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Abstract— Autonomous systems based on MEMS devices may
often be provided with very limited computational and power
capacity, if control circuitry and power sources are to be
miniaturized along with the electromechanical components. On-
Off control can serve as an efficient methods of regulating
motion of MEMS structures when power is extremely limited by
allowing control to be performed using simple driving circuits
and few transitions between ‘on’- and ‘off’-states. In particular,
this is highly desirable for micro-robotics applications based on
piezoelectric actuation. In this paper a binary programming
method is used to optimize a cost function that consists of
the number of switching transitions and on-time for a linear-
discrete system, as the system is steered to a desired final
state. This can be used to minimize power consumption in
piezoelectric actuators as they move a micro-robotic leg joint
to a desired position. A set of test cases is examined to explore
behavior of the optimization procedure.

I. INTRODUCTION

Autonomous operation of micro-electromechanical sys-

tems (MEMS) requires strict attention to power consumption

during servo control, so that MEMS components can be

effectively operated with miniature power sources. Many

MEMS devices rely on piezoelectric or electrostatic actuators

to produce motion, where power consumption is primarily

related to a capacitive load. In these situations, On-Off

control can be an important method for performing servo

control within a limited power budget, because switching

On-Off drive circuits have lower energy losses than ana-

log amplifiers, and reducing switching frequency relative

to pulse-width-modulation (PWM) can further reduce the

energy consumption [1] [2].

The goal of this work is to minimize energy loss while

driving a system to a desired states with an On-Off controller

when significant energy losses are incurred to switch between

‘on’ an ‘off’ inputs. This problem is inspired by the need

for a controller to produce efficient motions of a micro-

robotic leg joint driven by piezoelectric actuators, such as

the prototype joint and actuator shown in Fig. 1. In this

application, energy is lost when the actuator is charged or

discharged as well as through leakage resistances in the

actuator or driving circuit when the controller input is ‘on.’

As practical position sensors are not yet available for the

prototype structures, control would be applied in open-loop,

using sequences of ‘on’ and ‘off’ inputs predetermined using

the algorithms described in this paper.
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Fig. 1. Prototype micro-robotic leg link

Previous researchers have developed methods for mini-

mizing ‘on’-time of an On-Off controller while achieving

certain goals [3], or minimizing total time required to com-

plete a task using On-Off control [4], but these methods

did not incorporate switching costs. In this paper, a cost

function consisting of both on-time and number of switches

is considered. Capacitive costs associated with switching

result in a nonlinearity in the cost function, increasing

solution difficulty. In response, a method for converting this

cost function to a quadratic form is given. Once in this

form, there are many solution methods to minimize the cost

function, of which two main types have been studied. In

the first type of solution method, the switched system is

considered as a hybrid system and a hybrid solver is used (a

combination of logic solver such a satisfiability solver (SAT)

or constraint programming (CP) plus an integer programming

solver) [5][6]. The second type of solution method uses

binary programming to optimize a penalty function which is

a weighted sum of constraints and the objective function [7].

The second method is adopted for this procedure due to its

simplicity in producing a convex optimization problem.

The paper is arranged as follows. First, a description

of the system is given. Then, a detailed derivation of an

optimal On-Off controller is given using a non-linear binary

programming technique. A summary of results when applied

to the model of a micro-robotic leg joint follows. Finally, key

conclusions are summarized.

II. SYSTEM AND PROBLEM DESCRIPTION

As a demonstration of this approach, a lumped-parameter

model of the prototype system is analyzed. This prototype,

as shown in Fig. 1 and schematically in Fig. 2, consists

of a rigid micro-robotic leg rotating about an elastic flex-

ure, with the silicon flexure modeled as a rotary spring,
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Fig. 2. Single mass system

k, and a representative damping coefficient obtained from

experimental tests. These parameters are essentially linear

over the range of motions that can be produced by the

piezoelectric actuators. The system is represented by the

following differential equations, with nominal values for the

parameters given in Table I.

