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Abstract— In this article the modeling and control design
aspects of an electrostatic microactuator (EmA) with squeezed
thin film damping effects are presented. The modeling analysis
of the squeezed film damping effect is investigated in the case
of an EmA composed by a set of two plates. The bottom plate
is clamped to the ground, while the moving plate is driven
by an electrically induced force which is opposed by the force
exerted by a spring element. The nonlinear model of the EmA
is linearized at various operating points, and the feedforward
compensator provides the nominal voltage. Subsequently a
gain scheduled H∞ controller is used to tune the controller-
parameters depending on the EmA’s operating conditions. The
controller is designed at various operating points based on the
distance between its plates. The parameters of the controller
are tuned in an optimal manner and computed via the use
of the Linear Matrix Inequalities. Special attention is paid in
order to examine the stability issue in the intervals between the
operating points. Simulation results investigate the efficacy of
the suggested modeling and control techniques.

I. INTRODUCTION

With the rapid progress of micro and nano fabrication
processes in the recent years it is now possible to fabricate
miniaturized devices whose size varies from micro to nano
scales [1]. The focus is on creating high performance devices
which are sensitive and have high quality factor [2], [3].
The dynamic behavior of movable parts in MEMS is largely
affected by the supporting environmental conditions such as
the air pressure, temperature et. al. This gas-structure inter-
action [4] has been encountered in certain devices such as
accelerometers, gyroscopes and RF-switches [5], [6] which
are designed to operate in rarified air condition, whereas
other devices, such as microphones, ultrasonic transducers
and micro mirrors, generally work with ambient air surround-
ing them. Therefore, the effects of the surrounding air and
most notably the damping force which can be neglected in
structures of conventional dimensions, play a critical role
with micro-structures with diminutive size [7].

Squeezed film damping is a term used to describe the
most common fluid-structure interaction that impacts the
performance of MEMS devices. Squeezed film damping
occurs when a thin film layer of air or some other fluid
separating the free structure from the substrate is “squeezed”
due to any possible movement of the free structure normal to
the substrate. Silicon microstructures (sensors and actuators)
that make use of the capacitive measurement principles [8],
or electrostatic driving forces [9], are characterized by very
small gaps between their moving surfaces [5] and so the
dynamic behavior of movable parts in these electrostatic
actuators is largely affected by the air’s presence (i.e. low
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vacuum conditions for micro-accelerometers [10], ultra thin
gas film in magnetic/disk interfaces [11] and tilting micro-
mirrors in DLP type projectors [12], [13]). The understanding
of the squeeze film damping mechanism in such electrostatic
micro-actuator (EmA) devices [14] is necessary in order to
optimize the controller designs.

The inclusion of the squeeze film damping effects in-
creases the complexity of the dynamics of the micro actuator
plant [15], [16], and appropriate controllers should deal with
it [17]. Accordingly, since these systems are highly non-
linear and have a large order, the tendency is to design
controllers that are based on linearized models of the system
[13].

In the present article a Gain Scheduled H∞ controller
[18], [19] is designed for a class of Linear Parameter
Varying (LPV) plants characterizing the EmA. The main
idea is to separate the control design process into two steps.
Firstly the local linear controllers are designed based on the
linearizations of the nonlinear system at several operating
points [20]. In the sequel, a global controller for the nonlinear
plant is obtained by interpolating or scheduling the gains of
the local operating points design. The linearized plants’ state
space matrices are assumed to depend on a vector of spatial
varying parameters. The measured parameters, are fed to the
controller to optimize the performance and the robustness
of the closed loop system. The resulting controller is auto-
matically “gain scheduled” along parameter trajectories. The
synthesis problem of the controller is fulfilled with the use
of the Linear Matrix Inequalities (LMIs).

In the rest of this article the modeling of the EmA with
squeezed film damping effects is presented in Section II.
In Section III the design of the Gain scheduled H∞ con-
trol scheme is presented. Simulation results that prove the
efficacy of the proposed control architecture are presented
in Section IV, while the conclusions are drawn in the last
Section V.

