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Abstract— This paper presents an infinite horizon model pre-
dictive control (MPC) scheme for constrained linear parameter-
varying systems. We assume that the time-varying parameter
can be measured online and exploited for feedback. The
proposed method is based on a parameter-dependent control
law which is obtained via the repeated solution of a convex op-
timization problem involving linear matrix inequalities (LMIs).
Closed-loop stability is guaranteed by the feasibility of the LMIs
at initial time. Compared to existing algorithms with static
linear control law and more restrictive LMI conditions, the
proposed scheme reduces conservatism and improves perfor-
mance, which is confirmed by a simulation example.

I. INTRODUCTION

Linear parameter-varying (LPV) systems play an impor-

tant role in both control theory and application. LPV sys-

tems represent a class of nonlinear systems which can be

controlled using linear-like control techniques. This explains

that in numerous practical control problems LPV systems are

used for controller design as e.g. in automotive [10, 11] and

aerospace [8, 18] applications. In the field of control theory

many research activities have focussed on the development of

control methods for LPV systems in the past, see for example

the results presented [1, 2, 14, 17, 23–25] for an overview.

Since model-predictive control (MPC) has well-known ad-

vantageous properties such as optimal solutions with respect

to the considered cost function and guaranteed satisfaction of

state and input constraints, see e.g. [6] and [7], clearly also

several MPC schemes that are able to deal with LPV systems

have been published in the literature [4, 5, 13, 15, 16, 19–22].

In most of those methods the control law is calculated by

repeatedly solving a convex optimization problem based on

linear matrix inequalities (LMIs) such that an upper bound of

a worst-case cost function is minimized. The approaches [5]

and [13] have not explicitly been developed for LPV systems

and therefore suffer from rather conservative LMI conditions

that have to be satisfied. However, they are a suitable choice

as MPC controllers for LPV systems since they robustly

stabilize an LPV system for all possible parameter variations.

The controllers suggested in [19] and [21] are restricted

to LPV systems with bounded rates of parameter variation.

Those approaches are not applicable to the case considered

in this paper where we assume that the parameters may

vary arbitrarily within a given set. The approach presented
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in [20] assumes the parameter to be measurable in real-

time. This knowledge on the parameter allows to obtain

in the first step an exact prediction of the future system

behavior and therefore reduced conservatism. However, as

discussed in [3] feasibility of the optimization problem

cannot be guaranteed. In the MPC controllers proposed

in [15] and [16], the control law is independent of the

system parameter. As [5] and [13] those approaches robustly

stabilize the considered LPV system. Thus, if the parameter

is measurable, this knowledge cannot be exploited. We will

show in this paper that the incorporation of the parameter

measurement in the control law may reduce conservatism and

improve the controller performance. A solution involving the

parameter measurement in the controller design is suggested

in [4]. However, this approach relies on conservative LMI

conditions. As will be shown those conditions can be relaxed

using results presented in [9],[12],[26] and [27].

The goal of this work is to derive a computationally attractive

MPC controller with guaranteed closed-loop stability for

discrete-time LPV systems subject to state and input con-

straints. The control law is calculated efficiently via solving

a convex optimization problem at each sampling instant

such that an upper bound of an infinite horizon worst-case

cost function is minimized. The obtained LMI conditions

are less restrictive than those of comparable approaches, as

for example [4, 5, 13]. Furthermore, the solution to the opti-

mization problem delivers a control law which depends on

the time-varying system parameter, which is assumed to be

measurable in real-time. The exploitation of this knowledge

on the parameter in the controller design in combination with

the relaxed LMI conditions reduces the conservatism and

improves controller performance when compared to many

MPC approaches for LPV systems, as for example [4, 5, 13].

The paper is organized as follows: After a short overview

on the notation used in the paper the following section

will introduce the considered system class, namely discrete-

time LPV systems, and present the MPC problem setup.

Section III derives the main result of this paper which

is a novel, stabilizing MPC controller for LPV systems.