Jθ̈ + bθ̇ + kθ = Gu(t) (1)

where, θ is the angle of rotation, u is the input voltage, J is

the rotational inertia of the leg, b is the damping coefficient,

k is the spring constant, and G is the actuator gain.

The system can be represented in state space format with

state vector x =

[

x1

x2

]

where: x1 = angle of rotation, θ,

x2 = angular velocity, θ̇.

[

ẋ1

ẋ2

]

=

[

0 1
−k/J −b/J

] [

x1

x2

]

+

[

0
G/J

]

u(2)

y =
[

1 0
]

x (3)

The system can be discretized in terms of index k to

standard discrete state-space form

x ((k + 1)Ts) = Adx(kTs) + Bdu(kTs) (4)

y(kTs) =
[

1 0
]

x(kTs) (5)

where Ad and Bd are state and input matrices. For the sample

problem, these matrices are formed by continuous to discrete

conversion of the system in 2 using a zero order hold with

sampling time Ts.

Under On-Off control, the input u(kT ) is limited to to one

of two levels, zero or Umax. Inputs to the system can thus

be rewritten in terms of binary inputs u1,2,...,n where

u(kTs) = Umaxuk (6)

uk ∈ (0, 1) (7)

TABLE I

NOMINAL PARAMETER VALUES FOR ON-OFF CONTROLLER TEST

SCENARIOS

Parameters Value

J(kg.m2) 1.4 ∗ 10−12

b(N.m.s/rad) 3.4 ∗ 10−11

k(N.m/rad) 3.2 ∗ 10−6

G(N.m/V) 8 ∗ 10−8

R (Ω) 3 ∗ 109

C(F) 1 ∗ 10−9

Umax (V) 40
Ts (s) 0.001

which simplifies the problem to a binary programming

problem and it can be converted to a convex optimization

problem comparatively easily.

III. OPTIMAL ON-OFF CONTROLLER

A. Objective

The problem here is to attain a desired final state xd

at a desired final time tf = nTs over n time steps using

minimum energy. This will be done by minimizing a cost

function that includes energy use by the actuator while

constraining the final states to be at or near their desired

values. Moreover, there is the additional constraint in the

inputs that u ∈ {0, 1}. The effect of these constraints is that

there are only a finite reachable points for the system, as

compared to the entire R2 case when arbitrary input levels

can be applied. These additional constraints can be shown

pictorially as in Fig. 3. This figure shows the all possible

216 points reachable by the system at the end of 16 time

steps, starting from the origin. Visual representation in this

manner can aid in identifying desired final points that the

system has a reasonable possibility of reaching with limited

error.

Fig. 3. All possible states after 16 time steps

B. Solution overview

Given a set of desired final states, the problem becomes a

non-linear binary programming problem with m constraints,

where m denotes the number of states, which is equal
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to 2 in this case. In our solution procedure we will first

convert this problem to an unconstrained non-linear binary

programming problem, then to a constrained non-linear

quadratic programming problem with n block constraints,

which is a continuous convex minimization problem and

hence comparatively easy to solve.

C. Step 1 - Problem statement

The objective function consists of two parts, JC and JR,

corresponding to capacitive and resistive energy losses in

the system, respectively. A piezoelectric actuator acts as

a capacitor when voltage is applied, and the first part of

the objective function includes energy lost from the system

during charging of the actuator capacitor and when the

charged actuator is discharged. Mathematically, when ‘on’-

state magnitude Umax is taken to be the ‘on’ voltage applied

to the actuators, this energy is expressed as

JC =

n
∑

k=0

1

2
CU2

max (uk − uk−1)
2

(8)

where C is the capacitance of the piezoelectric actuator. In

more a more general system, the quantity CU2
max/2 could

be replaced by an arbitrary “cost-to-switch”.

The second part of the objective function includes energy

lost to resistive dissipation due to leakage in the On-Off drive

circuit or through the piezoelectric actuator,

JR =
n

∑

k=0

U2
max

R
Tsuk (9)

where R is the resistance of the system. Again, in a more

eneral case of On-Off control, the quantity U2
max/R could be

replaced with an arbitrary “cost-to-hold” in the ‘on’ position.

