
  

  

Abstract—In this paper, a novel controller is proposed to 

improve the trajectory tracking performance of a direct drive 

ironless permanent magnet linear synchronous motor 

(ILPMLSM). The proposed control scheme combines fast 

terminal sliding mode control scheme with iterative learning 

control. Specifically, the fast terminal sliding mode controller 

which can predefine the finite reaching time is used as the 

primary controller to handle the effect of parametric 

uncertainties, unknown nonlinearities and external 

disturbances. A PD type iterative learning controller is 

employed as the secondary controller to eliminate the periodic 

tracking errors. Computer simulation results illustrate that the 

proposed combined controller can achieve better tracking 

performance and robustness compared with other control 

algorithms such as PID control, sliding mode control, and the 

iterative learning control. 

Keywords: permanent magnet linear motor, motion control, force 
ripple, fast terminal sliding mode control, iterative learning control. 

I. INTRODUCTION 

IRECT-drive permanent magnet linear synchronous 

motors (PMLSM) have many advantages such as 

transmission-free mechanical structure and achievable high 

force-to-inertia ratio. One of the major downsides of the 

PMLSM servo system is the force ripple caused by factors 

such as payload variation, unknown nonlinearities, magnetic 

flux harmonics, asymmetric phase windings, resistance 

variation, the end effect associated with the finite length of 

the mover, and disturbances. Although the proper motor 

design could effectively reduce the force ripple, they would 

not meet the high accuracy requirements. Thus, many 

control techniques have been developed to achieve the 

potential high performance [1]. 

Authors in [2, 3] presented an adaptive robust control 

(ARC) scheme for high speed and high accuracy motion 

control, where on-line parameter adaptation and certain 

robust control laws were used to reduce the effect of various 
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parameter uncertainties and handle the uncompensated 

uncertain nonlinearities. In [4] a non-linear PID controller 

has been proposed for the position control of a linear 

ultrasonic motor. In [5], a force ripple model of a linear 

motor was developed at first, and then a PID controller 

combined with adaptive feed forward control algorithm was 

designed to compensate the force ripple. According to the 

characteristic of periodic motion, in [6] an adaptive learning 

control algorithm was developed to improve the trajectory 

tracking performance of PMLSM. A sliding mode control 

together with the iterative learning control scheme was 

presented in [7] to enhance the trajectory tracking of linear 

ultrasonic motor. H∞ optimal feedback control was applied 

in [8] to provide high dynamic stiffness to external 

disturbances. However, the adaptive technique based control 

algorithms may become too complicated to be implemented 

in case of different run phases, particularly when there exists 

force ripple. The PID based control methods cannot provide 

satisfactory control performance with system parameter 

variations. The accurate model is required in feed-forward 

and H∞ control methods. The iterative learning control alone 

may not guarantee the robustness. Although the 

conventional linear type sliding mode control can provide 

asymptotic stability, the reaching time which is infinite 

theoretically is very difficult to meet the requirement of high 

speed motion. 

In this paper, a novel controller is proposed by combining 

fast terminal sliding mode control (FTSMC) [9] with 

iterative learning control (ILC) for high performance 

trajectory tracking control of an ILPMLSM motor. We 

choose the FTSMC controller which can predefine the finite 

reaching time as the primary controller to handle the effect 

of parametric uncertainties, unknown nonlinearities and 

external disturbances. And then a PD-type ILC controller is 

employed as the secondary controller to eliminate the 

periodic tracking errors. Various simulation results 

demonstrate the effectiveness and robustness of the proposed 

control scheme. 

The remainder of this paper is organized as follows. 

Section II presents the structure and dynamic model of 

ironless linear motor. The design and robust analysis of the 

fast terminal sliding mode controller are shown in Section 

III. Section IV presents the convergence analysis for the 

iterative learning control. The results of the computer 

simulations are given in Section V. Finally, conclusions are 
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given in Section VI. 

II. DYNAMIC MODEL OF ILPMLSM

The ILPMLSM motor, as depicted in Fig

face-to-face permanent magnet stator, a translator (or called 

mover) composed of a specific number of coils, and a Hall 

effect sensor mounted on the translator which being used to 

detect the polarity of the stator for electronic commutation. 

