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Abstract— Optical discs, including Compact Discs (CDs), Digital
Versatile Discs (DVDs), and Blu-ray Discs (BDs), can get
cracked during storage and usage. Such cracks commonly
lead to discontinuities in the data track, potentially preventing
reading of the data on the disc. The aim of the present paper
is to improve tracking performance of the optical disc drive in
the presence of cracks. A Hankel Iterative Learning Control
(ILC) algorithm is presented that can perfectly steer the lens
during the crack towards the beginning of the track immediately
after the crack, i.e., the actuator is steered appropriately
during the crack crossing to compensate for the discontinuity
in the data track. Experimental results confirm improved
reading capabilities of cracked discs. The presented approach
potentially enables the recovery of data from cracked discs that
were previously considered as unreadable.

I. INTRODUCTION

Optical discs, including Compact Discs (CDs), Digital Ver-

satile Discs (DVDs), and Blu-ray Discs (BDs), are media

with data written on a layer by means of pits and lands in a

spiral track, see Figure 1. These optical discs can get cracked

in case they have been subjected to a static or dynamic

mechanical load over a certain period of time. The resulting

cracks are typically sharp, starting from the center of the disc

and are possibly unfinished, see Figure 1.

The amount of lost data, caused by the damaged disc surface

or information layer, is often only marginal, because of the

data redundancy in the encoded track data. In this case, the

existing error correction can recover the original data that is

contained on the cracked disc. The main problem is a servo

control problem: when the discontinuity is particularly large,

the laser may lose track in radial direction (track-loss) and/or

in focus direction (out-of-focus) [1]. Both consequences are

fatal for reading optical discs. At present, control solutions

in commercial drives include the so-called defect detector

(DEFO) that switches off the normal feedback controller

during the passing of a crack and holds the controller output

at a constant value.

Although present approaches can cope with cracked discs to

a certain extent, the tolerable crack dimensions are limited

due to the fact that the zero-order-hold at the input does not

result in an optimal connection between the end of the track

before the crack and the beginning of the track after the

crack. To improve tracking performance immediately after

the crack, the lens can be steered towards the beginning

of the track during the time the crack is passing. However,
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Fig. 1. Schematic top view of a typical cracked optical disc.

the design of an optimal command signal requires future

information since it is not known a priori where the track is

after the crack has passed. Thus, to compensate for the track

discontinuity, the properties of the discontinuity should be

known in an open-loop type of compensation algorithm.

In the present paper, an Iterative Learning Control (ILC)

algorithm [2], [3], [4], [5] is proposed that improves the

data recovery in optical cracked discs by implementing

a command signal that anticipates on the track location

immediately after the crack. The main idea is that the

crack results in a, possibly slowly varying, repeating error

in case of rotating discs. By using measurement data from

previous rotations, the command signal during the track can

be improved to achieve perfect tracking immediately after

the crack has passed. In essence, due to the anticipatory

behaviour of the command signal, the resulting approach can

be considered as not causal in the physical time domain [3].

The main contribution of the paper is the application of a

specific ILC algorithm that can deal with the reading of

cracked discs and experimental verification of the method

in a commercially available optical disc drive. Specifically,

application of the standard ILC algorithms is complicated

by the absence of reliable measurements during the crack

interval, since the light path of the laser beam is likely to

be disturbed by the damaged disc surface or information

layer. Hence, reliable measurement data is only available

outside the crack interval. To deal with this situation, Hankel

ILC [6], [7], [8] is considered, which extends standard ILC

approaches by observing after and actuating during the

crack interval. In addition, the DEFO, that is implemented

in conjunction with the Hankel ILC controller, results in

different system dynamics during the crack interval (open-

loop) and outside the crack interval (closed-loop). This

situation requires an appropriate extension of the Hankel ILC

framework. Experimental results confirm that the Hankel ILC

controller compensates discontinuities that are beyond the

observation range of the lens while the tracking error does

not contain systematic errors after the crack has passed.
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Fig. 2. Schematic representation of the optical storage principle.

Fig. 3. Measured geometry of a typical cracked disc.

