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Abstract – This paper introduces a new dynamic 
neighborhood network for particle swarm optimization. In 
Club-based Particle Swarm Optimization (C-PSO) algorithm, 
each particle initially joins a default number of social groups 
(clubs). Each particle is affected by its own experience and the 
experience of the best performing member of the social 
groups it is a member of. In the proposed Adaptive 
membership C-PSO (AMC-PSO), a time varying default 
Membership is introduced. This modification enables the 
particles to explore the space based on their own experience in 
the first stage, and to intensify the connections of the social 
network in later stages to avoid premature convergence. This 
proposed dynamic neighborhood algorithm is compared with 
other PSO algorithms having both static and dynamic 
neighborhood topologies on a set of classic benchmark 
problems. The results showed superior performance for 
AMC-PSO regarding its ability to escape from local optima, 
while its speed of convergence is comparable to other 
algorithms. 

I.  INTRODUCTION 

ARTICLE Swarm Optimization (PSO) is a 
computational intelligence method for solving global 
optimization problems. It was originally proposed by J. 

Kennedy as an emulation of the behavior of birds swarms 
and fish school while searching for food. It was introduced 
as an optimization method in  [1].  

Compared to many other evolutionary computation (EC) 
techniques, PSO is inspired not by the evolutionary 
mechanism encountered in natural selection, but rather by 
the social behavior of flocking organisms. 

A more broad perception of the swarm as a group of 
particles, whether birds, humans, or any socializing group 
of particles began to emerge. Club-based PSO (C-PSO) is 
proposed in  [2]. In the basic C-PSO algorithm, a set of 
social groups (clubs) is created. Each particle can join one 
or more clubs. Each club can accommodate any number of 
particles. Particles’ motion is affected by other particles 
that are members of the same clubs. The disadvantage of 
this technique is that its performance depends on the values 
of several constants that need to be tuned empirically for 
each problem. 

In this paper we propose and study a new dynamic version 
of C-PSO, where the social network is forced to have a 
loose structure in the first stages. The club structure is 
modified during the optimization iterations to consolidate 
the social network and improve the convergence property 
in later stages. This modification aims to enhance the C-
PSO performance and decrease its dependence on the 
empirical parameter values. 

II.  PARTICLE SWARM OPTIMIZATION 

In their first paper  [1], Kennedy and Eberhart introduce the 
concept of PSO. They propose that the motion of each bird 
in the swarm is guided by a social component and a particle 
self experience component. The behavior of the particles is 
described by (1) and (2). 
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In (1), vid (xid) is the speed (position) of ith particle in the dth 
dimension. The first right hand side term corresponds to the 
inertia force. The momentum gain w is first introduced in 
 [3]. The second term corresponds to the cognitive or 
personal experience component. It attracts the particle 
towards pid  which is the best position found by the ith 
particle in the dth dimension. The third term corresponds to 
the social influence of the neighbors on the particle. It 
attracts the particles to the best position found by its 
neighbors pgd. These influences are controlled by learning 
weights lrn1 and lrn2. The terms rand1 and rand2 are 
uniformly distributed random variables in the range (0, 1). 
The convergence property of PSO is investigated in  [4]- [7]. 

In  [8], An adaptive momentum version is proposed. The 
momentum term w is linearly decreased as the iteration 
number increases. Similarly, the adaptation of the learning 
rates lrn1 and lrn2 is proposed in  [9]. The algorithm starts 
with high lrn1 and low lrn2. These values are changed 
linearly with the iteration number until reaching a low lrn1 
and a high lrn2 .This algorithm results in a swarm with 
"free" particles in the first phase "exploration phase", while 
attracting the particles to the best found zone in a later 
stage to achieve better exploitation.  In  [10], equation (1) is 
modified by adding an extra term that attracts each particle 
to the particle that maximizes the fitness to distance ratio.  

In  [11] the fully informed particles swarm (FIPS) is 
introduced. In this algorithm, each particle is attracted to all 
other particles within its neighborhood by forces of 
magnitudes that depend on the particle fitness.  

