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Abstract— In this paper, an evolutionary dynamics model
over a graph of connected individuals choosing between mul-
tiple behaviors is developed. This model emphasizes the indi-
viduality of the nodes, which arrive at individual behavioral
choices primarily based on subjective individual preferences

as well as individual mutation characteristics. We use the
replicator-mutator dynamical equations to model the process of
building individual behavioral inclinations. A dynamic graph,
whose vertices are the individual members of society, is then
constructed and the weighted adjacency matrix and individual
fitness parameters are used to effect a social interaction
model that is itself modeled based on the replicator-mutator
dynamical equations. A notion of social diversity is defined for
this individual-based social choice model. The individual-based
social evolutionary model presented here relates to and gen-
eralizes three previous models appearing in the literature: the
replicator-mutator social choice model, consensus algorithms,
and an evolutionary dynamic model on graphs. The basic
properties and conditions for the emergence of an absolutely
dominant behavior over the social network are derived, and
how the proposed model generalizes and relates to other work
is also discussed.

I. INTRODUCTION

Evolutionary dynamics have been used not only to model

biological [1], [2] and molecular [3] evolution, but have also

been used to model language evolution [4], [5], learning [6],

cooperation in social systems [7], and in the study of emer-

gence of behavioral norms in social networks [8]–[10]. The

latter of these problems, the emergence of behavioral norms

in social networks, is the focus of this paper. In general, an

approach may adopt either a collective or an individual-based

viewpoint. In the former approach, distinctions between the

different individual nodes are ignored and the entire society

is treated as a single evolutionary organism. The second

approach, which is the viewpoint adopted in this paper,

emphasizes the individuality of the nodes, which arrive at

individual behavioral choices primarily based on subjective

individual preferences, individual mutation characteristics,

and through interactions with other individual nodes in the

network.

Unlike other individual-based approaches [11], [12], in

this paper we employ the replicator-mutator dynamics [6]

to model how individuals build up their own personal be-

havioral inclinations based on subjective valuation of the

various behaviors as well as the individual’s mutation rates.

However, similar to [11], a dynamic evolutionary graph

theoretic approach is adopted here to model the effect of

social interaction on the individual behavioral inclinations.

While in [11] a probabilistic model is proposed to study

the propagation (or suppression) of a single mutant behavior

across a social network with a single dominant behavior,

the model developed here allows for an arbitrary num-

ber of behaviors over an arbitrary number of individuals.

Moreover, our dynamic graph is constructed based on the

replicator-mutator dynamics [6], [13], [14] and, hence, both

the individual choice and social interaction model are based

on the replicator-mutator evolutionary equations originally

developed by Eigen and Schuster [15].

The goal of this paper is, thus, to develop and analyze

an individual-based evolutionary dynamics model, based

on the replicator-mutator equations, for networked social

behaviors. We rely on the replicator-mutator dynamics to

model both the individual choice as well as the networked

social interaction model. After introducing the replicator-

mutator (collective) social choice model of [10] in Section

II, we first adapt that model to an individual choice model in

Section III-A. We then introduce a graph theoretic approach

to include the effect of social interactions on individual

decision making in Section III-B. In Section III-C, we define

a notion of social diversity analogous to that introduced in

[10]. We give a basic result that guarantees the emergence

of dominant social behaviors in Section III-D. Finally, in

Section IV, we show how the proposed model relates to

and generalizes three previous models appearing in the

literature: the replicator-mutator-based social choice model

of [10], consensus algorithms [16]–[18], and an evolutionary

dynamic model on graphs [11]. We conclude the paper with

a summary and future research directions.

II. EVOLUTIONARY DYNAMICS AND COLLECTIVE

BEHAVIOR NETWORKS

A. Replicator-Mutator Social Choice Model

In this section, we first review the replicator-mutator

social choice model of [10]. Consider the problem where we

have N possible behaviors (different brands of a product,

political candidates in a race for public office, etc) with

a vector of frequencies x = (x1, x2, . . . , xN )T ∈ R
N

associated with the vector of behaviors b = (b1, b2, . . . , bN )
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satisfying the normalized condition xTc = 1, where c =
(1, 1, . . . , 1)T ∈ R

N is the vector of 1’s. A component xi

in the vector of frequencies x describes the proportion of

the population that subscribes to behavior bi. Let aij ≥ 0
be the reward to convert from behavior bi to behavior bj ,

with aii = 1. Hence, A = [aij ] is the matrix of rewards.