This paper is organized as follows. In Section II the drive and

the cracked disc are introduced. The theory of Hankel ILC

is presented in Section III. In Section IV, implementation

aspects are discussed. In Section V, experimental results are

presented. Finally, conclusions are provided in Section VI.

II. EXPERIMENTAL SETUP

A. Optical storage principle

The principle of optical storage is schematically depicted in

Figure 2. The (cracked) optical disc, depicted in the upper

left, is suspended to the turntable motor below. The turntable

motor rotates the disc with respect to the laser beam in spin

direction (γ).

The optical drive extracts data from the optical disc by

using a laser-based Optical Pick-up Unit (OPU) to follow

the spiral track. The laser beam is generated in the OPU,

which typically consists of an actuator, laser, lens, and

photodiode. The actuator together with the sledge provide

accurate position information of the lens with respect to the

disc. The combination of the laser, lens, and photodiode is

able to optically read pits and lands in the data spiral on the

disc. Additionally, this combination also provides tracking

error information, see, e.g., [9], that is required for feedback

control and Hankel ILC.

The geometry of a typical crack has been measured using

a micrometer and an optical angle meter. The results are

depicted in Figure 3, where the arrows indicate the read

direction and the encountered discontinuity in the z-direction

of a certain track.

B. Motion system

The motion system of the considered optical drive, which is

a Philips BD1, is a dual-stage combination of an actuator

and a sledge, see Figure 2. The optical drive is capable of

reading and writing CDs, CD-Rs, DVDs, BDs, etc. In the

present research, Hankel ILC is employed to recover data

from a cracked CD-R. It is expected that the approach can

also be employed to recover data from other disc types.
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Fig. 4. Bode magnitude diagram of the open loop PC frequency response
function in focus and radial direction: model Psys (solid), identified
frequency response function (dashed).

The actuator is designed for dynamic positioning of the

lens in focus (z) and radial direction (x), while the sledge

provides large radial jumps (x) and offset compensation in

roll α, see Figure 1. The actuator is modelled mechanically

as a suspended mass with three voice coil motors and has

therefore three degrees-of-freedom, i.e., x, z, and β. The tilt

β is nominally fixed to zero leaving two degrees-of-freedom.

The sledge is modelled as a suspended mass with two electro

motors to actuate its two degrees-of-freedom.

To anticipate on the Hankel ILC algorithm in Section III,

it should be noted that ILC requires an approximate model

of the plant to update the command signal. Based on the

discussion in the previous paragraph, physical models of the

actuators are used for both the focus and radial direction,

i.e., the model

Psys =
k

s2 + 2ζωns + ω2
n

(1)

is considered in both focus and radial direction, where k is

a motor constant, ζ is a dimensionless damping coefficient,

and ωn is the undamped natural frequency. In addition, s is

a complex indeterminate representing the Laplace variable.

Comparing the model with the identified frequency response

function, see Figure 4, where the open-loop gain PsysC is de-

picted, with C the feedback controller, reveals that the model

accurately describes the true plant behaviour. In addition,

measurements confirm that the plant is approximately decou-

pled. To facilitate the implementation, independent Single-

Input Single-Output (SISO) ILC controllers are designed.

III. HANKEL ILC

Iterative learning control (ILC) is a control technique that

iteratively learns an optimal feedforward signal that mini-

mizes tracking errors caused by deterministic disturbances

in the same time interval. For the cracked CD, however, the

measured tracking error during the duration of the crack is

unreliable. Moreover, the primary interest is in the design of

a feedforward signal during the time interval of the crack

crossing, such that the focus and radial errors after the crack

crossing are reduced. In other words, for cracked CDs, the

task of the ILC controller is to learn a feedforward signal in

one time interval such that the tracking error in the adjacent

time interval is reduced. A special form of ILC, referred to

as Hankel ILC, is capable of handling this task by exploiting

separate time windows for the actuation and observation

intervals in the control design, see [6] and Figure 5. The

measurement results in Figure 5 already reveal the potential

improvement of the tracking error due to Hankel ILC, which

will be further explained in Section V.
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Fig. 5. Timing of actuation and observation: converged situation after
application of Hankel ILC, see Section V (solid), initial error without Hankel
ILC (dotted).

