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Abstract— In this paper a strategy for controlling a group
of agents to achieve positional consensus is presented. The
proposed technique is based on the constraint that every agents
must be given the same control input through a broadcast
communication mechanism. Although the control command is
computed using state information in a global framework, the
control input is implemented by the agents in a local coordinate
frame. We propose a novel linear programming formulation
that is computationally less intensive than earlier proposed
methods. Moreover, we introduce a random perturbation input
in the control command that helps us to achieve perfect
consensus even for a large number of agents, which was not
possible with the existing strategy in the literature. Moreover,
we extend the method to achieve positional consensus at a
pre-specified location. The effectiveness of the approach is
illustrated through simulation results.

I. INTRODUCTION

The principle of using multiple agents is motivated by

the idea that instead of using a highly sophisticated and

expensive robots, it may be advantageous in certain situations

to use a group of small, simple, and relatively cheap robot.

The group of agents can be used to accomplish various

tasks in different environment such as tactical operations,

exploratory space missions, remote monitoring with mobile

sensor networks, avoidance of collision and over-crowding

in automated air traffic control, cleanups of toxic spills, fire

fighting and cooperative search with unmanned air vehicles.

One of the problems that is of paramount importance in

multi-agent systems is that of achieving consensus, that is,

achieving identical values for some specified subset of the

states of the agents. For instance, the agents may try to

converge to the same direction of movement [1] after some

time or they might want to converge to a point. Both are

problems in achieving consensus. If we have a centralized

system with perfect information then achieving consensus

is a trivial matter, since the central controller can instruct

each agent suitably to reach a common consensus point.

However, if the communication system has a constraint on

the number of messages that it can communicate, then one

may opt for a broadcast protocol where the central controller

will communicate simple and identical instructions to all the

agents through a broadcast mechanism. We further impose

the additional constraint that each agent can interpret the

control command only in its local coordinate frame or local

state space. Only the central controller has access to the
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global states of the system. Some of these constraint are

common to other problems of a similar nature (for instance,

see [2], [3], [4], [5]).

This problem was motivated by a recent paper by Bretl

[6] where a control strategy for a group of micro-robots is

developed to perform a useful task even when every robot

receives the same control signal. The paper considers point

robots with simple kinematics. It was shown that when

there are only two agents, there exists a broadcast control

command (that is, both agents receive identical instructions

from the central controller) using which both agents can meet

at the same location at the same time, for almost all initial

conditions. However, if the number of agents is more than

two, then the best that the agents can achieve is to come

close to each other within a certain distance (measured by

the radius of the smallest disc that contains all the agents

positions), which is a function of the initial conditions. Bretl

[6] formulates this problem as an optimization problem that

minimizes the radius of the disc, and proposes a solution

using the second order cone programming (SOCP) technique

[8]. However, using this strategy the agents cannot be made

to converge to a point. Once the solution of the SOCP is

implemented, no further improvement is possible. Bretl’s

paper was in turn motivated by an interesting paper by

Donald et al. [7] on the development of untethered, steerable

micro-robots, where every robot receives the same power and

control signal through an underlying electrical grid.

Our paper makes several specific contributions. The first

is to propose a strategy that uses the basic Bretl’s model

with an additional randomization feature that allows large

number of agents to achieve positional consensus or point

convergence on repeated application of the algorithm with-

out compromising the broadcast constraint on the control

command. The second contribution is that our method can

be extended to the case where the agents can be made to

converge to any pre-specified point. The third contribution is

to propose an optimization problem for this task that is based

on a linear programming formulation. This allows standard

and easily available software to be used for obtaining the

solution. Moreover, this formulation also retains the property

that the number of decision variables, whose values are to be

communicated to agents, remains unchanged even when the

number of agents increases. Finally, we also propose some

interesting properties related to the positional formation of

agents when the LP based strategy is applied iteratively.

It is worth noting that the randomization feature in the

algorithm has some similarity with the random perturbation

used in Viscek’s model [1]. Vicsek et al. [1] propose a simple
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but compelling discrete time model of n autonomous agents

(points or particles) all moving in the plane with constant

speeds but with different headings. Each agent updates its

heading using a local rule based on the average of the

headings of its neighbors plus some random perturbation.