The fitness of behavior bi is defined as f = f0 + Ax ∈ R
N ,

where f0 is the vector of base fitness. How fit a behavior is

depends on the matrix of rewards A (or how rewarding it is

to adopt a certain behavior instead of some other behavior)

and the vector of frequencies. Expanding this expression, one

gets fi = f0i +
∑N

j=1
aijxj . As in [10], we will assume that

f0 = 0. The replicator-mutator dynamics are then given by

[5], [6], [10]

ẋi =

N
∑

j=1

xjfjqji − φxi, i = 1, . . . , N, (1)

where φ = fTx is the average fitness and Q = [qij ] is the

mutation matrix. The mutation matrix Q is a row stochastic

matrix (i.e., one satisfying
∑N

j=1
qij = 1). The component

qij describes the rate of conversion from behavior bi to

behavior bj (j 6= i). The pair A and Q define the social

choice model.

The mutation matrix Q can be chosen several ways. In

[10], the author chooses Q to be the Perron matrix (see [18])

given by Q = I − µL, where µ is the mutation parameter

and L is the graph Laplacian associated with the graph

G = (V, E) whose vertices correspond to the N behaviors

b and whose interaction matrix is A [16], [18]. According

to this social choice model, mutation rates are proportional

to the weighted matrix of rewards W = D−1A, where

D = diag(d1, d2, . . . , dN ) with di =
∑N

j=1
aij , and the

mutation rates are controlled by the choice of the mutation

parameter µ. This choice for the mutation matrix Q provides

us with a model consistent with the general properties of the

mutation matrix (appropriate dependence on the weighted

awards matrix and the mutation parameters). It is also a

natural choice to make given the network graphical model

we adopt in this paper. Hence, we have Q = I − µL =
I − µ(I − W) = (1 − µ)I + µW. In [10], the author calls

this a first order social choice model since it represents a first

order approximation of a higher order (exponential) model

briefly discussed in [10]. Note also that if µ = 0, we get

Q = I and the dynamic model (1), as one would expect for

a valid choice of the mutation matrix, reduce to the replicator

dynamics [13], [19]. Note that qij = µwij for i 6= j and that

qii = 1 − µ(1 − wii).
One can check that the dynamic model (1) can be written

in matrix form as1

ẋ = QTFx − φx, (2)

where F = diag (f) (a matrix whose diagonal elements

are the components of f ) that satisfies Fc = f . Note that

1The author was inspired to write the replicator-mutator dynamics based
on the exposition in [14] for a slightly different replicator-mutator dynamical
model.

∑N

i=1
ẋi = cTẋ = cTQTFx − φcTx = cTFx − φ =

fTx − φ = φ − φ = 0, and, hence, solutions of (2) satisfy

cTx =
∑N

i=1
xi = 1 if cTx(0) = 1.

There are two main types of emergent social behaviors

depending on how diverse the steady state is. The notion of

diversity is used to characterize the emergent steady state x∗

[10]. Diversity is a number Ne, that satisfies 1 ≤ Ne ≤ N ,

and is defined as

Ne = 1/ ‖x‖
2
. (3)

One can check that if x∗ = ei (a vector that is zero every-

where except for the ith component), then Ne = 1 indicating

a dominant behavior (also called behavioral flocking). On the

other hand, if each behavior receives an equal share of the

state x∗ at steady state, then x∗ = 1

N
c and the diversity is

Ne = N . This indicates a state of total or complete collapse.

If N ≫ Ne > 1, we have cohesion, where a few dominant

behaviors emerge. If N > Ne ≫ 1, we have collapse, where

many dominant behaviors emerge.

For a given reward matrix A, the mutation parameter µ
determines the value of Ne and the number of behaviors

that emerge. As shown in [10], a low value of µ (i.e., low

mutation rates) results in a dominant behavior. This behavior

is shown in Figure 1(a) with N = 50, µ = 5 × 10−5, and a

randomly chosen reward matrix. The diversity in this case is

Ne = 1.0008, indicating a clear dominant behavior. At the

other end of the spectrum, for N = 50 and µ = 10 (i.e., high

mutation rates) results in collapse (see Figure 1(b)) with a

diversity of Ne = 49.45.

Theorem II.1 (Olfati-Saber [10]). Let x∗ be an equilibrium

of the replicator-mutator dynamics with Q = I − µL. Then

the following statements hold:

1) An absolutely dominant behavior results from µ = 0.

2) For large behavior networks N ≫ 1, a single relatively

dominant behavior (with xi = 1 − O(ǫ) and xj =
O(ǫ/n) for all j 6= i) can only emerge from evolution

with a relatively small µ.

Hence, we see that the mutation parameter µ under the

above model determines whether or not dominant behaviors

emerge in a society.
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Fig. 1. (a) dominant behavior, (b) total collapse.