A. System formulation

Given the discrete-time SISO Linear Time Invariant (LTI)

system P with a minimal state-space realization

P :

{
x(t + 1) = Ax(t) + Bf(t)

y(t) = Cx(t) + Df(t)
, (2)

where f(t) is the feedforward signal, y(t) is the measured

position, and t ∈ Z denotes discrete time. Then P : f(t) 7→
y(t) for t = [0, N−1] can be written as a convolution matrix:






y(0)
...

y(N − 1)




 =








D 0 . . . 0
CB D . . . 0

...
. . .

. . .
...

CAN−2B . . . CB D








︸ ︷︷ ︸

P






f(0)
...

f(N − 1)




 .

(3)
With the actuation interval given by t ∈ [m1,m2], the
observation interval by t ∈ [n1, n2], and n1 := m2 + 1
(in accordance with Figure 5), the convolutive mapping PH

from f(t) during the actuation interval to y(t) during the
observation interval equals






y(n1)
...

y(n2)






︸ ︷︷ ︸

y

=






CAm−1B . . . CB
...

. . .
...

CAn+m−2B . . . CAn−1B






︸ ︷︷ ︸

PH






f(m1)
...

f(m2)






︸ ︷︷ ︸

f

, (4)

m = m2 − m1 + 1, n = n2 − n1 + 1, n1 = m2 + 1, (5)

with PH ∈ R
n×m. Hence, PH = WoPWa with Wo and Wa

the observation and actuation time windows, respectively:

Wo =
[
0n×n1

In 0n×(N−n2−1)

]
, (6)

Wa =





0m1×m

Im

0(N−m2−1)×m



 . (7)

In the common case rank(PH) < min(m,n), the matrix

PH is rank deficient. This rank deficient matrix PH can be

represented as the product of two full rank matrices using a

full rank decomposition

PH = PoPc, (8)

where Po ∈ R
n×p, Pc ∈ R

p×m, and p := rank(PH),
representing the following two mappings

y = Poxn1
(9)

PHLcw−1Ip

Γ

uk+1 uk fk ek

r

x0 − xk

−

P†
o

Lo

Fig. 6. Hankel ILC scheme.

xn1
= Pcf (10)

A possible choice regarding Po and Pc in (9) and (10) is

Po =
[
CT (CA)T . . . (CAn−1)T

]T
(11)

Pc =
[
Am−1B Am−2B . . . B

]
. (12)

In (9) and (10), xn1
∈ R

p is the state vector at t = n1.

Clearly, in case the state xn1
= 0, then in virtue of (9)

y = 0. Basically, the state xn1
at time t = n1 separates

the command signal during the crack and the tracking error

after the track, which has a close connection to the Hankel

operator, see, e.g., [10]. Hence, the tracking error after the

crack is fully determined by the state xn1
.

B. Hankel ILC control framework

The Hankel ILC control framework is depicted in Figure 6.

The input fk ∈ R
m and output yk ∈ R

n denote the

feedforward signal during the actuation time interval and

measured output during the observation time interval in trial

k, respectively. Trial k in case of reading cracked discs refers

to the kth disc revolution after the learning algorithm was

switched on. The signal r ∈ R
n is the trial invariant reference

signal during the observation time interval, and ek = r − yk

the error signal. The state xk ∈ R
p represents the time

domain state xn1
during trial k, and x0 = Lor the state

as function of external disturbance r. Finally, uk ∈ R
p is the

trial domain state vector.

As discussed in Section III-A, PH corresponds to the time-

windowed system WoPWa. Moreover, Lc ∈ R
m×p and

Lo ∈ R
p×n constitute the Hankel ILC controller with

rank(Lc) = rank(Lo) = p, and w−1 represents the one trial

domain backward shift operator: uk = w−1uk+1.

Based on Figure 6, the trial domain dynamics of the Hankel

ILC controlled system are given by

uk+1 = uk + Lo(r − yk), fk = Lcuk, u0 = 0 (13)

uk+1 = (Ip − LoPHLc)uk + Lor. (14)

These dynamics are used to study the convergence (stability)

and performance properties of the Hankel ILC controlled

system. The properties will subsequently be used to analyze

the Hankel ILC controller design.