There are several configurations for the neighborhood of a 
particle  [12]- [13]. These configurations define which 
particles in the swarm affect a given particle, i.e. they 
define the social network of each particle. The social 
networks can be generally classified as static or dynamic. 
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A. Static social network  

Static networks are the simplest version of the PSO social 
networks.  If a particle 'a' is considered in the neighborhood 
of a particle 'b', this relation can be graphically indicated by 
an undirected edge connecting two vertices labeled 'a' and 
'b' that represent the particles. 
In the basic algorithm proposed in  [1], each particle is 
affected by all other particles in the swarm. The social 
network of the PSO is represented by a fully connected 
graph (fig 1.a). The particles are attracted to a single point 
Pgb that represents the best point discovered by all members 
in the swarm so far. This may result in premature 
convergence. 
To avoid such premature convergence, the algorithm is 
modified in order to use several attractors by assuming that 
each bird interacts only with a specific number of 
neighboring particles. This decreases the information 
change over the social network. In this case, equation (1) is 
modified to be: 
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(3) 
where plid denotes the dth component of the best position 
found by the particles in neighborhood of particle i. 

Fig. 1.b presents the ring social network proposed for the 
PSO.  In this algorithm, the particles are arranged in an 
imaginary ring and each particle is connected to its 
immediately preceding and succeeding particles in this 
ring. The resulting PSO will be referred to as PSO-l where 
“l” stands for local  [14]. 

In  [11], the four clusters configuration (shown in fig. (1.c)) 
is investigated. In this case the swarm is subdivided into 4 
nearly isolated groups. Particles within each group are fully 
connected. Sociologically, it represents 4 mostly isolated 
communities where few individuals have an acquaintance 
outside their group. 

In  [15], a hierarchical PSO (H-PSO) social structure is 
proposed . In this structure, the social graph is represented 
by a rooted tree as indicated in fig (1.d). Each particle is 
neighbored to itself and to its parent in the hierarchy. This 
structure has a small diameter.  

The speed of information spread can be investigated by 
considering the graph radius and the number of links 
(edges).  Large number of edges, high vertices degree and 
small radius reveal fast information exchange between the 
swarm. This may result in premature convergence. Small 
number of edges, low vertices degree, and large radius lead 
to better exploration and slower conversion. Table I 
summarizes the graphical social networks properties of the 
considered four PSO variants. For a swarm of 20 particles, 
the vertex degree of the mesh is 19 indicating intensive 
information exchanges between particles. The ring has a 
fixed degree of 2 indicating slow spread of information. 
The four-clusters has a vertex degree of  4 or  5 (depending 
on the particle position in  the 

  

social network) indicating that the rate of information 
exchange is lower than that for a mesh and higher than that 
of a ring.  

B. Dynamic social network 

Several researchers propose the use of dynamic social 
network having small number of edges initially and 
increasing the number of edges gradually. In  [16], 
Suganthan proposes expanding the social network of the 
PSO from an initial simple graph where each particle is 
connected to itself to a fully connected graph. In  [17], 
Mohais and Mendes use a randomly generated directed 
graph to represent the social network of FIPS. Two 
methods are presented for modifying the neighborhood 
structure. In the 'random edge migration', a random edge is 
disconnected from a vertex and connected to another 
neighbor at predefined interval. In the 'neighborhood 
restructuring', the social structure is re-initialized 
periodically after a specified number of iterations to 
preserve diversity. 

In  [15], an adaptive version of the H-PSO is proposed. In 
this version, the number of children for each parent 
(branching degree) is changed dynamically. Small 
branching degree increases the graph radius and is helpful 
in the exploration phase. Large branching degree helps 
swarm convergence as it reduces the graph radius, hence 
consolidating the effect of the best particle on all other 
particles in the swarm. 

III. CLUB-BASED PSO (C-PSO) 

Several algorithms that partition the swarm into several 
groups or clusters are proposed. In  [18], Kennedy proposes 
to modify the basic swarm algorithm by applying clustering 
to identify different groups in the swarm. The centroid of 
each cluster is considered as the “stereotype” which the 
particles in that cluster would look at. Two algorithms are 
proposed. In the first one, the stereotype replaces the 
particle personal best, while in the second algorithm, it 
replaces the neighborhood best. 

(a) 

 

 (b)  

 (c)   (d)  
Fig.  1   PSO's static social networks topologies 
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In  [2], the social groups are called clubs following the 
social clubs, where peoples meet each other and possibly  
exchange their experience. These clubs are used to define 
the social network in the basic C-PSO algorithm. Each club 
can accommodate any number of particles. A particle in a 
particular club is neighbored by all particles members in 
the same club. Each particle can join one or more clubs. 
The membership degree of particle i (denoted by m(i) ) is 
the number of clubs that this particle is a member of.  