There are two main concerns with the above model if it

is used to model a society and how social hubs or behav-

iors emerge to become the norm. Firstly, the above model

assumes that society is homogeneous. This assumption is
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implicitly made once one chooses a single rewards matrix

A. By utilizing a single rewards matrix, one assumes that

the reward of switching from one behavior to another is

the same across the population. This assumption may hold

true for biological systems, where there is a uniform “agree-

ment” among the members of “society” as to the rewards

of adopting one behavior over another. In other words,

there is an objective way of assessing the rewards matrix

regardless of the subjective assessment of the individual

members of the population. However, if one is discussing

a society of individuals choosing between different brand

names or political candidates in a political campaign, the

value of the different brand names, political candidates or,

in general, behaviors is completely subjectively assessed.

In other words, each member of the population derives its

own rewards matrix based on a subjective assessment of the

potential costs and benefits that each behavior offers to the

individual.

The second concern has to do with the mutation pa-

rameter µ. Again, the underlying assumption in [10] is

that a society composed of individuals is as homogeneous

in its mutation rate as a collection of identical cells in a

biological setting. Different members of society do have

different mutation rates. Each individual, based on a myriad

of factors (such as psychological, physical, financial, societal,

etc) can change its mind independently, and this change can

be reflected using an individual-based mutation parameter µ.

Hence, in a single society, as for the rewards matrix, one will

have as many and as varied mutation parameters as there are

individuals. While it is true that segments of society could

share similar mutation rates or rewards matrices, any model

that attempts to account for social change and behavioral

evolution has to first recognize the fact that both the rewards

and mutation rates are subjective and can change from one

member of society to another. Capturing this diversity in an

individual-based evolutionary dynamic model is the goal of

this paper.

III. AN INDIVIDUAL-BASED EVOLUTIONARY DYNAMICS

MODEL FOR NETWORKED SOCIAL BEHAVIORS

In this section the replicator-mutator dynamic model de-

scribed above will be adopted to model (1) how an individual

may arrive at a choice among a number of possibilities,

and (2) how social interaction in a social network affect

that choice and the ultimate emergence of one or more

dominant behaviors. The model developed here relies on the

assumption that the two main model parameters, the reward

matrix A and the mutation parameter µ, are inherent proper-

ties of individuals and vary from one individual to another.

The mutation parameter µ reflects a trait of an individual

(this trait being how frequently the individual in question is

willing to change its mind), and the choice of the reward

matrix is fundamentally subjective in nature. Given any two

brands of some product (e.g., laptops), what one individual

may consider a more important property of one brand over

others, another individual may not consider as important.

Hence, each individual in society selects, based on very

subjective criteria, the elements of its reward matrix. While

the individual reward matrices may vary greatly in society,

those individuals with similar rewards matrices would be

expected to aggregate. Whether they reinforce their beliefs

or degenerate depends on the properties of the constituents’

mutation parameters. In this section, we will describe the

replicator-mutator dynamics for individual choice, and in fol-

lowing sections we describe how to transition from individual

choice to the emergence of social behaviors in a given social

network.

A. Individual Choice Model

Assume that there are n individuals in a social network.

We begin with the individual and the choices offered to

it. As before, we assume we have N choices or behaviors

b. Instead of having xk denote the frequency of behavior

bj in the sense of a “market share”, we will define xk
j ,

with
∑N

j=1
xk

j = 1, as the inclination of individual k

towards behavior bj . Hence, xk ∈ R
N denotes the vector of

individual inclinations towards behaviors b. Let ak
ij be the

subjective reward assigned by individual k to switch from

behavior bi to behavior bj , with ak
ii = 1. Let Ak = [ak

ij ] 6= I

be the subjective matrix of individual rewards. Ak can not

be the identity matrix because if ak
ij = 0 then the individual

absolutely prefers bi to bj , which implies that ak
ji 6= 0, for

otherwise this would imply that the individual absolutely

prefers bj to bi, which is a contradiction if ak
ij = 0. The

vector fk = fk
0

+Akxk would then describe how individual

k perceives the fitness of the different behaviors. We will call

it the perceived fitness vector of the behaviors b associated

with individual k. Let fk
0

= 0 as before. Finally, let φk =
∑N

j=1
fk

j xk
j be the average perceived fitness of the behaviors

b by individual k.