The total objective function is converted to quadratic form

by noting that total cost J = JC + JR can be manipulated

as follows:

J = min{{U2
max/2 ∗ C ∗ {u2

1 + (u1 − u2)
2

+ . . . + (un−1 − un)2}

+ U2
max/R ∗ Ts ∗ {u1 + u2 + . . . + un}}

= min{U2
max/2 ∗ C ∗ {2u2

1 − 2u1u2 + 2u2
2+

. . . + 2u2
n−1 − 2un−1un + u2

n}

+ U2
max/R ∗ Ts ∗ {u1 + u2 + . . . + un}}

= min{U2
max/2 ∗ C ∗ ūT Q1ū+

U2
max/R ∗ Ts ∗ Q2ū} (10)

where,

Q1 =













2 −1 . 0
−1 2 . 0
0 . . .
0 . 2 −1
0 . −1 1













Q2 =
[

1 1 . . 1
]

n binary constraints are fixed by the On-Off nature of the

system, and are denoted by c′is, with i = to n,

ui ∈ {0, 1}

An additional m constraints are fixed by the desired final

states. For the two-state prototype system considered here,

these constraints are denoted as cn+1 and cn+2 and given by

the dynamics of the system as

xf (n) =

n−1
∑

j=0

An−j−1

d Bdu(j) + Anx(0) (11)

where, x(0) is assumed to be zero without any lose of

generality.

D. Step 2 - Conversion to an unconstrained binary non-

linear programming problem

The constraints cn+1 and cn+2 are added to objective

function using weights µ1 and µ2 which makes the problem

a binary unconstrained problem, as the binary ci’s remain

present. This modifies the objective function to the following

form,

J1 = min{J + µ1 ∗ (cn+1)
2 + µ2 ∗ (cn+2)

2} (12)

subject to the n binary constraints

E. Step 3 - Conversion to a continuous convex minimization

problem

Consider the following two optimization problems(BQ)
and (BQ),

(BQ) min
ζ∈{−1,1}n

q(ζ) = 1/2ζT Qζ + bT ζ (13)

(BQ) min q(ζ) = 1/2ζT Qζ + bT ζ (14)

s.t. ζ2
i ≤ 1, i = 1, . . . , n.

Problem BQ is a convex continuous optimization problem

which gives real numbers as solution; moreover, it is

comparatively easy to solve. From [7], the solution of BQ
can be obtained by rounding off the real solution of BQ to

{−1, 1}.

Thus, if the problem given in equation (12) is converted

to the above form, it is comparatively easy to solve. Since

the problem in (12) has the input variables u ∈ {0, 1}, they

must first be changed to a new set of variables v ∈ {−1,−1}
by the coordinate transformation vi = 2ui − 1. In vector

form, we can perform this transformation using vector e =
[

1 1 . . 1
]T

. Grouping ui’s and vi’s into vectors u
and v, we could alternately perform the transformation using

the equation

⇒ v = (u + e)/2 (15)

The transformation (15) is applied to the objective function

and the constraints as follows. The constraints cn+1 and cn+2
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can be written as,

cn+1 :

j=n−1
∑

j=0

a1jvj + xf1 = 0 (16)

cn+2 :

j=n−1
∑

j=0

a2jvj + xf2 = 0 (17)

where

xf1 =

n−1
∑

j=0

(a1j) − 2xd(1)

xf2 =

n−1
∑

j=0

(a2j) − 2xd(2)

and coefficients aij are taken from (11)

An−j−1

d Bd =

[

a11 a12 . . a1n

a21 a22 . . a2n

]

(18)

with m = 2 in this example.