The parameter-dependent control law is calculated via the

solution of a convex optimization problem based on LMI

conditions which are less conservative compared to existing

MPC approaches for LPV systems [4, 5, 13]. In Section IV

we apply the proposed controller to a simulation example

and compare the obtained performance with existing MPC

schemes. It is shown that controller performance can be

improved significantly by our approach. Section V concludes

the paper with a brief summary.
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A. Notation

We denote ψi,k as the i-th element of the vector ψk. The

expression xk+v|k (uk+v|k) denotes the predicted state x

(input u) at the time instant k + v, where the prediction

has been calculated at the sampling instant k. With I and 0
we denote an identity matrix and a zero matrix, respectively,

of suitable dimension. The vectors em, m = 1, . . . ,mmax,

represent the column vectors of an identity matrix of dimen-

sion mmax ×mmax. With the expression Co{F1, . . . , FN}
we denote the convex hull of the N matrices F1, . . . , FN .

II. PROBLEM SETUP

Consider discrete-time linear parameter-varying (LPV)

systems of the form

xk+1 = A(θk)xk +B(θk)uk, (1a)

zk = C(θk)xk +D(θk)uk, (1b)

subject to

−zm,max ≤ zm,k ≤ zm,max, m = 1, 2, . . . , nz, (2)

where xk ∈ Rnx denotes the system states, uk ∈ Rnu is

the control input, and zk ∈ Rnz denotes the constraints

output vector, which is not necessarily measurable. The

constant vector zmax defines the state and input constraints

for system (1). The system matrices A(θk) ∈ R
nx×nx ,

B(θk) ∈ R
nx×nu , C(θk) ∈ R

nz×nx and D(θk) ∈ R
nz×nu

are assumed to depend on the parameter vector θk :=
[θ1,k, θ2,k, · · · , θN,k]T ∈ R

N , which belongs to a convex

polytope P defined by

N
∑

j=1

θj,k = 1, 0 ≤ θj,k ≤ 1. (3)

We assume that the parameter θk can be measured online.

Clearly, as θk varies inside the polytope P , the matrices of

system (1) vary inside a corresponding polytope Ω
[

A(θk) B(θk)
C(θk) D(θk)

]

∈ Ω, (4)

which is defined by the convex hull of N local extremal

matrices [Ai, Bi, Ci,Di], i = 1, 2, · · · , N ,

Ω := Co
{

[

A1 B1

C1 D1

]

,

[

A2 B2

C2 D2

]

, . . . ,

[

AN BN

CN DN

]

}

. (5)

Therefore, we can write the matrices of system (1) as

A(θk) =
N

∑

j=1

θj,kAj , B(θk) =
N

∑

j=1

θj,kBj ,

C(θk) =

N
∑

j=1

θj,kCj , D(θk) =

N
∑

j=1

θj,kDj .

The control task is to stabilize the origin of system (1) with

a model predictive controller such that the constraints (2) are

satisfied. The MPC controller will be derived such that an

upper bound on the infinite horizon cost function

J∞|k = max
θ∈P

∞
∑

v=0

{

xT
k+v|kQxk+v|k + uT

k+v|kRuk+v|k

}

(6)

is minimized at each sampling instant k based on a prediction

of the system behavior into the future. In the considered

cost function Q > 0 and R > 0 are weighting matrices

of suitable dimension. Throughout this paper we assume

that the full state xk is measurable in real-time. Since we

also measure the parameter θk, at every sampling instant k

the current system matrices are known exactly. However, all

future systems matrices are uncertain and vary inside the

polytope Ω since we cannot predict the future behavior of

the system parameter θk+v|k, v = 1, . . . ,∞. Therefore, in

the cost function (6) the worst case over all possible future

parameters has to be considered.

In the following section we derive an MPC controller based

on the parameter-dependent control law

uk = K(θk)xk, (7)

which is updated at each sampling instant via the minimiza-

tion of an upper bound on cost function (6). The parameter

dependency allows more degree of freedom in the controller

design and leads to less restrictive LMI conditions in the

optimization problem.

III. MPC USING LINEAR PARAMETER-DEPENDENT

FEEDBACK LAW

In this section, we propose a new model predictive con-

troller for system (1) subject to the constraints (2) by using

a parameter-dependent state feedback control law, which is

obtained via the solution of a convex optimization problem.

The conservatism of the LMI conditions inherent to this

optimization problem is reduced following the ideas pre-

sented in [26] and [27]. In combination with the parameter

dependency of the feedback law the obtained LMI conditions

provide more degree of freedom in the controller design such

that the obtained controller reduces the conservatism of the

methods proposed in [4, 5, 13].