Before we state how the vector of individual inclinations

xk evolves, we first have to introduce the vector space of

behaviors. This vector space is N -dimensional with the basis

vectors denoted by ei, i = 1, . . . , N , and the vector of

individual inclinations will be expressed as the linear sum

xk =

N
∑

j=1

xk
j ej , k = 1, . . . , n (4)

where ej is a unit vector whose elements are zero except

for the jth element which is 1. We will constrain xk to

have unity magnitude and have its components satisfy the

replicator-mutator dynamics:

ẋk
i =

N
∑

j=1

xk
j fk

j qk
ji − φkxk

i . (5)

Note that if the initial condition has a unity magnitude,

then the magnitude of xk retains its unity value while the

dynamics of an individual’s inclinations evolve according to

the replicator-mutator model. The matrix Qk = [qk
ij ] is the

mutation matrix associated with individual k. The component

qk
ij represents the likelihood that individual k changes its

inclinations from behavior i to behavior j. In matrix form,
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the individual replicator-mutator equation can be written as

ẋk =
(

Qk
)T

Fkxk − φkxk, (6)

where Fk = diag(fk). The equation (6) models how an

individual, if isolated from society (for we have not added a

social interaction component to the model yet) would tend

to change its inclinations to the various behaviors available

to it.

The mutation matrix could be any one from a wide range

of possibilities, though here we will use the same model as

that used in [10] and that is described above in Section II.

That is, let Qk = I−µkLk = I−µk(I−Wk) = (1−µk)I+
µkWk, where µk will now denote the mutation parameter

associated with individual k and Wk =
(

Dk
)−1

Ak, with

Dk = diag(dk
1 , . . . , dk

N ) and where dk
i =

∑N

j=1
ak

ij . Note

that qk
ij = µkwk

ij for i 6= j and that qk
ii = 1 − µk(1 − wk

ii).

The mutation parameter µk is a parameter that describes

how easily the individual in question tends to change its

inclinations between the various behaviors.

B. The Effect of Social Interactions

We now introduce a social interaction model. The social

network is modeled as a graph S = (V , E) with vertices V
and edges E . Individual i is represented by a vertex vi ∈ V .

An edge eij ∈ E connects vi with vj . Let As = [as
ij ],

with as
ii = 0, denote the interaction matrix of S. Let

Ws = [ws
ij ] be the weighted interaction matrix given by

ws
ij =

as
ij

P

n
j=1 as

ij

. Hence, Ws is a row stochastic matrix.

Each individual vk has a fitness fs
k > 0. Note that we

use a superscript s to differentiate social parameters from

their individual counterparts. Hence, fs
j is the social fitness

parameter associated with individual vj and f j
k is the fitness

of behavior k as seen by individual vk.

Consider the following modified individual replicator-

mutator dynamic model that includes the effects of social

interaction

ẋk =
(

Qk
)T

Fkxk − φkxk +

n
∑

j=1

fs
j ws

kjx
j − φs

kx
k. (7)

According to this model, an individual vk’s inclination vector

updates according to its own valuation of the different behav-

iors bj , j = 1, . . . , N , given by the first two terms as before,

as well as the influence of all other individuals’ inclinations

xj in the social network. The individual social fitness fs
k may

be a function of the individual’s own inclination vector xk

as well as other social parameters. Here we keep the choice

of fs
k generic, including the possibility that it is a constant

parameter as done in [11], for example. The parameter φs
k

is introduced to guarantee that cTxk is unity. It is given by

φs
k =

n
∑

j=1

fs
j ws

kj . (8)

Hence, φs
k is the weighted average social fitness of all

individuals in the social network with respect to individual

vk, where the weighting is given by the components of the

weighted interaction matrix ws
ij . To show that under this

model trajectories that satisfy cTxk(t) = 1 for all t ≥ 0
and all k, we take the inner product of ẋk with c and check

that trajectories of the form cTxk = 1 is a solution to the

equation. Doing that, we get

cTxk = cT
(

Qk
)T

Fkxk − φkcTxk

+

n
∑

j=1

fs
j ws

kjc
Txj − φs

kc
Txk

= 0 +
n

∑

j=1

fs
j ws

kj − φs
k,

which is zero since the first term is zero as discussed in

previous sections, and since the second term is zero by

definition of φs
k. This gives the following lemma.

Lemma III.1. The individual-based replicator-mutator dy-

namic model for social described by equation (7) guarantees

that cTxk = 1 for all k = 1, . . . , n if xk satisfies the initial

condition cTxk(0) = 1.

To summarize, the above individual-based evolutionary

dynamics model for networked societies (including behav-

ioral systems, in general) can be graphically represented

as seen in Figure 2. Each node represents an individual.

Associated with each node is an individual behavioral choice

model. All individuals interact through the social network S.

B1

B2

Social Network S

v1

v2

v3

v4

v5

v6

b1

b2

b3

b4

b5

w
s
43

w
s
61

Fig. 2. Individual-based model for social behavioral networks with n = 6

and N = 5.

Remarks.