II. MODELING OF PARALLEL PLATE ACTUATORS WITH

SQUEEZE AIR DAMPING

The EmA from a structural point of view corresponds to
a micro–capacitor whose one plate is attached to the ground
while its other moving plate is floating on the air [21], [22],
[23] with the aid of an additional external spring. Figure 1
presents the structure of the EmA. The dynamic nonlinear
governing equation of the system [2] is:

mη̈ +Fd + kη =
εℓU2

2(ηmax −η)2
= Fel (1)

where η is the displacement of the plates from the relaxed
position, m is the plate’s mass, k is the spring’s stiffness, ℓ
is the length of the square plate, U is the applied voltage
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between the capacitor’s plates, ηmax is the distance of the
plates when the spring is relaxed, ε is the dielectric constant
of the air, Fd is the force caused by the parallel plate damper
and Fel is the electrically-induced force as shown in Figure 2.
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Fig. 1. Electrostatic micro–Actuator structure

A. Electrical Force Model

Application of a voltage U between the capacitor’s plates
generates an electrically–induced force [24], [25]

Fel =
εℓ2U2

2(ηmax −η)2
. (2)
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Fig. 2. Diagram of forces applied on the µ-A

B. Squeezed Film Damping Effect

The behavior of the gas between the plates is in general
governed by both viscous and inertial effect within the fluid.
However for the very small dimensions encountered in elec-
trostatic devices, the inertial effect is often negligible. In such
a case, the behavior of the fluid is governed by the Reynolds
equation, a single expression which relates pressure, density
and surface velocity for the specific geometry of a bounded
film [4], [15], [26], [27].

Under the assumption of isothermal conditions, Blench
[28] has derived solutions for the pressure between the gap
of two oscillating rectangular plates. The pressure has two
components, one in phase with the drive, which represents
the spring-like behavior of the gas, and one in phase with
the velocity which represents the damping behavior [15].
The integrals of these pressures over the plates provides the
expressions for the air spring and damping contributions. For
square plates [15], [28] the coefficient of the viscous damping

force due to the squeezed film air damping is [29], [30], [31]
(under the assumption of a sinusoidal motion of the upper
plate with frequency ω):

b1(η ,ω) =
64σPaℓ

2

ωπ6(ηmax −η) ∑
m,n odd

m2 +n2

(mn)2{[m2 +n2]2 +σ2/π4}

and the coefficient of elastic damping force is:

k1(η ,ω) =
64σ2Paℓ

2

π8(ηmax −η) ∑
m,n odd

1

(mn)2{[m2 +n2]2 +σ2/π4}

where σ = 12µℓ2ω
Pa(ηmax−η) is the dimensionless squeeze number,

Pa is the ambient pressure, and µ is the (air) viscocity coeffi-
cient. It should be noticed that for typical gaps encountered
in EmAs (0.1µm ≤ ηmax − η ≤ 40µm) over an operating
frequency range of less than ωmax =100MHz, the coefficient
k1 increases with the frequency and is significantly smaller
than k, (k1 ≪ k, ∀ω ∈ [0,ωmax)). The force caused by the
parallel plate damper Fd presented in equation (1) is equal
to [32]:

Fd = b1(η ,ω)η̇ + k1(η ,ω)η . (3)

C. Linearized Equations of Motion

The nonlinear equation of motion for (1) can be rewritten
according to (3):

mη̈ +b1(η ,ω)η̇ +(k + k1(η ,ω))η =
εℓ2U2

2(ηmax −η)2
. (4)

Equation (4) is a nonlinear equation due to the presence of ω ,
η , U . A model approximation can be obtained if a certain
operating point η̇◦

i , η◦
i , ω◦ is chosen in order to achieve

a linearized system. All possible “equilibria”-points η◦
i , i =

1, . . . ,M depend on the applied nominal voltage U◦
i . Equation

(4) for ω◦ ≃ 0, η̇◦
i = 0,η◦

i yields

(

k + k1η=η◦
i ,ω◦≃0

)

η◦
i = kη◦

i =
εℓ2(U◦

i )2

2(ηmax −η◦
i )2

,or (5)

U◦
i = ±

[

2kη◦
i (ηmax −η◦

i )2

εℓ2

]1/2

. (6)