Now, (cn+1)
2 and (cn+2)

2 can be written as given below

by eliminating the constant terms,

(cn+1)
2 = (

j=n−1
∑

j=0

aivi + xf1)
2

=

j=n−1
∑

j=0

(aivi)
2 + 2xf1

j=n−1
∑

j=0

vi

+

j=n−1
∑

j=0

i=n−1
∑

i=0,i 6=j

2aiajvivj

(cn+2)
2 = (

j=n−1
∑

j=0

bivi + xf2)
2

=

j=n−1
∑

j=0

(bivi)
2 + 2xf2

j=n−1
∑

j=0

vi

+

j=n−1
∑

j=0

i=n−1
∑

i=0,i 6=j

2bibjvivj

This quantity can be written in turn in a matrix form as

(cn+1)
2 = v̄T Acn+1

v̄ + Bcn+1
v̄ (19)

(cn+2)
2 = v̄T Acn+2

v̄ + Bcn+2
v̄ (20)

where,

Acn+1
=













a2
1 a1a2 . a1an

a1a2 a2
2 . a2an

. . . .

. . . .
a1an . . a2

n













Acn+2
=













b2
1 b1b2 . b1bn

b1b2 b2
2 . b2bn

. . . .

. . . .
b1bn . . b2

n













Bcn+1
= 2xf1

[

a1 a2 . . an

]

Bcn+2
= 2xf2

[

b1 b2 . . bn

]

Now consider the transformation of the objective function,

uT Q1u + Q2u = 1/2(v + e)T Q11/2(v + e) + Q2(v + e)/2

= 1/4(vT Q1v + eT Q1v + vT Q1e+

constants) + Q2v/2

= 1/4(vT Q1v + 2v(1)) + Q2v/2 (21)

Thus, the problem can be written in the new coordinate vi’s

as,

J2 = min{vT (Q1/4 + µ1Acn+1
+ µ2Acn+2

)v

+ (Q2 + µ1Bcn+1
+ µ2Bcn+2

)v} (22)

which is a convex minimization problem and it is solved us-

ing matlab optimization toolbox. Convex optimization gives

the v′
is as real numbers, which are rounded off to the nearest

number in {−1, 1}, and this is the optimal result according

to [7]. Finally, this result transformed back to the u′
is to give

the optimal control sequence.

IV. RESULTS AND DISCUSSION

A sample system response using the minimal energy

On-Off optimal controller is given in the Fig. 4. In this

first example, the a single leg link is driven to a desired

final angle. When only a single leg link is to be controlled,

the control input can be quite simple, as in the example

shown. For comparison purposes, this On-Off controller

was compared to the optimal linear-quadratic gaussian

(LGQ) controller for the system, had feedback and analog

rather than On-Off inputs been available. Both controllers

produce qualitatively similar trajectories from the initial to

the final value. In addition, the capacitative portion of the

cost functions from the respective controllers is found to be

less for the optimal On-Off controller, thanks to the minimal

number of transitions that it dictates. The piezoelectric

actuators used in the prototype system are formed from

lead-zirconate-titanate and have very large resistance, such

that over 99% of energy use is due to capacitive switching

losses, as opposed to resistive holding losses.

To further explore the behavior of the prototype system

using this On-Off control strategy, four situations are pre-

sented:
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Fig. 4. Sample system output using optimal On-Off controller, showing
(a) output angle x1 (b) system input u (c) output angular velocity ẋ1

1) A comparison between the optimal On/Off controller

found by this method and the optimal controller

found via complete enumeration, i.e. a brute force

optimization

2) Optimization results for a higher order system for

various weights on positioning error

3) Variation with different relative weights for resistive

and capacitative costs

4) Error due to parameter variation from the nominal

model

A. A comparison between the optimal On-Off controller and

the brute force method

To ensure that the optimization method is working prop-

erly, the result of the efficient optimization method was com-

pared with that of brute force optimization over a shorter time

period. In the brute force method all possible combinations

of u′
is were checked for feasibility and that with lowest

cost, measured by the On-Off cost function, was selected.

This approach is of course numerically inefficient, as one

must check the cost for 2n combinations of input, making it

impractical for a larger a time period. However, is is possible

to verify that for our sample system, the result of the brute

force method matches the result obtained by the convex

optimization method, which requires far fewer calculations.