1) Convergence: Convergence of the Hankel ILC controlled

system is essential to improve reading performance for

cracked discs. With (14) describing the evolution of the

state of the system in trial domain, the system in Figure 6

is convergent if and only if ρ(Ip − LoPHLc) < 1, with

ρ(·) = max |λi(·)| and |λi| the absolute value of the ith

eigenvalue.
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If the system indeed is convergent, then it is guaranteed

that the state uk will converge to an asymptotic value

u∞ = limk→∞ uk after an infinite number of trials. It

does, however, not provide any information about transient

behaviour of fk and yk between k = 0 and k → ∞. To avoid

poor learning transients, monotonic convergence properties

of the ILC controlled system are useful, see [11], [12].

2) Performance: Using (14) and the fact that uk+1 = uk for

k → ∞, e∞ is given by

e∞ = (In − PHLc(LoPHLc)
−1Lo)r. (15)

From (9), x0 − x∞ = 0 ⇒ e∞ = 0. Using Figure 6

Γ(xo − x∞) = Loe∞ (16)

= Lo(In − PHLc(LoPHLc)
−1Lo)r. (17)

Clearly, provided that the inverse in (17) exists, xo−x∞ = 0,

hence perfect tracking is achievable.

C. Hankel ILC control design

The Hankel ILC controller used for the cracked CD applica-

tion is based on an inverse model ILC controller. As a result,

Lo and Lc are given by

Lo = ΓP †
o , Lc = P †

c + (Im − P †
c Pc)Mc. (18)

where P †
c = PT

c (PcP
T
c )−1 is the Moore-Penrose inverse of

Pc, P †
o = (PT

o Po)
−1PT

o is the Moore-Penrose inverse of Po,

Γ is a user defined learning matrix, and Mc is a filter that

can be used to exploit non-uniqueness in the feedforward

signal fk. The reader is referred to [6] for further details on

the design of Mc.

Convergence of the Hankel ILC controlled system with

controller (18) is based on Ip−LoPHLc = Ip−Γ. Based on

the choice for Γ, the system can be made convergent. In fact,

for Γ = γI with γ ∈ (0, 2), it holds that the ILC controlled

system is monotonically convergent in fk. In addition, Γ can

be used as a design parameter to ensure robust convergence

of the ILC controlled system in the presence of model

uncertainty. Finally, with Lo and Lc satisfying the rank

condition, x∞ − x0 = 0 can be achieved.

A specific choice regarding the design of Lo and Lc is based

on the singular value decomposition of PH , see [6], which

in fact amounts to a full rank decomposition of PH . The

singular value decomposition of PH is defined by

PH =
[
U1 U2

]
[
Σ1 0
0 0

] [
V T

1

V T
2

]

= U1Σ1V
T
1 , (19)

Po = U1, Pc = Σ1V
T
1 . (20)

Moreover, let Mc be designed such that the energy of

the weighted feedforward signal ‖f∞‖W = fT
∞Wf∞ is

minimized, with W ∈ R
m×m a diagonal weighting matrix

that separately penalizes every actuation sample in order to

shape f∞. Then Lo and Lc are given by

Lo = ΓUT
1 (21)

Lc = (Im − V2(V
T
2 WV2)

−1V T
2 W )V1Σ

−1
1 . (22)

HWa
fk

r

− S Wo

P̃H

Psys

r

−
S−1

d

εk

C &
DEFO

gke

Fig. 7. Plant including open-loop error reconstruction.

In the next sections, Lo and Lc, as defined by the singular

value decomposition in (21) and (22), are used to iteratively

determine a command signal that enables the reading of a

cracked optical disc.

IV. IMPLEMENTATION ASPECTS

A. Trial-varying setpoint variations

From physical considerations, the crack dimensions vary

over the surface of the cracked disc. In virtue of the

smoothness of the crack, which is supported by Figure 3,

the trial domain dynamics of the crack are significantly

slower compared to the dynamics of the ILC controller,

hence ILC can effectively attenuate disturbances caused by

crack variations, see [13, Section 4.3.2].