At every step, the particles’ positions and speeds are 
updated following (2) and (3). The neighborhood of the ith  
particle is the set of all particles included in the clubs that 
the ith particle is a member of. 

This form of C-PSO can be considered as a generalization 
of the static social networks presented in the previous 
section. For example, considering fig (1), we have: 
• The fully connected network corresponds to a single 

club and a membership degree equal to 1 for all 
particles.  

• The ring network of 6 particles correspond to 6 clubs 
each one having two members. The membership degree 
of all particles is equal to 2. 

Similarly, it can be simply shown that the 4 clusters and the 
undirected H-PSO can be easily represented by C-PSO. It 
should be noted, however, that the H-PSO proposed in  [15] 
is based on directed graphs, which is not supported by C-
PSO.   

 A more sophisticated version of C-PSO is proposed in 
 [19]. This version of C-PSO is denoted by JLC-PSO where 
‘JL’ stand for the join and leave operations. The basic idea 
is presented in Algorithm A1 below.  Simulation results 
show that the performance of JLC-PSO is better than C-
PSO  [19]. However, the main drawback of JLC-PSO is that 
its performance is very sensitive to the algorithm 
parameters (specially w and rr). These parameters need to 
be tuned for each specific optimization problem.  

III. PROPOSED ADAPTIVE DEFAULT MEMBERSHIP 
CLUB BASED PSO (AMC-PSO)  

In the basic C-PSO and in JLC-PSO, the default 
membership degree of the particles is kept constant. 
Particles with extreme performance (either best or worst) 
are allowed to deviate temporally from the default 
membership degree in JLC-PSO. However, they are 

returned back to the original membership degree as soon as 
they stop showing extreme performance. 

In this paper, a new algorithm of C-PSO is proposed. In 
this algorithm, the value of the default membership dm 
degree is changed dynamically. 

To study the effect of the default membership degree , let 
us consider a swarm of n birds, a default membership 
degree dm and c clubs. If a particle is not showing an 
extreme performance, then its membership degree m(i) 
equals dm. If we assume that the swarm is consistent, then 
we have: 
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where m(i) is the membership degree of particle i. 
The average number of members in each club is denoted by 
mc and is given by: 
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c
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If n.dm/c > 1, the number of edges inside a club with mc 
members is given by mc*(mc-1)/2. Hence, the total number 
of edges in the swarm is approximately:  
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The average degree of the vertices is given by 

.( . )dm n dm c
vd

c
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The diameter of the network cannot be easily computed 
due to the random nature of the particle distribution among 
the clubs. However, it should be noticed that if the default 
membership degree dm , the number of clubs c , and the 
number of particles n satisfy dm.c < n dm.n < c,  then the 
resulting social graph may not be connected. This means 
that, in this case, some particles are totally isolated from 
other swarm members and their experiences.   

 

TABLE I 
PSO SOCIAL NETWORKS PROPERTIES 

Topology Diameter Vertex Degrees 

Mesh 1 n-1 

Ring n/2 2 
4 clusters 3 n/4 or  (n/4)-1 

Undirected tree 4 1, 4, or 3 

Directed tree 
 

In-degree:0 or 3 
Out-Degree: 0 or 1 

 

Algorithm A1: Join-Leave C-PSO 
Initially: 

• Each particle joins randomly a default number of clubs (= 
default membership degree dm).  

Every iteration:  
• The particles showing best performance in their clubs are 

enforced to leave a random club. Hence the number of 
particles attracted by the best particles is decreased, 
leaving more particles free to explore the space. 

• Particles that show worst performance in their clubs are 
encouraged to learn from others by increasing their 
membership degree (joining more clubs).  

Every rr (retention ratio) iterations: 
• Particles that are not showing extreme performance are 

returned gradually to the default membership degree 
dm. 
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It is clear that the default membership degree dm plays a 
great role in determining the C-PSO behavior. A small 
value of dm results in a low vertices degree. Hence, the 
social network is closer to the ring structure. If the value of 
dm becomes larger, the social network has a larger vertices 
degree, which is a characteristic of the mesh structure. 
Hence by varying dm, C-PSO can behave like PSO-l or 
PSO-g.  