Suppose that Kj ∈ R
m×n is a time-invariant feedback gain

of the j-th vertex system. A suitable, parameter-dependent

feedback law for the whole LPV system is obtained via the

weighted average of the control laws designed for each vertex

K(θk) =

N
∑

j=1

θj,kKj . (8)

Using control law (7), for system (1) we obtain the closed-

loop representation

xk+1 = Acl(θk)xk (9a)

zk = Ccl(θk)xk. (9b)

where the system matrices Acl(θk) and Ccl(θk) are given by

Acl(θk) =

N
∑

i=1

N
∑

j=1

θi,kθj,k(Ai +BiKj), (10a)

Ccl(θk) =
N

∑

i=1

N
∑

j=1

θi,kθj,k(Ci +DiKj). (10b)
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The following theorem derives conditions to obtain an upper

bound on cost function (6) using the system description (10).

Theorem 1: Suppose that there exist a symmetric,

positive definite matrix Xk ∈ R
nx×nx , matrices

Y1,k, Y2,k, . . . , YN,k ∈ R
nu×nx , and a constant γk ∈ R

+

such that the optimization problem at time instant k

min
γk,Xk,Y1,k,Y2,k,...,YN,k

γk (11a)

subject to
[

1 xT
k

xk Xk

]

≥ 0, (11b)

N
∑

i=1

N
∑

j=1

θi,k+v|kθj,k+v|kLij > 0, (11c)

N
∑

i=1

N
∑

j=1

θi,k+v|kθj,k+v|kFij,m ≥ 0, m = 1, 2, . . . , nz, (11d)

with the matrices

Lij =









Xk ∗ ∗ ∗
AiXk +BiYj,k Xk ∗ ∗

Q
1

2Xk 0 γkI ∗

R
1

2Yj,k 0 0 γkI









, (11e)

Fij,m =

[

z2
m,max eT

m(CiXk +DiYj,k)
∗ Xk

]

, (11f)

has a feasible solution which holds for all θk+v|k ∈ P ,

v = 1, . . . ,∞, where xk is the measured system state at

the sampling instant k. Then, with Pk = γkX
−1

k , Kj,k =
Yj,kX

−1

k , j = 1, . . . , N , and with the parameter-dependent

control law

uk+v|k = K(θk+v|k)xk+v|k, (12)

where K(θk+v|k)=
∑N

j=1
θj,k+v|kKj,k, the following holds:

(a) The predicted states xk+v|k with xk|k = xk converge

to the origin as v → ∞.

(b) The expression Vk = xT
k Pkxk is minimized and

represents an upper bound on cost function (6) at the

sampling instant k.

(c) The predicted states xk+v|k and inputs uk+v|k satisfy

the constraints (2).

Proof: The proof is divided into three parts in order to show

separately that the properties (a)-(c) hold.

Part (a): Multiplying (11c) from the left and from the right

with diag{X−1

k , I, I, I} and substituting Pk = γkX
−1

k ,

Kj,k = Yj,kX
−1

k , we obtain that








γ−1

k Pk ∗ ∗ ∗
Acl(θk+v|k) γkP

−1

k ∗ ∗

Q
1

2 0 γkI ∗

R
1

2K(θk+v|k) 0 0 γkI









≥ 0, (13)

holds for all θk+v|k ∈ P, v = 0, . . . ,∞. By the Schur

complement this is equivalent to

AT
cl(θk+v|k)PkAcl(θk+v|k) − Pk

+Q+K(θk+v|k)TRK(θk+v|k) ≤ 0. (14)

Multiplying from both sides with xT
k+v|k and xk+v|k, respec-

tively, plugging in the system dynamics (1) and using (12),

it follows that the inequality

xT
k+v+1|kPkxk+v+1|k − xT

k+v|kPkxk+v|k

+xT
k+v|kQxk+v|k + uT

k+v|kRuk+v|k ≤ 0 (15)

is satisfied. Since Q > 0 and R > 0, clearly Vk+v|k =
xT

k+v|kPkxk+v|k is a Lyapunov function and therefore the

predicted states xk+v|k converge to zero as v → ∞.