The paper is organized as follows: In Section II we

consider two agents and show that it is possible to move

two agents to a common location using identical control.

In Section III we formulate a linear programming problem

for minimizing the proximity between agents by using iden-

tical broadcast control. In Section IV we have discussed

some results on the formation of the agents after the linear

programming solution is implemented. In section V we

introduce the notion of iterative solution of the problem by

repeated use of the LP algorithm and show that introducing

a random perturbation in the broadcast mechanism leads to

point convergence of the agents by repeated application of

the LP technique. In Section VI we present a modification

of the algorithm to ensure that the swarm of agents converge

to a pre-specified point. In section VII we show several

simulation results that illustrate the salient features of the

proposed algorithm. Section VIII concludes the paper with

a discussion of possible future directions of research.

II. FORMULATION AND SOLUTION FOR TWO AGENTS

We will first pose the problem in a general framework

and then address the two agents case to clarify many of the

assumptions and concepts discussed in the previous section.

Assume that n agents are located on an obstacle-free

plane. We assume that the central controller has access to

the global state of the system which, in this case, consists

of the position (xi ∈ R
2) and orientation (θi ∈ (−π, π]) of

the agents, i = 1, . . . , n. The central controller computes

a common local control for the agents and broadcasts it to

the agents for implementation. The local control is in the

form of a tuple (θ, d), which is interpreted by each agent in

its local frame of reference. Here, θ refers to the angle by

which each agent changes its orientation, and d is a scalar

that refers to the distance by which each agent moves after

effecting the orientation change. Note that, the broadcast

mechanism (θ, d) is the same for all the agents. Also, the

local frame of reference for each agent is centered at the

agent’s location and its reference axis is oriented along its

current orientation. As an illustration see Fig. 1, where agents

are shown located initially at xi0 with initial orientation θi0 in

the global reference frame. If the control command broadcast

to all the agents is (θ, d), then the agents implement it in

their local coordinate frame by each of them changing their

orientation by the same angle θ and advancing by the same

distance d to reach the final destination xif . Even in this

figure it can be seen that by doing this the agents have come

closer to each other. Our objective is to determine a (θ, d)
such that the agents can achieve the closest proximity with

each other.

Theorem 1: For two agents, for all initial conditions of the

agents except when θ10 = θ20, there exists a control (θ, d)
using which point convergence can be achieved.
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Fig. 1. Basic configuration

Note that this result is also available in Bretl [6] and is

stated here for completion. The above theorem shows that it

is possible to use a broadcast control command to make two

agents meet at the same location simultaneously for almost

all initial conditions. However, the solution is also unique

and hence the location of the meeting point cannot be chosen

arbitrarily. One can also interpret this result by noting that

the final meeting point is on the Voronoi edge (equidistant

line) between the two initial positions of the agents. It can

be shown that only one unique point on the Voronoi edge

satisfies the requirement that the orientation change angle

is the same for both the agents (see Fig. 2). The point p

moves on the equidistant line from −∞ to +∞ and the

corresponding orientation angle change θ is plotted for the

two agents. The intersection of the two curves is the unique

control command point. It can be seen that when the number
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Fig. 2. Voronoi interpretation

of agents is more than two, each pair gives rise to a different

unique meeting point. Thus, there does not exist a common

control command to be broadcast so that all the agents meet

at a point. In the absence of such a command, the best that

can be done is to determine a (θ, d) which brings the agents

in closest proximity with each other. Note that in this case

(θ, d) may not be unique.

In the next two sections we will propose solutions to

overcome both the drawbacks without compromising the

broadcast based control mechanism.

III. A LINEAR PROGRAMMING FORMULATION

Let the initial position and initial orientation of the n

agents be xi0 = (pi1 pi2) ∈ R
2 and θi ∈ (−π, π],

respectively, for all i ∈ {1, ..., n}. As before, we define the

control command to be broadcast as (θ, d). We define our

performance measure as the half length, denoted by r > 0,
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of the side of a square oriented along the global coordinate

frame, and containing all the final positions of the agents.

Let this square be centered at z = (z1, z2) ∈ R
2.