In the proposed adaptive C-PSO, the default membership 
degree is increased as the number of iteration increases. 
Hence the resulting C-PSO has the advantage of good 
exploration in the first stages as in PSO-l and good 
convergence in later stages of PSO-g. The proposed AMC-
PSO algorithm  is summarized in Algorithm A2 above, 
where neighborsi is the set of particle i neighbors, 
membershipi, |membershipi| are the set of clubs 
that particle i is a member of and the size of this set 
respectively, join_leave_rate, dm_update and rr are user 
defined parameters that controls the update intervals of the 
membership of the best and worst particles, the update of 
the default membership degree and the rate of returning of 
non-extreme (neither best nor worst) particles to the default 
membership degree dm.  

IV.  EXPERIMENTS 

In this section, the performance of the AMC_PSO is 
analyzed and compared to other PSO algorithms. Six well 
known benchmark problems presented in Table II are used 
for performance evaluation.  The first two functions are 
simple unimodal functions. They test the ability of the 
optimizers to deal with smooth landscapes. The next four 
functions are multimodal functions.  

Two metrics are used to compare the performance of 
different optimizers as in  [15]. The first one is the ability to 
escape local minima. It is measured by the closeness of the 
achieved solution after a specific number of iteration to the 
global minimum. The second one is the convergence speed 
of the optimizer. It is measured by the required number of 
iterations to achieve a certain degree of closeness to the 
global optimum in the evaluation space. 

Using these metrics on the six benchmark functions, we 
compare the performance of the AMC-PSO, C-PSO with 
join-leave , PSO-g ,PSO-l and four clusters algorithms. 

For all simulation runs we use lrn1 = 1.494, lrn2 = 1.494, as 
in  [15] and  [4]. A swarm of 20 particles is used for all 
simulation runs. 

In both JLC-PSO and AMC-PSO, 100 clubs are used. The 
retention ratio rr is set to 2. In JLC_PSO, the default 
membership degree is set to 10, whereas in AMC_PSO, the 
default membership degree is increased (as a linear 
function of the iteration number) from 2 to 80. When the 
default membership degree is set to 2, the number of edges 
and the average vertex degree of AMC-PSO is lower than 
that of a ring network. Hence, the particles are more 
independent in searching the space during first iterations. 
 
The particles’ positions and speeds are randomly initialized 
in the ranges shown in Table II depending on the 
benchmark problem used. The absolute speed values for 
particles are kept within the Vmax limit for all dimensions 
during simulation. On the other hand, the particles’ 
movements are not restricted by any boundaries, so 
particles may go beyond the initialization range and take 
any value. 
 Each simulation run is allowed to go for 20000 iterations, 
and each simulation has been repeated 50 times.  
 

Algorithm A2: Proposed Adaptive C-PSO 
begin 
Initialize particles and clubs 
dm =2; 
while (termination condition = false) do  
 evaluate particles fitness: f(x) 
 update clubs’ best particles list 
 update particles speed and positions 

if (iteration mod join_leave_rate = 0) 
call procedure update membership level 
end-if 

   if (iteration mod dm_update = 0) 
       dm = dm + 1 
  end-if 
 iteration = iteration + 1 
end-while 
 
Procedure update membership level 
for j = 1 to number of particles 

if (particlej is best of neighborsj) and  
          (|membershipj| > min_membership) 
     leave random club 

end-if 
if (particlej is worst of neighborsj) and 

         (|membershipj| < max_membership) 
  join random club 

end-if 
 if (|membershipj| > dm) and (iteration mod rr = 0) 
 leave random club 
 end-if 

if (|membershipj| < dm) and (iteration mod rr = 0) 
join random club 

end-if 
next j 
end-procedure update membership level 
 

Table II  BENCHMARK FUNCTIONS AND 
ASSOCIATED PARAMETERS 

Function Dim. Init. range Objective 

Sphere 30 [-100; 100]n 0.01 

Rosenbrock 30 [-30; 30]n 100 

Rastrigin 30 [-5.12; 5.12]n 100 

Griewank 10 [-600,600] 0.1 

Schaffer’s f6 2 [-100; 100]n 1e-5 

Achley 30 [-32; 32]n 0.1 
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V.  RESULTS 

Each graph presented in this section represents the average 
of the 50 independent simulation runs for all optimizers 
unless otherwise stated. 