1. Individual Social Fitness. The fitness fs
k determines how

fit individual k is in propagating its inclinations in the

network. The higher the value of fs
k , the more fit vk is in the

network. This is an individual property. In [11], the fitness

is used as the probability for choosing an individual for

reproduction. Here, we take a slightly different interpretation,

which is that fs
k determines how effectively the inclination

of individual vk will be transmitted in the network.

2. Inclination- and Time-Dependent Social Connectivity. The
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role of the weights ws
ij is to reflect the connectedness of

individual vj to individual vi. For no matter how fit vj is, if

it is not connected or is weakly connected to vi, very little

influence will vj have on vi. The components of Ws derive

from As and if the connection between vi and vj is stronger,

the higher the influence of one’s individual inclinations on

the other will be. The components of the interaction matrix

As may depend on several factors, especially geographic lo-

cation and/or communications. These components may also

be time dependent and may reflect time-dependent migratory

behaviors of individuals or groups of individuals in society.

Or, if one considers non-migratory dynamics, for example,

one can define a measure of distance between individuals

and use the inverse of that quantity to determine as
ij between

two individuals vi and vj . With the spread in the use of the

Internet and other advanced communications methods (text

messaging, e-mail, online message boards, etc) as media of

exchange of ideas, geographic proximity is becoming less

important in social interaction problems. In such cases, one

can use the magnitude of the difference between xi and xj

as a measure of distance between vi and vj :

d(vi, vj) = ‖xi − xj‖ . (9)

In general, one can define the distance between a pair of

nodes in a manner consistent with the application at hand.

Note also that the subjective matrix of individual rewards

Aj may also be explicitly time-dependent. This is important

in studying, for example, sudden changes in the perceived

rewards of the behaviors. In this case, Aj for a group of

individuals could undergo a sudden change from one value

to another in reaction to unexpected revelations about a

product (that, for example, it has a faulty component) or

political candidate (for example, unexpected revelations of

corruption). Such studies of time-dependent events may be

important for forecasting future volatility of a product or

political candidate in response to unexpected (good or bad)

events.

C. Social Diversity

The next task is to define diversity Ne under the model

given in equation (7). First let

y =
1

n

n
∑

k=1

xk (10)

be the average social inclination vector. One can then define

diversity as

Ne = 1/ ‖y‖
2
. (11)

Similar to the definition of diversity in [10], Ne ranges from

1 to N . If Ne = 1, we have a single dominant behavior and if

Ne = N , we have complete collapse. We have the following

necessary and sufficient condition for an absolutely dominant

behavior.

Lemma III.2. An absolutely dominant behavior is alge-

braically equivalent to xk = ei for all k = 1, . . . , n and

some unique i ∈ {1, . . . , N}.

Proof. An absolutely dominant behavior, by definition, cor-

responds to Ne = 1. This implies that ‖y‖2 = 1 or

y2

1
+ y2

2
+ · · · + y2

N = 1. (12)

Note that cTy = 1

n

∑n

k=1
cTxk = 1. Hence, we have

y1 + y2 + · · · + yN = 1. (13)

Taking the square of both sides of this equation and applying

the multinomial expansion we obtain
(

y2

1 + · · · + y2

N

)

+ 2
(

y1y2 + · · · + y1yN

+y2y3 + · · · + y2yN

+ · · ·

+yN−1yN

)

= 1.

Combining with equation (12) we are left with

y1y2 + · · · + y1yN + y2y3 + · · · + y2yN

+ · · · + yN−1yN = 0. (14)

Since yi ≥ 0, every term on the left hand side has to

be zero. However, there can only be one nonzero yi for

otherwise one of the terms on the left hand side of the

equation will be nonzero. Since cTy = 1, that nonzero y

component has to be 1. Hence, we must have y = ei. Thus

we have y = 1

n

∑n

k=1
xk = ei. Since all components of

xk are nonnegative, it must be that xk
j = 0 for all j 6= i.

Since cTxk = 1 for all k, we must then have xk
i = 1

for all k. This proves that an absolutely dominant behavior

implies that xk = ei for all k = 1, . . . , n and some unique

i ∈ {1, . . . , N}.

The converse is easily proven as follows. If xk = ei for

all k = 1, . . . , n and some unique i ∈ {1, . . . , N}, then

y = ei (by definition of y), which results in Ne = 1 (by

definition of Ne). This completes the proof. �

It can easily be checked that if every member of the

network has an inclination vector that is given by xk = 1

N
c

for all k then y = 1

N
c and we have total collapse with

Ne = N . This is a sufficient condition for complete collapse.

In this paper, we focus our attention on the emergence of

dominant behaviors and further studies of total collapse will

be studied in future work.