This nominal U◦
i –voltage must be applied if the capacitor’s

plate is to be maintained at a certain distance η◦
i from its

un–stretched position
If the above system is linearized with respect to the

parameter η , and if ω is equal to a certain value (i.e. ω◦)
the approximated linearized equations of motion around the
equilibria points (U◦

i , η◦
i ,and η̇◦

i = 0) can be found using
standard perturbation theory for the variables U and ηi where
U = U◦

i +δu and ηi = η◦
i +δηi. The linearized equation of

motion for the system in (4) is:

mδ η̈i +
(

b1 η=η◦
i ,ω=ω◦δ η̇i

)

+

(

k + k1 η=η◦
i ,ω=ω◦ +

ϑk1

ϑη η=η◦
i ,ω=ω◦η◦

i

)

δηi

+
(

k + k1 η=η◦
i ,ω=ω◦

)

η◦
i

=
εℓ2(U◦

i )2

2(ηmax −η◦
i )2

+
εℓ2(U◦

i )2

(ηmax −η◦
i )3

δηi +
εℓ2U◦

i

(ηmax −ηo
i )2

δu

Since
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(

k + k1η=η◦
i ,ω=ω◦

)

≃ k, and after the substitution of:

ka
i = k + k1 η=η◦

i ,ω=ω◦ +
ϑk1

ϑη
η=η◦

i ,ω=ω◦η◦
i −

εℓ2(U◦
i )2

(ηmax −ηi)3
,

bi = b1 η=η◦
i ,ω=ω◦ , βi =

εℓ2U◦
i

(ηmax −η◦
i )2

, i = 1, . . . ,M

Equation (7) is transformed to:

mδ η̈i +biδ η̇i + ka
i δηi = βiδu. (7)

Equation (7) is valid only for a specific frequency ω◦,
and therefore the characterization of the system’s behavior
over a frequency range ω ∈ [0,ωmax) can be investigated
by examining these equations for a vector of frequencies
ω◦, j, j = 1, . . . ,N spanning this interval. Having obtained the
frequency response of the system for a given operating point
η◦

i this is approximated by an nth order approximation. It
should be noted that a second order approximation suffices
for the description of the linearized EmA-dynamics. This
second order approximation yields to a state space descrip-
tion equal to:

[

δ ˙̃ηi

δ ¨̃ηi

]

=

[

0 1
a21(η

◦
i ) a22(η

◦
i )

][

δ η̃i

δ ˙̃ηi

]

+

[

0
1

]

δu

= Ai(η
◦
i )

[

δ η̃i

δ ˙̃ηi

]

+Bδu, i = 1, . . . ,M (8)

δηi = [c11(η
◦
i ) c12(η

◦
i )]

[

δ η̃i

δ ˙̃ηi

]

= C(η◦
i )

[

δ η̃i

δ ˙̃ηi

]

,

where
[

δ η̃i,δ ˙̃ηi

]T
is a vector obtained from a similarity

transformation (controller canonical form) with respect to

the the vector [δη,δ η̇i]
T

.

III. GAIN SCHEDULED H∞ CONTROLLER DESIGN

The feedback term is a gain scheduled H∞ controller,
which consists of an LTI controller for each one of afore-
mentioned subsystems. These controllers switch among them
when the operating conditions change. The change of the
system matrices depends on the variation of the operating
point ηi . The designed controller is applied to the nonlinear
system of the EmA in order to test its efficacy. The con-
troller’s parameters are tuned with the use of LMIs [33],
[34].

In order to appropriately weight selected frequency bounds
under consideration, the system’s input and output are filtered
by filters of transfer functions W1(s),W2(s). For the EmA,
the low frequency spectrum is of primary importance and

low pass filters W1(s) = ∏
q
i=1

w1,i
s+w1,i ,W2(s) = ∏

f
j=1

w2, j
s+w2, j

are

used throughout this frequency-shaping procedure. In the
sequel, driven by our application (micropositioning) first
order (q, f =1) low pass filters are used. The linearized
system’s description using the augmented state vector δηa

i =
[

δ η̃i,δ ˙̃ηi,η f

]T
together with the other filter is equal to:
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δ ˙̃ηi
η f
−−
ηq
−−
δu



















(9)

For the a priori selected operating points η◦
i , the system’s

description is within the convex hull of the matrices:

[

Aa
i (ηi) Ba

i (ηi)
Ca 0

]

∈ Co

{[

Aa
i (η

o
i ) Ba

i (η
o
i )

Ca 0

]