B. Dealing with the DEFO

The DEFO switches off the updating of the feedback con-

troller states in case an optical defect is detected to avoid

excessive control inputs due to unreliable measurement data.

For the application of Hankel ILC to cracked discs, this

implies that the actuation of the lens during Wa involves

an open-loop system, whereas the relevant tracking error

during Wo is measured in a closed-loop situation. The reader

is referred to Section III for the definition of Wo and Wa.

Hence, in open-loop the dynamical behaviour is given by

e = r − Psysfk, (23)

whereas in closed-loop the dynamical behaviour is given by

gk = WoS(I + PsysC)−1(r − PsysHWafk) (24)

where S and H denote the ideal sampler and zero-order-hold

interpolator, respectively. To reconstruct the error that would

have resulted in open-loop, ek is reconstructed by

ǫk = S−1
d gk, (25)

where ǫk the reconstructed ek and S−1
d the inverse of the

finite time convolution matrix representation of the discrete

time LTI sensitivity function. The resulting plant including

reconstruction of the open-loop error is denoted by P̃H and

is depicted in Figure 7.

The discrete time sensitivity function Sd is obtained by com-

puting the zero-order-hold equivalent of Sc = (I+PsysC)−1

based on the physical model in Figure 4, see also [14]. In

Figure 8, Bode diagrams of the continuous time and discrete

time inverse sensitivity functions are depicted. It is concluded

that discretization errors are negligible. In case discretization

errors are significant, the digital implementation aspects

should be explicitly addressed to ensure the resulting ILC

controller performs well, see also [15].
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It should also be remarked that the inverse of the sensitivity

may be unstable. Specifically, in Figure 8 the Bode diagrams

of S−1
c and S−1

d are characterized by a high-gain low-

frequent integrator, an underdamped resonance and a high-

frequent asymptote of 0 [dB]. In this case, the integrator

results in unstable behaviour. However, since the reconstruc-

tion is performed over a relatively short finite time interval

n, the computation of the inverse is numerically reliable and

the approach turns out to perform satisfactorily in practice.

C. State transformation to physical coordinates

The full rank decomposition of PH based on an SVD

does not necessarily result in a physically interpretable

state x0 − xk. To gain more insight in the Hankel ILC

control signals obtained after learning the cracked CDs, it is

desirable to transform x0−xk to a state that can be physically

interpreted. Specifically, this enables the identification of the

crack geometry from learned command signals. Consider

χ0 =

[
χp

χv

]

, (26)

with χp the focus or radial position error as result of the

crack, and χv the physical velocity error. Then the goal is

to determine a state transformation matrix Q such that

χ0 − χk = Q(x0 − xk). (27)

Using the fact that

ǫk =








1 0
1 1
...

...

1 n − 1








︸ ︷︷ ︸

A

(χ0 − χk), (28)

Q is found by solving

χ0 − χk = Q(x0 − xk) (29)

= QP †
o ǫk (30)

= QP †
o A(χ0 − χk) ⇒ Q = (P †

o A)−1.(31)

As a consequence of the state transformation, the Hankel

ILC filters Lo and Lc have to be altered to

L̃o = ΓQP †
o , L̃c = LcQ

−1. (32)

P̃HQ−1w−1Ip

Γ

uk+1 uk εk

r

Lc
fk

L̃c

Q P†
o

χ0 −χk

L̃o

Fig. 9. Applied learning loop.

The learning matrix Γ is chosen diagonally, such that the

convergence properties of the states corresponding to the

position and velocity error can be tuned separately:

Γ =

[
γp 0
0 γv

]

(33)

From Section III-B.1 it is observed that 0 < γp, γv < 2 for

a convergent ILC controlled system.
The output of L̃o at trial k represents the scaled (with Γ)

position and velocity error between χ0 and χk. Additional

information about the crack properties can be obtained by

investigating the converged state u∞. For that purpose, it is

assumed that P̃H ≈ PH and ǫk ≈ r − PHfk. By design

of Lo and Lc and based on the assumptions, the product

L̃oP̃H L̃c ≈ Γ, and

u∞ = (I − L̃oP̃H L̃c)u∞ + L̃or (34)

= Γ−1χ0. (35)

Hence, after the Hankel ILC controlled system has con-

verged, the trial domain state u∞ equals the scaled focus

or radial error position and velocity. This result is illustrated

in Section V. Note that by defining A as in (28), the velocity

state χv is scaled to [V/sample].