Part (b): Using xk+v|k → 0 for v → ∞, by summing up (15)

from v = 0 to v = ∞ we obtain

xT
k|kPkxk|k ≥

∞
∑

v=0

xT
k+v|kQxk+v|k + uT

k+v|kRuk+v|k. (16)

Since this inequality is satisfied for all θk+v|k ∈ P , v =
1, . . . ,∞, with xk|k = xk it follows that

Vk = xT
k Pkxk ≥ J∞|k. (17)

Thus, Vk is an upper bound on cost function (6) at the

sampling instant k. Applying the Schur complement on (11b)

and substituting Pk = γkX
−1

k we conclude that

xT
k Pkxk = Vk ≤ γk (18)

holds. Thus, minimizing γk implies the minimization of Vk,

see [13] for details.

Part (c): The predicted states and inputs clearly satisfy the

constraints (2) if

xT
k+v|kC

T
cl(θk+v|k)eme

T
mCcl(θk+v|k)xk+v|k ≤ z2

m,max, (19)

m = 1, 2, . . . , nz , holds for all θk+v|k ∈ P and all v ≥ 0. It

follows from (15) and (18) that

xT
k+v|kPkxk+v|k ≤ γk, ∀v ≥ 0. (20)

Thus, inequality (19) is satisfied if

xT
k+v|kC

T
cl(θk+v|k)eme

T
mCcl(θk+v|k)xk+v|k

z2
m,max

−
xT

k+v|kPkxk+v|k

γk

≤ 0 (21)

holds, which is clearly the case if

Pk

γk

−
CT

cl(θk+v|k)eme
T
kCcl(θk+v|k)

z2
m,max

≥ 0, (22)

m = 1, 2, . . . , nz , holds for all θk+v|k ∈ P and all

v ≥ 0. Using the definition of Ccl(θk+v|k) in (10b), with

standard modifications we obtain (11d). Thus, satisfaction

of the matrix inequalities (11d) implies that (19) holds,

and therefore, the predicted states and inputs satisfy the

constraints (2). 2

Remark 3.1: Note that in Theorem 1 for simplicity of

notation we have skipped the index k in the matrices Lij

and Fij,m. It is clear from the definition of those matrices

in (11e) and (11f) that they change with k since they depend

on Xk and Yj,k.
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Theorem 1 gives conditions for the minimization of an upper

bound on the infinite horizon cost function (6). However, the

matrix inequalities (11c) and (11d) depend on the unknown

future parameter θk+v|k. This makes it impossible to find

a solution to the optimization problem (11) in Theorem 1.

The following lemma gives conditions to reformulate the

conditions of Theorem 1 in terms of LMIs, which allow the

calculation of the solution to the optimization problem.

Lemma 1: [9, 12] If there exist matrices Λij = ΛT
ji, i =

1, . . . , N , j = 1, . . . , N , such that the LMIs

Γii ≥ Λii, i = 1, . . . , N, (23a)

Γij + Γji ≥ Λij + ΛT
ij , i = 1, . . . , N, j < i, (23b)

[Λij ]N×N
≥ 0, (23c)

are satisfied, where

[Λij ]N×N =







Λ11 · · · Λ1N

...
. . .

...

ΛN1 · · · ΛNN






, (24)

then with αi,k ≥ 0,
N
∑

i=1

αi,k = 1 ∀k, the parameter-dependent

matrix inequalities

N
∑

i=1

N
∑

j=1

αi,kαj,kΓij ≥ 0, (25)

are satisfied for all k.

Lemma 1 allows us to formulate LMI conditions as in (23)

such that a parameter-dependent matrix inequality of the

form (25) is satisfied. This can be used to reformulate the

optimization problem (11) in Theorem 1 in terms of LMIs.

In the following theorem, which derives the main result

of this paper, namely a novel, computationally attractive

MPC controller for LPV systems subject to constraints

with guaranteed stability and reduced conservatism, the

parameter-dependent matrix inequalities (11c) and (11d) are

reformulated as LMIs by applying Lemma 1.