, i = 1, . . . ,M

}

Under the assumption of direct measurements of the
state vector δηa

i the controller adjusts in a gain scheduled
approach its parameters based on the neighborhood of the
selected operating point η◦

i .
In this scheme, the plate’s gap space η ∈

[

ηmin,ηmax
)

is
equidistantly divided into n-segments, where defined by the
selected operating points:

η◦
i = ηmin +(i−1)

ηmax −ηmin

n
= η◦

i = ηmin
i +(i−1)∆,

i = 1, . . . ,n (10)

When ηi ∈
[

η◦
i −

∆
2
,η◦

i + ∆
2

)

the δηa
i are computed with re-

spect to the ith operating point. The gain-scheduled controller
provides a dynamic feedback of the form

δu = K(s,ηi)δηa
i , (11)

where with a slight abuse of notation, we imply that the
K(s)–transfer function depends on the operating point ηi,
noted as K(s,ηi).

The architecture of the control scheme is presented in
Figure 3 [35]:

P( )

δu
,

Gain Scheduled
H -controller

( )
inf

r
W1

W2

e

ηi

δηi

ηi

ηi

Fig. 3. Controller Architecture

The goal is to create a controller with a form:

ẋc = Ac(ηi)xc +Bc(ηi)δηa
i

δu = Cc(ηi)xc +Dc(ηi)δηa
i (12)

that guarantees a quadratic H∞ performance less than γ for
the closed loop system, where xc ∈ Rk is the state vector of
the controller. With the notation

Ω(ηi) :=

[

Ac(ηi) Bc(ηi)
Cc(ηi) Dc(ηi)

]

(13)

the state space matrices of the closed loop system are:

Acl(ηi) = Ao(ηi)+BΩ(ηi)C

Bcl(ηi) = Bo(ηi)+BΩ(ηi)D21

Ccl(ηi) = Co(ηi)+D12Ω(ηi)C

Dcl(ηi) = D11(ηi)+D12Ω(ηi)D21 (14)
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and

Ao =

[

Aa
i (ηi) 0
0 0k×k

]

,Bo =

[

Ba
1

0

]

,

Co = [Ca
1,i 0], B =

[

0 Ba
i

Ik 0

]

(15)

C =

[

0 Ik

Ca 0

]

,D12 = [0 D12],D21 =

[

0
0

]

The assumptions on the plant are:

• The pairs (Aa
i ,B

a
i ) and (Aa

i ,C
a), are quadratically stabi-

lizable and quadratically detectable respectively.

Under the posed assumptions of the LPV-plant, there
exists an LPV-controller [36] guaranteeing Quadratic H∞

performance ≤ γ for all state vector trajectories η(t) ∈
[

ηmin,ηmax
)

= Co{ηo
i , i = 1, . . . ,M} if and only if there exist

two symmetric matrices R, S satisfying the system of LMIs:

N̂T
R





Aa
i R+R(Aa

i )
T R(Ca

1,i)
T Ba

1

Ca
1,iR −γI D11

(Ba
1)

T DT
11 −γI



 N̂R < 0 (16)

N̂T
S





(Aa
i )

T S +SAa
i SBa

1 (Ca
1,i)

T

(Ba
1)

T S −γI DT
11

Ca
1,i D11 −γI



 N̂S < 0 (17)

[

R I

I S

]

≥ 0 (18)

where

N̂R =

[

NR 0

0 I

]

, N̂S =

[

NS 0

0 I

]

(19)

and NR and NS are the orthonormal bases of the null spaces of
[

(Ba
i )

T ,DT
12

]

and [Ca,D21] respectively. Moreover there exist
k-th order LPV controllers solving the same LMI problem if
and only if R,S would also satisfy the rank constraint

rank(I −RS) ≤ k. (20)

After the computation of any feasible solution of R and S
matrices the invertible matrices Θ and Ψ can be computed
via a SVD as:

ΘΨT = I −RS. (21)

.
Having computed Θ and Ψ the matrix Xcl is formed as:

Xcl =

[

I2×2 S

02×2 ΨT

][

R I2×2

ΘT 02×2

]−1

. (22)

.
Given the matrix Xcl a possible choice of vertex controller:

Ωi =

[

Ac(ηi) Bc(ηi)
Cc(ηi) Dc(ηi)

]

(23)

is any feasible solution of the LMI problem:





AT
cl(ηi)Xcl +XclAcl(ηi) XclB

T
cl(ηi) Ccl(ηi)

T

Bcl(ηi)Xcl −γI 0
Ccl(ηi) 0 −γI



 < 0. (24)

.