B. Optimization of a two mass system for various weights

A full micro-robotic leg might consist of two links, driven

by two separate actuators, in order to increase the total

range of coverage by the leg, as shown in Fig. 5. The

solution procedure described above can be easily augmented

to optimize control of this system. The plots in Fig. 6 show

the results obtained for the two mass system, under different

weightings on the constraints. In the figure,x3 and x4 denote

the angle and angular velocity of the 2nd link relative to a

stationary vertical line and the voltage applied to the two

links at time step k are denoted as u1,k and u2,k, respectively.

Fig. 5. Schematic view of a robotic leg with two links and two actuators,
showing coordinate system for trajectory following

In each test case, the angles of the two links, states x1 and

x3, are to be driven from a vertical position to final values

of 0.5 rad and 1 rad. Their angular velocities, states x2 and

x4, are to return to values of zero at the conclusion of the

time period. In the first set of plots, error in the final states is

more heavily weighted, with µ1 = µ2 = 107. As the penalty

weighting is decreased, to 105 in the following set of plots, a

decrease in both accuracy and control effort (in the form of

reduced ‘on’ time in this scenario) are seen, as is expected

from the optimization algorithm.

C. Variation with different weights on capacitative costs

As the capacitance in the system is increased, the number

of transitions decreases, as does the capacitative energy cost.

Returning to the single leg link scenario, and examining a

motion of longer duration, the effects of increasing capaci-

tance in the system model are examined. Fig. 7(b) represents

the lower-weighted capacitative cost (a 1 nF capacitor) and

the Fig. 7(c) corresponds to a more heavily weighted case

(a 1 µF capacitor). As seen from the Fig. 7(a) both of the

responses reach the desired final position by the desired

time, but the optimal On-Off input shows a larger number of

transitions when capacitance is smaller. So from the results

obtained, it can be concluded that the On-Off controller can

be treated similar to a LQG controller in that it can be tuned

to meet specific control requirements, placing more effort

into minimizing switching cost, holding cost, or positioning

error, as desired by the designer.

D. Effects of parameter variation

To explore robustness of the on-off controller, optimal

on-off sequences were applied to plants with variation in

stiffness, damping, and inertia parameter to as much as 15%

of nominal values. The largest variation was seen for a 15%

decrease in rotary inertia, J , as shown in Fig.8. The modeling

error results in only a small error in the final states of the

system. Further analysis of on-off controller robustness is a

subject for future research, but these results indicate limited

sensitivity of the algorithm to modeling error.
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Fig. 6. States and control inputs with differing control weights for the two
mass system (a) µi = 107 (b) µi = 105

V. CONCLUSIONS AND FUTURE WORK

A method for generating an On-Off controller when

switching costs are incorporated along with costs associated

with ‘on’ time is presented. It is shown that switching costs

can be added to existing On-Off controller design techniques

while preserving the problem as one of convex optimization.

Binary programming is used as an efficient technique for

performing the convex optimization. In applications where

only two input values are available to a controller, approach-

ing this problem from the perspective of On-Off control

can be a relatively simple method for identifying optimal

On-Off control sequences, as compared to more general

hybrid systems approaches that could alternatively be used to

solve the problem. The behavior of the On-Off controller is

explored for prototype problems involving one or two micro-

robotic leg joints driven by piezoelectric actuation, a situation

where switching costs, in the form of capacitive energy

consumption, are significant, but battery mass available to

the system is severely constrained.

This approach to controller design is currently being

expanded to accommodate other subsystems that might one

day be available to an autonomous micro-robot. Charge

recovery circuitry could reduce switching costs, while mak-

ing additional voltage levels available for actuator control.

Limited sensing capacity may also become available, which

would provide the ability to alter the switching sequence

from one step to another, or even in the process of a step.
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Fig. 7. Variation in input commands to a single link with different weights
on capacitative costs (a) C = 1 nF (b) C = 1 µF
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Fig. 8. Variation with Moment of inertia of the link

Ultimately, individual optimized robotic leg motions will be

implemented sequentially to allow for efficient motion of the

robot platform over a prescribed trajectory.
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