Similar to permanent magnet rotary motors, the thrust 

(named torque in rotary motor) is generated by the 

interaction between permanent magnetic field and travelling 

magnetic field, while the synchronous speed of the motor is 

the same as the speed of the travelling magnetic field

 

 

 

 

 

 

 

 

 

 

 

 

In this work, we focus on the trajectory tracking motion of 

the ILPMLSM servo system. The dynamic model 

expressed by the following compact form, 
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here M is the total mass of the inertia load 

translator, defining the position velocity as the state 

variables
Txxx ],[ 21= , B is the coefficient of the damping 

and viscous friction on the load, R is the armature resistance, 

KE represents the electromotive force coefficient, 

average force constant, KFr is the coefficient of the end 

effect force, denoting
rFFF KKK +=

0
. Let 

combination of the static friction and Coulomb friction, and 

fdis represents the external disturbance and 

input.  

In addition, the friction model can be written as:
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where fc is the minimum level of the Coulomb friction, 

represents the level of static friction, sx& and

parameters used to describe the Stribeck effect

Furthermore, we define the trajectory tracking error 

 

Fig. 1.  An ILPMLSM physical model 
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is the minimum level of the Coulomb friction, fs 

and ε are empirical 

parameters used to describe the Stribeck effect [2]. 
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where xd is the desired state trajectory

obtain the following error dynamic equations
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III. FAST TERMINAL SLIDING MODE CONTROLLER DE

The FTSMC control combines

nonlinear ones, where the reaching time can be dramatically 

shorten [11-13]. In this paper, we propose a control structure 

that combines the FTSMC (primary controller)

iterative learning control (secondary co

in Fig. 2. The detailed description of this control structure 

will be given in the following sections

A. Fast Terminal Sliding Mode Concept

The fast terminal sliding mode concept is described as

0/ =++= pqzzzs βα&                                                     

where z is a scalar variable, α, β>0 are constants and 

(p>q)are odd positive integers.  

In (5), the scalar z can be one of the state variables.

linear part zz α−=&  has the faster convergence rate than that 

of the nonlinear counterpart when 

away from the zero. It works as the main attractor. When 

close to zero, the nonlinear part z =&

convergence rate acts as a terminal attractor. The following 

lemma shows the exact time of reaching the equilibrium 

while keeping the system stable. 

Lemma 1. A scalar variable will be globally 

asymptotically stable once entering the fast terminal sliding 

manifolds; Furthermore, it will take the variable to reach its 

equilibrium in finite time. 

Proof. First, we prove the stability. Let’s select 

as the Lyapunov function candidate, where 

variable. Obviously, V is positive definite function, from Eq. 

(5) in which z replaced by x1, we have,

 

 
Fig. 2.  Block diagram of the proposed control scheme.
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If and only if 01 =x , then 0=V& . Therefore, the variable is 

globally asymptotically stable in the sense of Lyapunov 

theory. 

We now show the equilibrium of the state can be reached 

in finite time. When the scalar variable stays on the fast 

terminal sliding hyperplane, given the initial state variable 

x1(0) by solving (5), the exact time to reach the equilibrium 

(or zero) is, 
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and the equilibrium is a terminal attractor. The proof is 

complete 

As for the ILPMLSM motor system in (4), the recursive 

structure based on the FTSMC concept for second order 

systems similar to (5) can be derived as, 
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here s0 is a scalar variable, α0, β0>0 are constants and p0, q0 

(p0 > q0) are odd positive integers. One can easily see if s1 

reaches zero, s0 will reach zero subsequently according to the 

dynamical structure of the terminal attractor in (5). 

B. Design of Fast Terminal Sliding Mode Controller 

Theorem 1. For the system in (4), if we choose the       

following control law [11] 
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with 10 es = , then the system states will reach the sliding 

manifold 01 =s in finite time ts1, where  
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with  0, >γφ  , )(, qpqp >  are odd positive integers. The 

system will follow the recursive structure (7) to converge to 

the system equilibrium in finite time ts, where 
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Proof. This theorem can be proved in the similar way as in 

[11]. 

We can obtain that 01 =s will be reached in ts1. 

According to Lemma 1 and recursive structure (7), we will 

have 00 =s during the time defined by (10), subsequently, 

02 =e can be obtained. Eventually the system in (4) 

converges to the equilibrium. Therefore, the system output 

can exactly track the referenced trajectory. 

It is noted that the proposed controller is a continuous 

system. Therefore, the chattering phenomenon which results 

in the system oscillation is eliminated. The singularity of the 

system, as discussed in [9], can be avoided by choosing 

adequate values of p and q. 