D. Conditions for the Emergence of Dominant Behaviors

In this section, we generalize the two main results in [10]

to the modified individual-based replicator-mutator dynamics

given in equation (7). We begin by giving the balance

condition [10].

Lemma III.3 (Balance Condition). Consider the modified

individual replicator-mutator dynamics (7). Define the func-

tions

ηk
i (x) =

xk
i (fk

i − φk − φs
k) +

∑n

j=1, 6=k fs
j ws

kjx
j
i

(1 − wk
ii)x

k
i fk

i −
∑N

j=1, 6=i xk
j fk

j wk
ji

, (15)

where x =
(

(

x1
)T

, . . . , (xn)T
)T

∈ R
nN . Let x∗be an

equilibrium of the system. The mutation rates µk and x∗
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must satisfy the balance conditions:

µk = ηk
1 (x∗) = ηk

2 (x∗) = · · · = ηk
N (x∗). (16)

Proof. First express equation (7) in coordinates as:

ẋk
i =

N
∑

j=1

xk
j fk

j qk
ji − φkxk

i +

n
∑

j=1

fs
j ws

kjx
j
i − φs

kxk
i , (17)

which is equivalent to:

ẋk
i = µk





N
∑

j=1, 6=i

xk
j fk

j wk
ji − (1 − wk

ii)x
k
i fk

i



 (18)

+

n
∑

j=1, 6=k

fs
j ws

kjx
j
i + xk

i

(

fk
i + fs

kws
kk − φk − φs

k

)

,

where we have used the fact that qk
ij = µkwk

ij for i 6= j

and that qk
ii = 1 − µk(1 − wk

ii). If x∗ is an equilibrium,

then ẋk
∗ = 0 and ẋk

i∗ = 0, ∀i = 1, . . . , n. Applying this

equilibrium condition to the above equation, rearranging and

noting that ws
kk = 0, one obtains the balance conditions

expressed in equation (16). �

We now derive the analogue of the main result in [10]

(which was stated above in Theorem II.1), but for the

modified individual-based replicator-mutator social dynamic

model (7). In the following theorem, we give a necessary

and sufficient condition for the emergence of an absolutely

dominant behavior in the evolutionary network S.

Theorem III.1. Let x∗ be an equilibrium of the modified

individual-based replicator-mutator social dynamic model

(7), then an absolutely dominant equilibrium behavior results

if and only if xk
∗ = ei for some i (i.e., xk

i∗ = 1, xk
j∗ = 0

for all j 6= i) and for all k = 1, . . . , n and µk = 0 for all

k = 1, . . . , n.

Proof. We first prove necessity. From Lemma III.2 an

absolutely dominant behavior is equivalent to requiring that

y = ei and that xk = ei for some i (i.e., xk
i = 1, xk

j = 0 for

all j 6= i) and for all k = 1, . . . , n. We need to show that if

the dominant behavior is an equilibrium, then µk = 0 for all

k = 1, . . . , n. First note that an absolutely dominant behavior

implies that fk
i = ak

iix
k
i +

∑N

j=1, 6=i ak
ijx

k
j = 1 since xk

i = 1,

xk
j = 0, ak

ii = 1 and, by assumption, fk
0

= 0. Also note that

φk =
∑N

j=1
xk

j fk
j = 1. Hence, and using the definition of

φs
k and the facts that xk

i = xj
i = 1 and ws

kk = 0, we have

ηk
i =

−xk
i φs

k +
∑n

j=1, 6=k fs
j ws

kjx
j
i

(1 − wk
ii)

= 0.

Note that wk
ii 6= 1 due to the earlier stated assumption that

Ak 6= I. Thus, we see that for xk = ei, for all k and some

i, to be an equilibrium we must have µk = ηk
1

= · · · = ηk
N

for all k = 1, . . . , n by virtue of the balance conditions.

This proves that an absolutely dominant behavior implies

that µk = 0 in addition to the fact that xk = ei for some i
(i.e., xk

i = 1, xk
j = 0 for all j 6= i) and for all k = 1, . . . , n

(from Lemma III.2).

The converse is easily proven as follows. With µk = 0,

equation (18) is simplified to

ẋk
i =

n
∑

j=1, 6=k

fs
j ws

kjx
j
i + xk

i

(

fk
i + fs

kws
kk − φk − φs

k

)

.

Since xk = ei for some i (i.e., xk
i = 1, xk

j = 0 for all

j 6= i) and for all k = 1, . . . , n then (as shown above) we

have fk
i = φk = 1, xk

i = xj
i = 1 and, thus,

ẋk
i =

n
∑

j=1, 6=k

fs
j ws

kj −

k
∑

j=1

fs
j ws

kj =

n
∑

j=1

fs
j ws

kj −

k
∑

j=1

fs
j ws

kj

= 0,

where the first equality results from the fact that ws
kk = 0.