A.  Escaping Local Minima: 

As shown in Fig. 2, for the Sphere problem, club-based 
PSO versions manage to finish closer to the unique 
minimum than the conventional PSO. JMC-PSO is the best, 
followed by AMC-PSO.  
For the Rosenbrock problem presented in fig.3, AMC-PSO 
and JMC-PSO show very close performance at the final 
stages of the iterations. PSO-l and PSO-g follows them by 
a short distance, whereas the 4-clusters is the worst of all.  
For multimodal problems, fig. 4 shows the optimizers' 
performance for the Rastrigin test problem.  PSO-g is the 
best performer followed by the 4-clusters. AMC-PSO is the 
third followed by PSO-l. JMC-PSO converges prematurely 
and achieves the worst distance to global optimum.  
As shown in fig. 5 and fig. 6, for both Griewank and Schaf. 
f6 problems, the performance of the optimizers is nearly 
the same. In both cases, the AMC-PSO is the closer to the 
global optimum followed by the PSO-l. The 4 clusters 
algorithm comes third, followed by PSO-g. In both cases, 
JMC-PSO is the worst performer. 
For the Ackley problem, only JMC-PSO converges 
prematurely and hence is the worst performer. All other 
versions of PSO are so close at the end of the iterations. 
AMC-PSO is again the best performer.  The distances to 
the global optima after 20000 iterations of the optimizers 
are shown in Table III. 

B.  Convergence Speed: 

The second criterion to be considered is the convergence 
speed of the algorithms. It is measured by the number of 
iterations the algorithm takes to reach a certain degree of 
closeness to the global optimum. For the tested 6 
benchmark problems, the closeness values are selected as 
indicated in Table II next to the problem names. 

Table IV represents the average, the median, the maximum 
and the minimum of the closeness values. Data of 
successful runs were used to evaluate these values, so the 
sample number is not the same for all figures. The success 
rate of 50 independent simulation runs for the six 
optimizers is presented in the last column.  

We can see from Table V that AMC-PSO is the only 
algorithm that achieves 100% success over all the six test 
problems. For the Sphere problem, all the algorithms 
achieve the desired closeness in every single run, though 
JLC-PSO comes ahead of them. For the unimodal 
Rosenbrock and the multimodal Rastrigen and Ackley 
problems, the JLC-PSO achieves the fastest approach to 
the selected closeness values, however the success rate is 
lower than that of the AMC-PSO which is the second best 
performer in the Ackley case and the 4th in the other 2 
cases. The performance of the PSO-g precedes that of the 
4 clusters and the PSO-l. The 4 clusters is the worst 
performer in the Rosenbrock and the Ackley cases while 
PSO-l is the worst performer for the Rastrigen problems. 
In both Griewank and Schaffer’s f6 problems, the AMC-
PSO shows faster response compared to its response in the 
other problems. For example, it achieves the best Max 
values and it comes second in several indices.  

C. Performance analysis of AMC-PSO in early stages:  

As discussed in section IV, the performance of the AMC-
PSO can be split into the exploration phase in the first stage 
(small dm), and the exploitation phase (high dm). If we 
consider for example, fig. 7, it is clear that in the first 1000 
iterations, the best value found by the AMC-PSO is worse 
than that found by JLC-PSO and by PSO-g. The zoomed 
view of fig. 3 indicates the same performance of the 
optimizers in the first 800 iterations for the Rosenbrock 
problem. This may be interpreted by considering the 
properties of the JLC-PSO and PSO-g graphical networks. 
Based on (7), the average vertex degree for the JLC-PSO is 
10, while the vertex degree of the PSO-g is 19.  This 
relatively high vertex degree enables any particle located 
close to a local or global optimum to attract more particles 
to exploit this area. Hence, it is expected that both 
optimizers perform better in the first few iterations. In the 
first 800 iterations, the average membership dm degree of 
the AMC-PSO is increased from 3 to 6.  For a value of dm 
less than or equal to 5, eq. (7) results in a negative or zero 
average vertex degree, indicating that the social network is 
‘loose’, i.e. the particles are mainly guided by their own 
experience. Although this results in a poor   performance in 
the first stages, it is clear from Table IV that this weak 
social behavior in the beginning results in an improved 
closeness to the global optimum  

