the proposition.
Second L1 LMI. Letting ξ = 1 and replacing Y with

P22/H0 in inequality (8) and applying the congruence trans-
formation diag(Q−1

11
Q12, I, I) gives, after similar working to

the above, the following inequality.




−λ(S11 − P11)/H0 0 S11Q12C
′

u

? 1 − µ D′

u

? ? 1



 ≥ 0 (25)

Making this inequality strict and recalling equations (16)-
(21) then yields inequality (11).

Ensuring P > 0. P > 0 is equivalent to Π′

1
PΠ1 > 0,

which can be written as

Π′

1
PΠ1 =

[
Q11 I
I P11

]

> 0 (26)

This is equivalent, by the Schur complement, to P11−S11 >
0. As H0 > 0, this will hold if and only if P11 − S11 > 0,
which is guaranteed by inequality (11). ��

Remark 1 - conservatism. Proposition 2 is conservative:
the system in Figure 1 may be stable even if the inequalities

in Proposition 2 are not satisfied. There are two main sources
of conservatism.

1) The class of multipliers is restrictive: in general
M(s) ∈ MS need only be such that M(s) ∈ RL∞

and ‖H(s)‖1 ≤ H0; it need not even be causal.
However, as Proposition 2 is proved under Assumption
2, which restricts the multiplier to be stable, causal
and of order equal to that of the plant, significant
conservatism may be present. Nevertheless, this class
of multipliers is still more general than those con-
sidered in existing convex results, such as the Circle
and Popov Criteria and Park’s results. Therefore the
stability results offered by Proposition 2 will be no
more conservative than existing results and possibly
much less (see later examples). For fixed α > 0 and
λ > 0, the inequalities in Proposition 2 are convex and
easy to solve; we trade conservatism for efficiency.

2) To enforce the L1 bound ‖U(s)‖1 ≤ 1, we make use
of inequalities (7) and (8) which may be very conser-
vative. Furthermore, because P22 is part of the main
Lyapunov matrix, P , and is used in Y = P22/H0 >
0 to enforce the L1 bound, additional conservatism
may be introduced. For this reason, when solving the
inequalities in Proposition 2, it is often better to replace
inequality (11) with





−λ(S11 − P11) 0 Cu

′

? γ1 − µ Du

? ? γ1



 ≥ 0 (27)

where γ1 > 1 is chosen slightly greater than unity to
“relax” the LMI’s. Normally when the multipliers are
constructed and the L1 gain of U(s) is then calculated
it is less than unity. �

Remark 2 - convexity. For fixed α > 0 and λ > 0, the
inequalities (9)-(11) in Proposition 2 are LMIs and easily
solved by standard convex optimisation software. Thus if
the slope of the nonlinearity is known, closed-loop stability
can be easily determined. Alternatively, if the objective is
to compute the maximum slope, α > 0, for which stability
holds, the optimisation problem is only quasi-convex. In this
case a bisection algorithm (similar to that for computing
generalised eigenvalues) can be used in conjection with LMI
solvers to compute the largest α > 0 yielding stability. It is
important to note that a lower bound on α will be zero and an
upper bound will be the gain margin of the open-loop system.
In the authors’ experience, commencing the bisection just
below the gain margin gives fast convergence. λ > 0 must
be chosen by the designer, but it usually suffices to choose
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it reasonably small (e.g. λ = 10−5) although some tuning
maybe required. �

IV. EXAMPLES

This section compares the results obtained using the
method proposed in this paper to existing methods in the
literature. Similar to [6] we consider several systems P (s)
and attempt to compute the maximum size slope (or sector)
for which we are able to guarantee stability. The methods
to which we compare our result are the standard Circle
Criterion and the method of Park [6]. The method of [6]
contains the Popov Criterion as a special case and has been
demonstrated to be less conservative than the methods of
Haddad and Kapila [3], Suykens et al.[4] and Chen and
Wen [20]. Park’s method is also convex, making it easy to
compute solutions. The transfer functions of the systems we
consider are listed in Table I (because we assume a positive
feedback convention, the transfer functions have opposite
sign to those given in [6]).

The results of the comparison performed are shown in
Table II. For the computation of these results, λ = 10−5,
and, as suggested in Remark 1, to add flexibility in the LMI’s,
inequality (11) was replaced by inequality (27) with γ1 =
1.1. The slope size is taken to be equivalent to the sector
size when comparing to the Circle Criterion.

The first two examples confirm that our results are no
more conservative than Park’s results but are a notable
improvement on the standard Circle Criteria. The third and
fourth examples are more interesting because although Park’s
algorithm gives vast improvements over the Circle Criterion,
the slopes for which stability is guaranteed are still rather
small. However, our new results improve upon Park’s results
by several orders of magnitude and clearly show the benefit
of using a wider class of multipliers and the accompanying
LMI-based algorithm from Proposition 2. Note that in all
cases, despite using the “relaxed” inequality (27) instead of
(11), ‖U(s)‖1 ≤ 1 as required.