This completes the proof of the theorem. �

For the individual-based approach, with multiple partic-

ipants, the counterpart of the second statement in Theorem

II.1 can be derived. However, there are multiple different

scenarios under which a dominant behavior can arise. For

example, for all individuals to have inclinations such that

xk
i ≈ 1 − ǫ and xk

j ≈ ǫ for j 6= i, one can show (along the

same lines of the proof of the second statement in Theorem

II.1, which can be found in [10]) that µk ≈ O(ǫ) for a

small ǫ. However, this condition is not necessary for a dom-

inant (non-absolute) behavior to emerge. For example, (non-

absolute) dominance will also emerge if a single individual

has a relatively high µk and has its inclination degenerate to

xk ≈ 1

N
c while all other mutation parameters are small and

the corresponding individuals converge to a single dominant

behavior. A full analysis of the various conditions that lead

to behavioral dominance and collapse will be addressed in

an archival version.

IV. RELATION TO PREVIOUS WORK

In this section, we demonstrate how the above model

relate to and generalizes previous results on behavioral

evolution in social networks, consensus over networks, and

evolutionary dynamics on graphs.

If one sets n = 1, and since ws
11 = 0, then clearly the

modified individual based replicator-mutator dynamics (7)

reduce to the social choice model used in [10]. This single

individual then models the entire population using a single

mutation parameter and rewards matrix. The components of

x = xk are now viewed as the fraction of the population

adopting each behavior. This, as discussed above, is where

the collective population model fails to take into account

the subjective valuation of the rewards matrices as well as

the diversity in the individual mutation parameters µk of the

individuals in society.

If, on the other hand, we set fk = 0 and fs
j = 1, the

dynamic equation for each ẋk is now given by

ẋk = Ws
kx− xk,

where we note that φs
k =

∑n

j=1
ws

kj = 1 since fs
j = 1, and

where

Ws
k =

[

ws
k1

IN ws
k2

IN · · · ws
knIN

]

.

Concatenating the above set of n differential equations, we
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obtain

ẋ = Wsx − x = − (I − Ws)x = −Lsx, (19)

where

Ws =











Ws
1

Ws
2

...

Ws
n











and where Ls is the Laplacian matrix of the social network

S as before. One recognizes equation (19) as the consensus

algorithm [16]–[18]. Hence, in a social network where in-

dividuals have equal social fitness parameters fs
k , the effect

of the social network on the individual decision making is

that of a consensus or averaging effect. With uneven fitness

parameters and different edge weights, individuals within

close proximity to one another, especially in the sense of the

distance measure given in equation (9), would consolidate

their inclinations, whereas further away members of society

introduce a slight averaging effect.

The above discussion shows that the modified individual

based replicator-mutator dynamics is essentially a weighted

average of evolutionary decision-making and evolutionary

consensus-reaching (“evolutionary consensus” is used here

since the graph is dynamic and evolves according to an

evolutionary replicator-mutator process).

Finally, we establish a connection with the work of

Lieberman, Hauert and Nowak [11]. In their work, a graph

S is constructed from a set of individuals vi who are

represented as the vertices of the network as above (we adapt

their notation to the one we use here). Each individual has

a fitness fs
k and the graph has a weighted interaction matrix

Ws. In [11], the authors seek to find “the probability that

a newly introduced mutant generates a lineage that takes

over the whole population”. In other words, they assume

that there are only two behaviors (N = 2), one being the

prevalent behavior, say b2, that is assumed by all individuals

except one, and a mutant behavior b1 possessed by a single

individual. In their model, Lieberman et al. view fs
k as the

probability that individual vk is chosen for reproduction (i.e.,

for transmitting vk’s behavior to other individuals) and ws
ki

as the probability that the behavior of individual vk be trans-

mitted to individual vi and replace vi’s behavior with that

of vk’s. Replicator-mutator dynamics are not considered in

their work, and no individual decision-making (or inclination

building) model is employed. That is, each individual is

endowed with a fixed behavior that can only be replaced by

another behavior from a neighboring individual. The authors

study the behavior of a single mutant behavior b1, possessed

only by v1, in different kinds of graph structures, including

the star structure, the super-star structure, the funnel, the

meta-funnel, and other extensions (see [11] for definitions).

It is argued in [11] that the star structure shown in Figure

3 acts as an evolutionary amplifier that favors advantageous

mutants and that inhibits disadvantageous mutants. We will

verify that this property holds under the modified individual-

based evolutionary modeled proposed in this paper. Further

rigorous analytical verification of these results, which are

beyond the scope of this paper, will be included in a future

archival version of this paper.