Assuming that all the agents execute the command (θ, d),
their final positions, given by xif = [qi1 qi2] ∈ R

2 will be,

xif = xi0 + R(θi0)R(θ)

[

d

0

]

(1)

That is,
[

qi1

qi2

]

=

[

pi1

pi2

]

+

[

cos θi0 − sin θi0

sin θi0 cos θi0

] [

u1

u2

]

(2)

where, u1 = d cos θ and u2 = d sin θ are the control

variables that replace (θ, d). Note that Eqn. (2) are linear

equations. Now, we formulate the linear programming prob-

lem as,

Minimize r

Subject to

−r ≤ pi1 + u1 cos θi0 − u2 sin θi0 − z1 ≤ r (3)

−r ≤ pi2 + u1 sin θi0 + u2 cos θi0 − z2 ≤ r (4)

i = 1, . . . , n.

r ≥ 0 (5)

The above is a linear programming problem with the

decision vector as (r, z1, z2, u1, u2). Note that the decision

vector remains same irrespective of the number of agents.

Only the number of inequality constraint increases with the

number of agents. Also, note that z1,z2,u1 and u2 are free

variables and can take both positive or negative values.

IV. SOME RESULTS ON THE FORMATION OF AGENTS

After executing the LP the distance between i and j agent

along x-axis and y-axis will be

dxij
= (pi1 − pj1) + d(cos(θi + θ) − cos(θj + θ))

= (pi1 − pj1) + dC (6)

dyij
= (pi1 − pj1) + d(sin(θi + θ) − sin(θj + θ))

= (pi1 − pj1) + dS (7)

where, C = (cos(θi + θ)− cos(θj + θ)), S = (sin(θi + θ)−
sin(θj + θ)) and i, j ∈ {1 . . . n}. Thus the resulting distance

along x-axis and y-axis are dictated by the value of C and

S.

After executing the LP, the new formation of the agent

obtained is of interest. Below, we investigate some properties

of the formation. For this let us define the span of the

formation along X and Y axis as follows: Let (xi, yi) be

the position of the agents, where i ∈ I = {1, . . . , n}.

Then define xmax = max{xi}i∈I , xmin = min{xi}i∈I ,

ymax = max{yi}i∈I and ymin = min{yi}i∈I . Then the

span of the formation along the X and Y axis are given by,

Sx = xmax − xmin

Sy = ymax − ymin

The formation is said to be square if Sx = Sy and rectangular

otherwise. Essentially, the spans are the length of the sides

of the minimal rectangle that contains the position of all the

agents. Note that the LP problem attempts to minimize the

quantity r = max{Sx, Sy}.

We first consider a very special case with three agents.

Let us assume that minimal formation by three agents is a

rectangle and not necessarily a square where Sx = Sy . Then,

there are four way in which this can be occur. This is shown

in Figure 3.

(a) (b)

(c) (d)

Fig. 3. Rectangle formation by three agents (a) Two agents at corner, one
in the interior (b) Two agents at corner, one on edge (c) All the agents at
corner (d) One agent at a corner and two agents on edges

Before we prove some general results on the formation of

the agents after the LP is executed we will state a lemma

that will be useful to prove the main results.

Lemma 1: If C = cos(θi + θ) − cos(θj + θ) then there

exists a θ such that C < 0 where θi, θj ∈ (−π, π] and

θi 6= θj .

Proof: Let, θ = (π − (
θi−θj

2
) − ∆φ). After replacing

θ in C = cos(θi + θ) − cos(θj + θ) we will get C =

−2 sin(
θi−θj

2
) sin(∆φ). It is clear from the expression that

we can make C < 0 by choosing ∆φ properly.

Theorem 2: After executing the LP, square is the optimal

formation for three agents.

Proof: We will prove this by contradiction. Suppose

after executing the LP, the optimal formation is a rectangle.

Let the position and orientation of the three agents be xi0 =
(pi01, pi02) ∈ R

2 and θi0 ∈ (−π, π], respectively, for all

i ∈ {1, 2, 3}. Let agents k and l be on the left edge and

right edge of the rectangle. Without loss of generality, we

can assume Sx0 > Sy0 and ∆d < 1

4
min{(Sx0 − Sy0), |

pio1−pjo1 |}, where i, j ∈ {1, 2, 3}. Let us define a broadcast

control command (θ, ∆d) such that ∆d > 0 is very small.