C. Robustness Analysis 

We now investigate the robustness of the proposed global 

sliding mode control scheme. Let us choose the following 

second order nonlinear uncertain system derived from (1) as 

the analysis model. 
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where f(x) and b(x) are the nominal scalar fields on R
2
,

0)( ≠xg and
1Ru∈ . )(xf∆ and d(x) represent the system 

uncertainties and external disturbance respectively. 

Additionally, the error dynamic equations of the nominal 

part of (11) are the same as (4). Assume that

Lxdxf ≤+∆ |)()(| , we have the following results, 

Theorem 2. For the system in (11), if we choose the 

control law in (8), then the system will reach the 

neighborhood ∆ of the sliding manifold 01 =s according to 

the terminal attractor
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with 0, >γφ  , p, q (p>q)are odd positive integers. 

Proof. The theorem can be proved in the similar way as in 

[11]. 

  According to Theorem 2, if we choose suitable γ and p/q 

with respect to bounded uncertainties and disturbances, the 

small enough neighborhood ∆ of the sliding manifold s1 

which satisfies the requirement of high-performance 

applications can be achieved. 

  Even though the fast terminal sliding mode controller is 

robust against parameter uncertainties and external 

disturbances, for various high performance applications the 

tracking error is quite substantial. Moreover, for the 

ILPMLSM motor system the tracking error is periodic for 

periodic reference signal. In such cases the additional 

iterative learning controller, or secondary controller, can be 

introduced to further improve the tracking performance from 

cycle to cycle [14, 15]. 

IV. ITERATIVE LEARNING CONTROLLER DESIGN 

In this work, the ILC method [16] was employed to 

eliminate as much of the periodic errors as possible. 

Specifically, the proposed secondary controller is based on a 

PD type iterative learning control algorithm. 
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A. ILC Controller Design 

Consider the system in (4), the control law of PD type 

open-loop ILC is designed as 

L& ,2,1,0),()()()(1 =++=+ ktetetutu kkkk γλ                 (15) 

where uk(t) and ek(t) are the k-th control input and tracking 

error, respectively. Eventually, the optimal control input 

u
*
(t) can be obtained by adjusting the input from the current 

trial (uk(t)) to a new input (uk+1(t)) by evaluating the tracking 

error )()()( tytyte kdk −= on the interval ],0[ Tt∈ . And this 

adjustment is accomplished according to the above PD type 

open-loop ILC control algorithm. 

B. Convergence Analysis 

The key issue of the ILC is to guarantee its convergence 

[14, 17], that is, to make sure that the limit of the control 

input sequence uk(t) uniformly converges to the desired one 

ud (t), ],0[ Tt ∈∀ . Consequently, yk(t) uniformly converges 

to the desired trajectory yd(t) . Unfortunately, there exists no 

general condition to satisfy various systems using different 

types of ILC control algorithms, even though many 

researchers have addressed this problem. We follow the 

proof of the proposed control algorithm for the linear motor 

system by choosing the adequate design parameters such as 

λ and γ. 

Consider the nonlinear system in (16) below based on (1).  
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Without loss of generality, we make the following 

assumptions for the proposed linear motor system: 

(1) Nonlinear function g(t, x)is global Lipschitz continuous 

with respect to x, that is, there exists Lipschitz constant, 

M>0 and the following expression holds 

2121 ),(),( xxMxtgxtg −≤−                               (17) 

(2) The resetting state error sequence { }
0

)0( ≥kkxδ converges 

to zero for all iterations. 

(3) The desired control input ud(t) is unique, which follows 

the desired state and system output. 

(4) B and C are bounded for all ],0[ Tt∈ . 

Furthermore, we have the following lemma. 
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Noting that ε is an arbitrary real positive number, as a 

result, as 0, 2 →∞→ nIn is achieved. Proof is complete.  

The convergence of the control algorithm is given in the 

following theorem. 

Theorem 3. Given the nonlinear system in (16) and the 

proposed control law in (15), the sequences { }
0

)( ≥kk txδ ,

{ }
0

)0( ≥kkyδ , and { }
0

)0( ≥kkuδ  are said to converge to )(txd ,

)(tyd ,and )(tud , respectively, if the following condition is 

satisfied 
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From (19), we also have 
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where, kixCMC ii ,,1,0,)( L=⋅+= δγλη . 

In (22), if 1<− CBI γ , considering Assumptions (2), (3) 

and (4), and Lemma 2, as ∞→k , then 1+kuδ is limited to 

zero. The proof is complete. 