The above discussion demonstrates the ability of club 
based PSO to provide better response compared to 
conventional PSO. JLC-PSO provides the fastest 
convergence speed. The disadvantage of the JLC-PSO is 
that it may converge to local minimum as indicated by the 
lower success rates and high distance from global optimum 
in several problems.  The advantages of the AMC-PSO can 
be summarized as follows: 
• Providing the best closeness values for most test 

problems 
• Providing the highest success ratio for the test problem 
 

TABLE III 
DISTANCES TO GLOBAL OPTIMA AFTER 20000 ITERATIONS

 PSO-l PSO-g 4.Clusters JLC- AMC.PSO 

Sphere 1.08e-47 1.51e-89 4.10e-42 3.1e-180 5.25e-159 

Rosenb. 15.788 27.763 38.667 10.328 9.9745 

Rastrigin 32.694 18.287 19.163 41.331 29.053 

Griewank 3.86e-2 6.63e-2 4.76e-2 7.91e-2 3.3e-2 

Schaf. f6 0 1.55e-3 5.83e-4 2.91e-3 0 

Achley 6.71e-15 6.36e-15 6.43e-15 1.66e-1 5.86e-15  
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Fig.2.  Sphere⎯Closeness to global optimum  
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 Fig. 6.  Schaffer’s f6⎯Closeness to global optimum  
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 Fig. 7.  Ackley⎯Closeness to global optimum  
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Fig. 3.  Rosenbrock⎯Closeness to global optimum  
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Fig. 5. Griewank ⎯Closeness to global optimum  
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Fig. 4.  Rastrigin⎯Closeness to global optimum  
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VI.  CONCLUSION 

Particle swarm optimizers are very sensitive to the shape of 
their social network. Both PSO-g and PSO-l lack the ability 
of adapting their social network to the landscape of the 
problem they optimize. 
The proposed AMC-PSO algorithm overcomes this 
problem. The dynamic social network of the optimizer 
shrinks the membership level of the superior particles to 

reduce their influence on other particles, while expanding 
the membership level for the worst particles to increase 
their chance in learning from better particles. 
AMC-PSO versions achieves better results than PSO-l and 
PSO-g, either in escaping local optima or in convergence 
speed to global optima for almost all considered benchmark 
problems.  
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TABLE IV. NUMBER OF ITERATIONS NEEDED TO REACH 
A CERTAIN DEGREE OF CLOSENESS TO GLOBAL 

OPTIMUM FOR THE FIVE OPTIMIZERS. (BEST VALUES 
ARE BOLD FACED) 

Algorithm Avg. Med. Max. Min. Suc.% 
 Sphere – (Closeness = 0.0001) 
PSO-l 2859 2873 3166 2231 100 

PSO-g 1583 1571 1798 1313 100 

4 CLUSTERS 3256 3261 3757 2750 100 

JLC-PSO 847 847 981 730 100 
AMC-PSO  1604 1610 1806 1376 100 
 Rosenbrock – (Closeness = 100) 
PSO-l 2940 2768 5934 1548 100 

PSO-g 2840 1565 16399 755 98 

4 CLUSTERS 3470 2660 11738 1605 96 

JLC-PSO 1308 729 8651 390 98 

AMC-PSO  2997 1475 13786 914 100 

 Rastrigin – (Closeness = 50) 
PSO-l 2831 1899 17196 737 94 

PSO-g 1028 964 2338 354 100 

4 CLUSTERS 1524 1396 4238 645 100 

JLC-PSO 551 469 1388 210 78 

AMC-PSO  1572 1507 2300 972 100 

 Griewank – (Closeness = 0.1) 
PSO-l 1191 572 18893 284 96 

PSO-g 916 471 4617 200 86 

4 CLUSTERS 1001 585 13521 331 96 

JLC-PSO 579 216 5069 123 72 

AMC-PSO  710 587 1217 354 100 

 Schaffer’s f6 – (Closeness = 0.001) 
PSO-l 1505 636 12703 31 100 

PSO-g 1323 593 10169 54 84 

4 CLUSTERS 824 509 3737 93 94 

JLC-PSO 2514 292 16222 20 70 

AMC-PSO  471 424 895 169 100 

 Ackley – (Closeness = 0.01) 

PSO-l 2825 2837 3549 2272 100 

PSO-g 1454 1443 1835 1181 100 

4 CLUSTERS 2754 2765 3232 2174 100 

JLC-PSO 853 808 1276 641 88 

AMC-PSO 1438 1440 1518 1350 100 
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