After broadcasting (∆d, θ), for some θ, the new positions

will be

pi11 = pi01 + ∆d cos(θi0 + θ)

pi12 = pi02 + ∆d sin(θi0 + θ)

The new dimensions of the rectangle are given by Sx1 and

Sy1, where Sx1 = pk11 − pl11. As Sx0 > Sy0 and ∆d <
1

4
min{(Sx0 − Sy0), | pio1 − pjo1 |} then Sy1 < Sx1.

Sx1 = Sx0 + ∆d{cos(θk + θ) − cos(θl + θ)}

= Sx0 + ∆dC
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According to Lemma 1, there always exists θ such that C <

0. As C < 0 then Sx1< Sx0. This implies that there exist a

broadcast command (∆d, θ) such that the maximum length

of the sides of the rectangle can be further reduced. This

implies that the optimal solution of the LP problem for three

agents can not yield a rectangle. It has to be a square.

This proof is valid for Fig. 3(a), 3(b) and 3(d). The proof

for Fig. 3(c) will be taken care of by the next Theorem.

Theorem 3: When the initial conditions are such that only

one agent is on one edge of the longer span and m agents

(m > 1) are on the other edge of the larger span, then the

LP solution leads to a square formation.

Sx

Sy

1

2

i

m-1

m

j

++

- -

ψ
max

ψ
min

ψ
min

+  π
  

ψ
max

+  π
 

(a) (b)

Fig. 4. An illustration for the proof of Theorem 3.

Proof: Consider Fig. 4 where Sx > Sy . The X distance

between agent j and the other m number of agent Sx =
pj1−pi1, where i ∈ {1, . . .m}. Let ∆d < 1

4
(Sx−Sy). After

broadcasting (∆d, θ), the new dimensions of the rectangle

are S
′

x and S
′

y . Since ∆d < 1

4
(Sx − Sy), we have S

′

y < S
′

x.

We can write

S
′

x = pj1 − pi1 + ∆d(cos(θj − θ) − cos(θi − θ))

= Sx + ∆dR sin(Φi + θ) (8)

where Φi =
( θj+θi

2

)

and R is a positive quantity. For a

particular θj we will get a set of angles {Φi} for m agents.

Let Φmax = max{Φi} and Φmin = min{Φi}. Note that θi

is fixed here. Let θj1 contribute to Φmax and θj2 contribute

to Φmin. Then Φmax =
θj1+θi

2
and Φmin =

θj2+θi

2
. So

Φmax − Φmin =
θj1−θj2

2
≤ π. We will get S

′

x < Sx, when

sin(Φi + θ) < 0. The set of angles {Φi} will be within a

bounded envelope of (0, π) as Φmax −Φmin ∈ (0, π). Then

there always exist an angle θ such that all the envelope will

come in the lower two quadrants such that all sin(Φi + θ) <

0. This implies that there S
′

x < Sx. Thus the LP solution

cannot yield a rectangular formation since there will be

another formation which can be achieved by broadcasting

and which will have a smaller value of max{Sx, Sy}.

However, there may not exist a solution when

the number of agents on the opposite edges are

more than two. As an example we can show

that four agents with position and orientation of

((4.004, 3.9128), 0o), ((4.015, 2.8264), 5o),((0.0024, 0.9302)
,−1o) and ((0.0049, 1.9007), 0.7o) will be move to

((5, 4), 5o, ((5, 3), 10o), ((1, 1), 4o), ((1, 2), 5.7o).
Although r decreases from 2.0064 to 2 but Sx 6= Sy. The

reason behind this can be explained as follows:

Let agent j and k be on one edge and a set of agent {i} on

the opposite edge where i ∈ {1, . . . ,m}. For agent j there

will be a set of angles {Φij} and for agent k there will be

a set of angles {Φik}. For agent j, Φmaxj
= max{Φij} and

Φminj
= min{Φij} and for agent k, Φmaxk

= max{Φik}
and Φmink

= min{Φik}. The range of Φmaxj
− Φminj

and Φmaxk
− Φmink

will both be (0, π). Now, the range of

max{{Φij} ∪ {Φij}}−min{{Φij} ∪ {Φij}} will be greater

than (0, π). In which case there does not exist any common

θ such that the X or Y axis distance will be reduced. They

will remain at the same position after executing the LP.