D. Resulting Hankel ILC scheme

Summarizing the implementation aspects in the previous

sections, the DEFO and state transformation lead to the

modified Hankel ILC controller depicted in Figure 9, where

P̃H is depicted in Figure 7. This Hankel ILC controller is

implemented in the next section to improve the reading of

cracked optical discs.

V. MEASUREMENTS

In this section, the modified Hankel ILC controller in Fig-

ure 9 is implemented in the Philips BD1 player that is

used for the recovery of data from a cracked disc. The

measurements are performed with an effective actuation

length of m = 24, with m = 2m resulting in m = 12
individual sample values per state variable (χp or χv). The

first measurement is performed in focus direction while

reading the cracked CD-R, of which the geometry is given in

Figure 3, at x = 34 [mm]. After convergence of the Hankel

ILC algorithm, the measurement results in Figure 10 are

obtained. In the considered cases, the Hankel ILC controller

converged to a satisfactory command signal within 5 − 15
iterations.
In Figure 10 (top) the tracking error after convergence of the

Hankel ILC controller is depicted, where the light colored

(grey) interval indicates the defect interval that is detected
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Fig. 10. Measurement results in focus direction.

by the DEFO. The tracking error signal in this light colored

interval is unreliable and is neglected accordingly, i.e., it is

neither used by the feedback controller nor by the Hankel

ILC controller. The Hankel ILC controller results in a perfect

compensation of the crack. For a comparison with the initial

tracking error before the Hankel ILC controller is applied,

the reader is referred to Figure 5.
In Figure 10 (middle), the required feedforward signal, which

is equal to the actuator input, is depicted. Observe that in

the defect interval, this signal almost saturates at 5.2 [V]

indicating a suitable choice for m. In Figure 10 (bottom),

the reconstructed trajectory of the lens is shown, which is

obtained by using the model P in (2). This trajectory shows

a compensation in position (Ep) of 15 [µm] and in velocity

(Ev) of -4[µm/ms] for which the latter corresponds to α=-1.7

[mrad]. This resembles the trajectory indicated by the arrow

in Figure 3. Note that Ep is beyond the observation range

of ± 2 [µm]. This implies that the Hankel ILC controller

enables reading of cracked optical discs that were previously

considered as unreadable.
A similar measurement result in radial direction is presented

in Figure 11. The resulting trajectory shows that Ep = 4.2
[µm] and Ev = −2.2 [µm/ms] where the latter corre-

sponds to γ=-1.0 [mrad]. As a result, the tracking error

is compensated for outside the observation range of 0.8

[µm]. In the radial direction, it is important to check the

continuity of the data track, i.e., whether the correct track is

being followed. The data channel provides this information.

In the experiments shown here, indeed the data could be

reconstructed perfectly, and the right track was followed after

the crack.

VI. CONCLUSIONS

In this paper, a novel ILC algorithm, referred to as Hankel

ILC, has been further developed and implemented to enable

the reading of cracked optical discs. In essence, the presented

algorithm aims at perfectly steering the actuator during a

crack towards the beginning of the track immediately after

the crack has passed.
Experimental results resulting from a commercial optical disc

drive indeed confirm improved tracking properties of the

Hankel ILC controlled system. Specifically, measurements

show almost full compensation of the tracking errors in

both focus and radial directions. These compensated dis-

continuities lie significantly outside the observation range of
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Fig. 11. Measurement results in radial direction.

the optics. Hence, the proposed Hankel ILC controller can

indeed enable the recovery of data from damaged discs that

were previously considered as lost.
Open issues include robustness analysis of the approach

with respect to variation in disc cracks and for a large

number of discs an actual comparison of the recovered

data compared to prior approaches, i.e., in case only the

DEFO is used. In addition, implementation aspects, both

regarding the DEFO and state reconstruction, should be

further theoretically justified, as well the theoretical aspects

associated with the switching dynamics of the overall system.
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