In the star structure the individual with the mutant be-

havior is located at the center of the graph and is assigned

the node v1. In the star structure we have as
1j = as

j1 = 1
and as

ij = 0 if neither i = 1 nor j = 1. Recall that we have

only two behaviors, with b1 representing the mutant behavior

associated with v1. Hence, we set a higher reward for the fist

behavior for individual v1 with

A1 =

[

1 0.1
10 1

]

.

Letting n = 9, the reward matrices for the remaining

individuals with the dominant behavior b2 is assumed to be

the same for vj , j = 2, . . . , 9:

Aj =

[

1 10
0.1 1

]

, j = 2, . . . , 9.

It will be demonstrated that both the mutation parameters

and the social fitness of the individuals affect the behavioral

outcome over the network. In the first simulation we set

µk = 0.01 and fs
k = 1 for all k = 1, . . . , 9. The average

social inclination vector y is shown in Figure 4(a). We

see here that the slightly dominant behavior is b2 with

Ne = 1.7275 at steady state. In other words, the mutant

behavior introduced by v1 is not amplified even though v1

interacts with all other individuals in the network and the

latter is not able to consolidate its dominant behavior.

Next, we show the impact of increasing the mutation rate

of the dominant individuals (ones having a higher reward

for the dominant behavior b2). In this case we set µk = 2
for all k = 2, . . . , 9. The result is shown in Figure 4(b). By

simply increasing the mutation rate of the individuals with

the initially dominant behavior gives a social advantage for

the mutant b1, where the diversity is now Ne = 1.0370,

heavily leaning towards the mutant b1. In the third case,

we use the same parameters as in the first case (case (a)),

except that we only change the fitness parameter of v1 to

be 10 instead of 1. Hence, v1 is socially more fit than its

neighbors, though all have equal mutation parameters of

0.01. The result is shown in Figure 4(c), where we see that

there is a strong advantage of the mutant behavior b1 over

the previously dominant behavior b2. Finally, Figure 4(d)

shows the impact of having both a lower mutation parameter

(µ1 = 0.01, µj = 2, j = 2, . . . , 9) and a higher social fitness

(fs
1 = 10, fs

j = 1, j = 2, . . . , 9) on the emergence of a

previously non-dominant behavior b1 which is now strongly

dominant with Ne = 1.0318. These numerical examples

show that both the fitness of the individual carrying a mutant

and the mutation rate of the individuals in society can result

in the evolutionary amplification of advantageous mutants

and suppression of disadvantageous mutants.

V. CONCLUSION

Recognizing the fact that, in a social network, individuals

make subjective valuation of the different available behaviors

and arrive at individual inclinations towards them, in this
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Fig. 3. The star structure with n = 9 and N = 2.
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Fig. 4. Response of the star structure.

paper we develop an individual-based, replicator-mutator dy-

namics that model how an individual makes choices. Based

on this individual choice model, we introduce the effect

of a social network on an individual’s choice through an

interaction network whose vertices represent the individual

decision-makers and whose edges measure the proximity of

the individuals. Some basic properties and implications of the

model were shown, and how the individual-based replicator-

mutator dynamics with social interaction relate to previous

results on behavioral evolution in social networks, consensus

over networks, and evolutionary dynamics on graphs was

also discussed. Current work focuses on further analysis of

the individual-based replicator-mutator model and using it in

resource allocation and control of informational and multi-

agent robotic systems.
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dynamics: From individual stochastic processes to macroscopic mod-
els,” Theoretical Population Biology, vol. 69, pp. 297 – 321, 2006.

[13] K. M. Page and M. A. Nowak, “Unifying evolutionary dynamics,”
Journal of Theoretical Biology, vol. 219, pp. 93–98, 2002.

[14] V. V. Gafiychuk and A. K. Prykarpatsky, “Replicator-mutator evo-
lutionary dynamics,” Journal of Nonlinear Mathematical Physics,
vol. 11, no. 3, pp. 350 – 360, 2004.

[15] M. Eigen and P. Schuster, The Hypercycle: A Principle of Natural

Self-Organization. Springer-Verlag, 1979.
[16] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks

of agents with switching topology and time-delays,” IEEE Transac-

tions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, September
2004.

[17] R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor
networks and distributed sensor fusion,” in Proceedings of the IEEE

Conference on Decision and Control, Seville, Spain, 2005, pp. 6698–
6703.

[18] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, January 2007.

[19] J. Hofbauer and K. Sigmund, Evolutionary Games and Population

Dynamics. Cambridge, UK: Cambridge University Press, 1998.

5796