Theorem 4: If the solution of the LP problem yields a

square formation then the number of agents on the boundary

of the square is more than two.

η
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η
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η
3

η
4

A

B

D

C

F

M

N

Fig. 5. An illustration for the proof of Theorem 4.

Proof: We will prove this by contradiction.Let, the

number of agent on the square are two and they are located at

diagonally opposite corners. The other agents are the interior

of the square. For the sake of simplicity we will consider

only three agents. This is given in Fig. 5,where MN is the

Voronoi edge between agents located at A and B. According

to Theorem 1, there always exists (θ, d) such that they can

meet at an unique point on the Voronoi edge (MN ). Let

the unique meeting point be F . Let us define a very small

positive quantity ∆d such that ∆d < min 1

4
{η1, η2, η3, η4}.

After broadcasting (θ, ∆d) the agents will move from their

positions. The new position of agents A and B are C and

D, respectively. The interior agent will remain in the interior

of the square. CD is the new diagonal of the square. We

can show that △ABF ∼ △CDF and so CD‖AB and

CD < AB. This implies that further improvement of the

square is possible. This is a contradiction.

V. ACHIEVING PERFECT CONSENSUS

The solution of the linear programming (LP) problem will

yield control instructions which can be broadcast to all the

agents. The agents will move to a new position or within a

new square region of smaller area. It can be shown that no

further improvement of the performance (reduction in r) can

be achieved by repeated use of the algorithm. In other words,

repeated application of the LP algorithm with the new final

positions will not reduce the value of r any further.

Suppose we represent the LP algorithm as an operation L

on the initial conditions that yields the solution as,

L(xi0, θi0|i = 1, . . . , n) = (u∗

1, u
∗

2, r∗, xif , θif ) (9)

5734



then,

L(xif , θif |i = 1, . . . , n) = (0, 0, r∗, xif , θif ) (10)

That is, there will be no further change in the performance

measure r. In other words, (xif , θif ) is a stationary point so

far as the LP algorithm is concerned.

We can generalize this process by assuming that each step

in the iteration is denoted by the index k, with the first step

in the iteration as k = 1. We call this the unperturbed case as

the solution of the LP is directly implemented by the agents

without any perturbation to the solution.

Theorem 5: In the unperturbed case, for k ≥ 2, u∗

1,k =
u∗

2,k = 0 and xi,k+1 = xi,k; θi,k+1 = θi,k. This means that

repeated use of the LP solution on subsequent positions will

not reduce r.

Proof: We will prove this by contradiction. Suppose

for a given initial condition (x1
i0, θ

1
i0) we have r = r0 as

the measure of proximity of the agents. Applying the LP

algorithm we obtain u1∗
1 , u1∗

2 , r1, and the final positions

as (x1
if , θ1

if ). Now, considering the initial conditions as

(x2
i0, θ

2
i0) = (x1

if , θ1
if ) and applying the LP algorithm let

us assume that we get u2∗
1 6= 0, u2∗

2 6= 0, r2 < r1,

and the final positions as (x2
if , θ2

if ). Then, let us define

ûi = u1∗
i + u2∗

i , i = 1, 2. It can be shown that if in the first

step ûi is used it would yield a r = r2 < r1, which implies

that r1 was not a solution to the LP. This is a contradiction.

Now, consider a perturbed case where, the agents receive

a broadcast command containing the LP solution and a

command to randomly perturb the final orientation angle

after the LP solution has been implemented. This process

is shown in Figure 6, where, the orientation angle, after

implementing the LP solution is perturbed by each agent

as follows,

θ̂i,k+1 = θi,k+1 + νi,k+1 (11)

where, the perturbation angle νi,k+1 is given by νi,k+1 =
ηiβ. ηi is a random number generated by each agent inde-

pendently and β is a scaling angle which is common to all

the agents. The scaling angle can be set manually and η can

be generated through various distributions. Here, we consider

both normal distribution and uniform distribution.
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Fig. 6. The perturbed case