IV. SIMULATION RESULTS

Simulation studies were carried on a EmA’s non–linear
model [17]. The parameters of the system unless otherwise
stated are equal to those presented in the following Table.

parameter (Unit) Description Value

A (m2) Area of the plates 10 × 10−8

ℓ (m) Plate Length 100 ×10−6

µ (kg m/sec2) Viscosity Coefficient 18.5 ×10−6

ρ (kg/m3) Density 1.155

ε (coul2/Nm2) Dielectric constant of the air 8.85 ×10−12

Pa (N/m2) Ambient Pressure 105

k (N/m) Stiffness of the spring 0.816

Figure 4 shows the relationship between the magnitude
frequency responses of the “linearized” and the approximated
2nd-order linearized subsystems, presented in Equations (7),
(9) respectively parameterized with respect to ηo

i . As ob-
served from the plots the systems’ frequency representations
are very close considering critical issue points (i.e. system’s
dc-gain, resonant frequency, stability issues etc).
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Fig. 4. Frequency magnitude comparison between actual and aggregated
(2nd-order) linearized EmA-systems.

The plate’s gap is constrained within η ∈ [0.1,2)µm
resulting in an operating regime below the well-known
bifurcation point [13], [17]. Figure 5 presents the bifurcation
points of the system for different values of the frequency ω .
In the presented Figure the x-axis corresponds to η , the y-
axis corresponds to the value of the frequency ω and the z-
axis corresponds to the value of the voltage as derived from
Equation (6). The extrema of the graphs presented in this
figure are equal to the bifurcation points of the system. These
are the points where the behavior of the system changes from
stable to unstable and vice versa. These points can easily be

found by setting the derivative of ∂Uo

∂η of the expression in

equation (6) equal to zero. It should be noted that in the
absence of the squeezed thin film damping effect, there is a
single bifurcation point at

η
ηmax = 1

3
.

Since the operating regime is below the well-known bifur-
cation point [13], [17], the linearized systems are stable, as
expected and verified from the Nyquist plots of these systems
shown in Figure 6.

In the following Figures 7, 8 the 3-D frequency plots are
presented for the approximated systems for different values
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of ηmax (ηmax = 0.2, 2µm) between the two plates. In these
Figures the x-axis represents the frequency in (rad/sec), the
y-axis represents the the values of different ηo

i in (m), the
z-axis represents the magnitude of the transfer functions in
(dB).

As it is observed from the plots the gap between the plates
of the EmA has a significant role in the system’s behavior.
In all plots, there is a variation in the 2nd-order system’s
natural frequency as ηo

i changes. In general the natural
frequency monotonically increases with ηo

i . The reduction
of the damping (ζ ≃ 0.05) is crucial in EmAs with tiny gaps
(≃0.2µm) since the squeezed air cannot provide sufficient
reacting force.

The system’s response to a reference periodic square signal
of period Ts

ηΓ =

{

ηΓ,max t ∈ [0,Ts/2)
ηΓ,min t ∈ [Ts/2,Ts)

(25)

The reference signal is analyzed in its Fourier series, and
Ra-terms are kept in the sum as:

ηΓ =
Ra

∑
i=odd

Risin

(

2π

iTs

t +ϕi

)

(26)

Fig. 7. Magnitude frequency diagrams for different ηo
i and ηmax = 0.2×

10−6 m

Fig. 8. Magnitude frequency diagrams for different ηo
i and ηmax = 2×

10−6m

In Figure 9, the EmA-system’s response for Ra=7,
ηΓ,max = 0.25µm, ηΓ,min = 0.15µm is presented. The mea-
surements are corrupted with noise resulting in a SNR=20dB.
The oscillatory nature of the response is primarily caused by
the truncation of the Fourier series.

V. CONCLUSIONS

In this article a Gain scheduling H∞ controller tuned via
the theory of LMIs has been designed for an approximated
model of an EmA with squeeze film gas film damping effect.
The controller is designed at various operating points and
smoothly changes its values as the upper plate of the EmA is
moving. The overall control scheme is applied on the EmA’s
non linear model in order to test its efficacy.
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