Theorem 2: Consider the LPV system (1) subject to the

constraints (2) and the cost function (6). The MPC controller

with the optimization problem

min
γk,Xk,Y1,k,Y2,k,...,YN,k,Tij ,Sij

γk, (26a)

subject to
[

1 xT
k

xk Xk

]

≥ 0, (26b)

Lii ≥ Tii, i = 1, 2, · · · , N, (26c)

Lij + Lji ≥ Tij + TT
ij , i = 1, . . . , N, j < i, (26d)

[Tij ]N×N
≥ 0, (26e)

Fii,m ≥ Sii,m, i = 1, 2, · · · , N, (26f)

Fij,m+Fji,m ≥Sij,m+ST
ij,m, i = 1, . . . , N, j < i, (26g)

[Sij,m]
N×N

≥ 0, (26h)

that is solved repeatedly at each sampling instant k based

on the state measurement xk, and where Lij and Fij,m are

as defined in Theorem 1, has the following properties with

Pk = γkX
−1

k and Kj,k = Yj,kX
−1

k , j = 1, . . . , N :

(a) The optimization problem (26) is convex. Furthermore,

it is feasible at the sampling instant k+1 if it is feasible

at the sampling instant k.

(b) The solution to the optimization problem (26) mini-

mizes the upper bound Vk = xT
k Pkxk on cost func-

tion (6) at each sampling instant k.

(c) If the optimization problem (26) is initially feasible,

the control law

uk = K(θk)xk = K(θk|k)xk, (27)

asymptotically stabilizes the origin of system (1),

where K(θk|k) is the first part of the optimal feed-

back sequence K(θk+v|k) =
∑N

j=1
θj,k+v|kKj,k, v =

0, . . . ,∞, calculated at the sampling instant k.

(d) The MPC control law (27) is such that the input and

state constraints (2) are satisfied for all k.

Proof: The proof is divided into four parts in order to show

separately that the properties (a)-(d) hold.

Part (a): It is trivial to show that the optimization problem is

convex since the conditions (26b)-(26h) are LMI conditions.

By applying Lemma 1 to the LMIs (26c)-(26h) it can be

shown that the solution to the optimization problem (26)

at the sampling instant k has the same properties as the

solution to the optimization problem (11) in Theorem 1. Thus,

it follows from (15) that

xT
k+1|kPkxk+1|k < xT

k|kPkxk|k (28)

is satisfied for all k. The first part of the input sequence

uk+v|k = K(θk+v|k)xk+v|k predicted at the sampling in-

stant k is applied to the real system, i.e. uk = K(θk)xk =
K(θk|k)xk|k = uk|k. Furthermore, no model plant mismatch

is present, i.e. xk+1|k = xk+1. Thus, it follows from (28) that

xT
k+1Pkxk+1 < xT

k Pkxk (29)

holds for all k. This implies that the solution to the opti-

mization problem (26) at the sampling instant k satisfies the

LMIs (26b)-(26h) at the sampling instant k+1 and therefore

is a feasible solution to the optimization problem (26) at

sampling instant k + 1. It follows by induction that initial

feasibility implies feasibility at all future sampling instants.

Part (b): This property follows directly from the proof of

Theorem 1.

Part (c): It follows from part (a) that the feedback law K(θk)
and the matrix Pk can be calculated at each sampling

instant k if the optimization problem is feasible at the

first sampling instant. Under this assumption the expres-

sion Vk+1 = xT
k+1

Pk+1xk+1 is minimized at the sampling

instant k + 1. Since Pk is a feasible, however suboptimal

solution to the optimization problem (26) at k+1, with (29)

it follows that

xT
k+1Pk+1xk+1 ≤ xT

k+1Pkxk+1 < xT
k Pkxk (30)

3121



holds for all k. Clearly, Vk = xT
k Pkxk is a Lyapunov

function and thus, system (1) is asymptotically stabilized by

the control law (27).

Part (d): It follows from the proof of Theorem 1 that at each

sampling instant k the predicted state and input trajectories

xk+v|k and uk+v|k satisfy the constraints (2) for all v ≥ 0.

Since uk = uk|k and xk+1|k = xk+1, this clearly implies

satisfaction of the constraints (2) for all k. 2

The proposed MPC controller is less conservative than

those suggested in [4, 5, 13]. For example, the solution to

the optimization problem in [4] and [13] would have to

satisfy the condition Lij > 0, ∀i, j = 1, . . . , N . Here,

this condition is relaxed by the parameter-dependent matrix

inequality (11c) which is satisfied according to Lemma 1 if

the (less restrictive) LMIs (26c)-(26e) hold. Furthermore, the

exploitation of the measurable parameter θk in the feedback

law (27) reduces conservatism of the schemes presented

in [5] and [13].