Remark 3 - multiplier reconstruction It is emphasized
that the results here do not require the multiplier to be re-
constructed; they simply prove the existence of a multiplier
which would then imply stability. However, given solutions
to the inequalities in Proposition 2, one can then construct a
multiplier on the basis of these. In particular, by selecting an
(arbitrary) H0 > 0, from equations (16) and (17) we have

P11 = H0P11, S11 = H0S11 (28)

Using equation (12) with P22 = I , it then follows that

P12P
′

12
= P11S

−1

11
P11 − P11 (29)

Q′

12
S11 = P−1

12
(S11 − P11) (30)

Together with equations (18)-(21), these can then be used to
determine U(s) ∼ (Au, Bu, Cu, Du). A list of multipliers
returned by the optimisation process is given in Table III.
The gain of these multipliers can be scaled by a positive
scalar without affecting the stability result (this is equivalent
to changing H0 > 0). Finally, it should be mentioned that
poor numerical conditioning may arise in the reconstruction

Example P(s) Source

1 P1(s) = − s
2
−0.2s−0.1

s
3+2s

2+s+1
[3]

2 P2(s) = −P1(s) [6]
3 P3(s) = − s

2

s
4+0.0003s

3+10s
2+0.0021s+9

[20]
4 P4(s) = −P3(s) new

TABLE I
TABLE OF TRANSFER FUNCTIONS P (s)

Criteria Ex 1 Ex 2 Ex 3 Ex 4
Circle 1.2431 0.7640 0.00040 0.00039
Park 4.5894 1.0894 0.00183 0.00183
Proposition 2 4.5894 1.0894 662.5603 1.6599

TABLE II
SECTOR/SLOPE BOUNDS OBTAINABLE USING VARIOUS STABILITY

CRITERIA

Example Multiplier

1 M1(s) =
10−4(0.59s

3+1.64s
2+1.55s+0.36)

s
3+6.41s

2+0.16s+0.52

2 M2(s) =
10−4(3.64s

3+2.54s
2+4.53s+2.10)

s
3+1.02s

2+1.24s+1.21

3 M3(s) =
10−6(0.10s

4+7.17s
3+1.06s

2+47.2s+1.25)

s
4+0.82s

3+729.4s
2+6.07s+6.68

4 M4(s) =
10−6(0.81s

4+5.92s
3+9.26s

2+33.9s+7.62)

s
4+0.14s

3+7.93s
2+0.19s+8.63

TABLE III
MULTIPLIERS COMPUTED USING OPTIMISATION ALGORITHM

of multipliers; another reason for simply proving their exis-
tence, rather than computing them explicitly. �

It is important to point out that results as non-conservative
as ours could be obtained using the IQC method of [9] or
the multiplier method of [17]. However both those algorithms
essentially assume a form of multiplier and then leave the
designer to pick parameters (such as order, pole location and
so on), making the process somewhat iterative. Proposition
2 is a computationally convenient routine which makes it
straightforward to assess stability with our more limited class
of multipliers. We also note that the results obtained using
this potentially conservative form of multiplier do not, in the
examples considered, appear conservative at all.

V. CONCLUSION

This paper has proposed a new method for testing stability
of a feedback interconnection involving an LTI part and a
slope-restricted nonlinearity. The approach is based on the
multiplier/IQC machinery but, as the optimisation procedure
involved is automated and simply involves the solution of
a set of linear matrix inequalities, it is believed to be
computationally attractive compared to [9] and [17] where
a certain amount of iteration and choice is involved. It also
appears superior to other Lyapunov based literature, of which
[6] seems to be best. This is because, as shown in [6], Park’s
method is equivalent to choosing IQC’s of a particular form
whereas our method allows optimisation over a larger class
of multipliers.

It would be logical to extend these results to MIMO
systems, although (i) it is more difficult to obtain linear
matrix inequalities in the MIMO version of Proposition 2;
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





−αP (jω) + I
I

U(jω)(−αP (jω) + I)
−I







? 





0 −H0 0 0
−H0 0 0 0

0 0 0 −H0

0 0 −H0 0







︸ ︷︷ ︸

W







−αP (jω) + I
I

U(jω)(−αP (jω) + I)
−I







< 0 (31)







−αP (jω) + I
I

U(jω)(−αP (jω) + I)
−I






∼

[
Ã B̃

C̃ D̃

]

=










Ap 0 Bp

−BuαCp Au Bu(I − αDp)
−αCp 0 I − αDp

0 0 I
−DuαCp Cu Du(I − αDp)

0 0 −I










(32)

[
AI BI

CI DI

]

=





Ap 0 Bp

−BuαCp Au Bu(I − αDp)
αCp − DuαCp Cu (I − Du)(I − αDp)



 (34)

and (ii) as noted in [16], the class of MIMO multipliers is
wider than was previously thought and may be difficult to
characterise (non-conservatively) in a similar way.
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APPENDIX

Letting H(s) = H0U(s), it follows that M(s) ∈ MS

if U(s) ∈ L1 is such that ‖U(s)‖1 ≤ 1. Also with
H(s) = H0U(s), inequality (4) can be re-written as in-
equality (31). Some algebra then shows that, given U(s) ∼
(Au, Bu, Cu, Du), the state-space realisation in equation (32)
can be derived.

Using the KYP Lemma ([21]) it then follows that inequal-
ity (31) is satisfied if and only if there exists a symmetric
matrix P = P ′ such that the following matrix inequality is
satisfied.

[
Ã′P + PÃ PB̃

B̃′P 0

]

+

[
C̃ ′

D̃′

]

W
[

C̃ D̃
]

< 0 (33)

Using the definitions of Ã, B̃, C̃, D̃ and W , this then reduces
to inequality (6) in Proposition 1 where a realisation for
(AI , BI , CI , DI) is given in equation (34).
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