Thus theoretically, as ∞→k , the control input variation is 

zero. Consequently, the output follows exactly the desired 

trajectory. If CBI γ− is smaller, then the convergence rate is 

faster. Nevertheless, a choice of γ just satisfying the 

requirement that ensures reasonable fast convergence rate 

would suffice [18]. 

V. SIMULATION RESULTS 

Computer simulations were performed based on the motor 

type of IL06-75 manufactured by Kollomorgen Company. 

The parameters are: M=1.0kg, KF0=42.8N/A, KE=34.9V/m/s, 

R=11.7Ω B=0.5N/m/s. The friction force for simulation just 

same as in [2], where fs=10, fc=6, ξ=1, and 001.0=sx& . 

The following case studies were performed: (1) the 

FTSMC only, that is, the FTSMC is activated while the ILC 

is kept off. The results were compared with that of a 

traditional PID controller; (2) combined controller, that is, 

the FTSMC controller is activated first and later the ILC 

controller is activated. The results were compared with that 

obtained using the FTSMC alone and the ILC alone.  

 The desired position trajectory is a sinusoidal curve with

)2sin(02.0 txd π= . The FTSMC controller parameters were 

chosen as: 5000 =α , 20 =β , 90 =p , 50 =q , 5=p , 3=q ,

80=φ , 5.1=η , while the PID controller parameters are: 

5
101×=pk 10, == di kk . In case of no external 

disturbances, the tracking error is shown in Fig.3, we can see 

that the convergence rate of the FTSMC is much faster than 

that of PID controller and also the error amplitude of the 

FTSMC is smaller. 

Fig.4 presents the results with no external disturbances. It 

is seen that the tracking performance of the proposed 

combined control scheme is better than that obtained by 

either control algorithms. In this comparative study, the 

control parameters for the FTSMC loop of the combined 

controller are the same as that in the FTSMC only scheme. 

The parameters for the ILC loop of the combined controller 

are: 0.5,109
4 =×= γλ with the iteration number of 10, the 

control parameters for the ILC only scheme are

10,109
4 =×= γλ with iteration number of 15. Furthermore, 

if there is external disturbance, as it is shown in Fig.5, the 

robustness of the combined controller is almost same as the 

FTSMC only control scheme. Apparently, these two 

algorithms outperformed the ILC only control scheme.  

In case of higher frequency, for example, for a 5Hz 

desired sinusoidal trajectory as in Fig.6 the tracking error of 

the proposed control algorithm is also smaller than that of 

the other two algorithms while maintaining the reasonable 

robustness. 

The simulation results for the above case studies are 

summarized in terms of several performance indices shown 

in Table I. The maximum absolute value of the tracking error 

during the last 0.5s, { })(max 1
35.2

tee
t

F
≤≤

= , is used as an index of 

final tracking accuracy. The rms value of the tracking error

2/1

0

2
1 )))((/1( dtteTe

T

rms ∫= , is used to measure average 

tracking performance. It is seen that the overall tracking 

performance of the combined control scheme is better than 

the other three control methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  Tracking errors in case of parametric uncertainties and  

            nonlinearities (0<t<0.1s) 
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Fig. 4.  Tracking errors in case of parametric uncertainties 

            and nonlinearities (1<t<3s) 
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     Fig. 5.  Tracking errors in case of external disturbance 
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VI. CONCLUSIONS 

A novel controller using fast terminal sliding mode 

control combined with iterative learning control has been 

developed for a nonlinear ironless permanent magnet linear 

synchronous motor systems. The FTSMC controller, as the 

primary controller, guarantees the system performance 

robustness and fast convergence rate. Furthermore, the finite 

reaching time can be determined. The secondary ILC 

controller is used to reduce the periodic tracking error, which 

enhances the performance of the linear motor with no need 

of exact machine model. The stability and convergence of 

the proposed control system were verified. The simulation 

results illustrated the effectiveness of the proposed scheme, 

nonlinearities and external disturbances. Furthermore, this 

control scheme can also be applied to other types of linear 

motors. 
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TABLE I 

SIMULATION RESULTS 

   FTSMC/ILC        FTSMC           ILC            PID 

Fe (µm)               7.8139                10.304          73.884       63.942 

rmse (µm)         10.228                10.873          69.990       50.614 

 

 
Fig. 6.  Tracking errors with external disturbance for frequency 5HZ            

desired trajectory (1<t<3s) 
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