In the following section we apply the proposed MPC con-

troller to a simulation example which demonstrates the im-

provements obtained compared to the controllers suggested

in [5] and [13].

IV. SIMULATION EXAMPLE

To illustrate the effectiveness of the proposed approach

we consider, as in [5] and [13], the two-mass-spring model

(obtained from the continuous time model using a first-order

Euler approximation with sampling time δ = 0.1s)

xk+1=









1 0 0.1 0
0 1 0 0.1

−0.1 µ
m1

0.1 µ
m1

1 0

0.1 µ
m2

−0.1 µ
m2

0 1









xk+









0
0
0.1
m1

0









uk (31)

where m1 and m2 are the two masses and µ is the spring

constant. The positions of the masses are represented by the

states x1,k and x2,k, whereas x3,k and x4,k describe their

velocities. For the simulation the constant masses m1 = 1
and m2 = 1 have been chosen. The spring constant has

been assumed to be a time-varying function of the sampling

instant k

µk = 5.25 − 4.75 sin(0.5k). (32)

Note that as in [5] and [13] µk ∈ [0.5, 10]. Introducing the

parameters θ1,k = 1− µk−0.5
9.5

and θ2,k = 1−θ1,k system (31)

can be written in the form as considered in this paper, i.e.

the parameters θi,k, i = 1, 2, satisfy condition (3) and the

matrices Ai and Bi = B, i = 1, 2, are as follows:

A1 =









1 0 0.1 0
0 1 0 0.1

−0.05 0.05 1 0
0.05 −0.05 0 1









, (33)

A2 =









1 0 0.1 0
0 1 0 0.1
−1 1 1 0
1 −1 0 1









, B =









0
0

0.1
0









. (34)

The control objective is to steer the example system (31)

from the initial condition x0 = [1 1 0 0]T to the origin

while satisfying the input constraint |uk| ≤ 0.05 for all k.

Since only one input constraint is considered, we obtain

nz = 1 and the matrices C = [0 0] and D = 1 which

are independent of the parameter θk. We have applied both

approaches suggested in [5] and [13] to illustrate the reduced

conservatism and the improved performance obtained by the

MPC controller proposed in this paper. In the simulation the

matrices of the infinite horizon cost function (6) have been

chosen as Q = I ∈ R
4×4 and R = 1.

Figure 1 shows the obtained simulation results. Compared

to the MPC approaches [5] and [13] the proposed MPC

controller steers the example system significantly faster to

the origin. The behavior of the input uk shows that the novel

controller is able to react more efficiently on the varying

parameter θk. This results from the parameter-dependency

of the feedback law and from the less conservative LMI

conditions in the optimization problem. The reduced con-

servatism of the proposed controller is also illustrated well

by the behavior of γk which represents the minimized upper

bound on the worst-case cost function. Figure 1 clearly shows

that with the novel approach a significantly smaller upper

bound can be calculated at each sampling instant k. Thus,

the obtained feedback law is closer to the optimal solution

that would be obtained if the optimization problem could be

solved analytically.

To summarize, the application of the proposed MPC con-

troller to the example system shows, that the parameter-

dependency of the feedback law and the reduced con-

servatism of the LMI conditions can lead to significant

performance improvements when compared to the MPC

approaches [5] and [13].

V. CONCLUSIONS

In this paper a novel, computationally attractive MPC

approach for linear parameter-varying systems has been

derived. The control law, which depends on the measurable

system parameter, is the solution to a convex optimization

problem based on linear matrix inequalities that is solved

repeatedly at each sampling instant. If the optimization

problem is initially feasible, the approach guarantees closed-

loop stability and satisfaction of state and input constraints.

The obtained optimal solution minimizes an upper bound

on the considered worst-case infinite horizon cost function.

It has been shown that, due to the parameter-dependency of

the control law and due to relaxed LMI conditions, the novel

approach reduces the conservatism of the well-known MPC

methods presented in [5] and [13]. The obtained results have

been confirmed by a simulation example.
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