VI. ACHIEVING POSITIONAL CONSENSUS AT DESIRED

POINT

In the previous section, we consider the problem of posi-

tional consensus, but did not have control over at which the

agents can meet. Suppose we have a pre-specified meeting

point then we can achieve this by slightly modifying the

previous formulation. In this modified form we define the

meeting point as the center of the agent formation and is

denoted by (z1, z2). Now the input to the LP are the initial

positions, initial orientation and the meeting point. We can

formulate the modified linear programming problem as,

Minimize r

Subject to

−r ≤ pi1 + u1 cos θi0 − u2 sin θi0 − z1 ≤ r (12)

−r ≤ pi2 + u1 sin θi0 + u2 cos θi0 − z2 ≤ r (13)

i = 1, . . . , n.

r ≥ 0 (14)

The above is a linear programming problem with the

decision vector as (r, u1, u2). Note that the number of

decision variables has reduced over the previous formula.

In the next section we will give simulations results.

VII. SIMULATION RESULTS

In the first set of simulations we start with three

agents. Initially we consider ((1, 1), 45o), ((5, 4), 135o), and

((2, 6),−45o) as the initial position and orientation angle

of the three agents. Using the perturbation technique, with

normal distribution for η and a scaling angle of β = 120o,

the agents converge to a point after a few iterations (see

Fig. 7). The variation in the x and y coordinates of the

three agents against the number of iterations are also shown.

The convergence criterion for terminating the simulation was

when the value of r became less that 2×10−4. We continue
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(a) (b)

Fig. 7. Consensus with three agents (a) Trajectory of the agents (b)
Reduction in r with iteration

with our study with three agents. In Fig. 8 we plot the average

number of iterations needed, and the average length of path

traveled by each agent, to achieve convergence, as a function

of the scaling angle β for the two cases when the random

number η is generated by a uniform distribution or by a

normal distribution. These results are given by averaging

over 200 trials. We also plot the standard deviations. From

these results we can conclude that using larger scaling angle

reduces r faster than when the scaling angles are small. Also,

using normal distribution gives better results than uniform

distribution.

Next, we consider larger number of agents (10 and 15).

We use normal distribution and scaling angle of 180o for

the perturbation. The convergence criterion is also relaxed
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Fig. 8. Convergence results (a) Average number of iterations (b) Average
length of path (c) Standard deviations for number of iterations: Uniform
distribution (d) Standard deviations for number of iterations: Normal dis-
tribution (e) Standard deviations for path length: Uniform distribution (f)
Standard deviations for path length: Normal distribution

to r ≤ 0.1. The results are shown in Figure 9. These results

show that the computation time and the number of iterations

rises with the number of agents. This is expected since

the complexity of the algorithm is same as that of the LP

algorithm.

To demonstrate the result that the agents can be meet

any pre-specified point, we consider same set of initial

position and orientation angle( ((1, 1), 45o), ((5, 4), 135o),
and ((2, 6),−45o) ) of the three agents. The meeting point

we set as origin (0, 0). The result is illustrated in Fig. 10.

VIII. CONCLUSIONS

In this paper we considered the problem of controlling a

group of agents to converge at a location using only broadcast

control input (identical control) for all the agents. The results

shows that it is possible for a group of agents to meet at a

location by sending them a sequence of simple and exactly

identical instruction. The location point can be pre-specified.

We were able to show that introducing a perturbation in

the broadcast command helped to achieve point convergence

which was not possible earlier. We also proposed a novel

linear programming based solution approach that is compu-

tationally less intensive than the SOCP technique proposed in

the literature. There are several opportunities for future work

in this direction. It seems possible to extend this work to

consider process noise, sensor uncertainty, and the presence

of obstacles in the environment. Moreover, the algorithm can
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Fig. 9. Convergence results (a) r vs number of iterations for 10 agents
(b) Trajectory for 10 agents (c) r vs number of iterations for 15 agents (d)
Trajectory for 15 agents
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Fig. 10. Consensus with three agents at specified point (a) Trajectory of
the agents (b) Reduction in r with iteration

most probably shown to be robust to failures in terms of

packet loss or failure of agents.
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