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Abstract— There are currently 134 ethanol biorefineries in
the United States with a production capacity of nearly 7.2 billion
gallons per year, with an additional 6.2 billion gals per year
capacity under the construction [1]. Approximately two thirds
of these are dry-mill production facilities.

Fermentation is a key biorefining process and provides
the greatest opportunity for increasing ethanol production.
Effective control of the fermentation process is therefore of
critical importance to the economic viability of the ethanol
production. While this has been the impetus for an increasing
interest from researchers in academia and industry, successful
control strategies have proven difficult to develop.

In this paper we report successful control of ethanol fer-
mentation process in an industrial setting using a parametric
nonlinear model predictive control technology. We demonstrate
that, using empirical process data and fundamental process
knowledge, accurate and numerically efficient models of the
fermentation process can be built that enable an optimization-
based control of the complex fermentation process. The control
strategy is briefly described and representative plots indicating
model quality and controller performance are presented.

I. INTRODUCTION

There are currently 134 ethanol biorefineries in the United
States with a production capacity of nearly 7.2 billion gallons
per year, with an additional 6.2 billion gals per year capacity
under the construction [1]. Approximately 2/3 of these are
dry-mill production facilities.

In the biorefinery, corn is provided to a milling and cook-
ing process, where it is broken down to increase the surface
area to volume ratio. This increase in surface area allows
for sufficient interaction with water to achieve a solution
of fermentable sugars, known as beer mash. The mash is
heated to promote an increase in the amount of biomass-
water contact in solution and to increase the separation of
carbohydrate biomass from the non-carbohydrate biomass.

Enzyme (alpha-amylase) is typically added in the lique-
faction section to promote further breakdown of the long-
chained carbohydrate polymers. The mash is then sent to
a fermentation process, where several fermentation tanks
operate to ferment the mash slurry.

The output from the fermentation process is sent to a
distillation process to separate ethanol from water, carbon
dioxide, and non-fermentable solids (stillage Distillers Grain
with solubles, DGS). The ethanol is further dehydrated to
moisture levels less than 5% (by a processing unit called a
molecular sieve), and denatured (to prevent human consump-
tion). Stillage (non-fermentable solids and yeast residue), the
heaviest output of the distillation units, is sent to stillage
processing for further development of co-products from the
biofuel production process.

A. Fermentation Process

The fermentation process is the heart and soul of an
ethanol production facility and provides the greatest oppor-
tunity for increasing ethanol production. The fermentation
process uses a living organism (yeast) to convert fermentable
sugar (e.g., dextrose and/or glucose) to ethanol with a by-
product of carbon dioxide and energy. The typical ethanol
conversion is given by the following equation [2]:

Corn(56lbs) → Starch(32lbs) + H2O + enzymes
→ Sugar(36lbs) + yeast → Ethanol(17.6lbs)
+CO2(18.4lbs) + heat(6000BTU) + DDGS(17lbs)

Figure 1 shows a typical plant layout for the fermentation
section of a fuel ethanol production facility, while Figure 2
shows typical Ethanol and carbohydrate concentrations for
fermentation batches. The fuel ethanol fermentation process
has several distinct components.

1) It is a fed-batch operation. A typical fermentation batch
time is between 45 and 60 hours. The fermentation
tank is being filled for 20-25% of this time.

2) Mash (a mixture of water and milled corn) is pumped
to the fermenter at a rate of 200-800 GPM depending
on plant size. The mash has been treated with an
enzyme called alpha-amylase (AA) that is used to
assist in breaking down the corn starch to simpler
sugars.

3) Yeast is purchased in dry or liquid form and is prepared
for addition to the fermenter by mixing it with diluted
mash in a propagation tank. This yeast mixture is
added to the fermenter as it is being filled with mash.

4) Another enzyme, glucoamylase (GA), is added to the
fermentation tank during fill time to further break down
sugars to glucose. Other ingredients are also added that
are necessary for proper yeast growth - e.g. a nitrogen
source, anti-infection source.

5) The system is very sensitive to temperature. The en-
zymes prefer higher temperatures whereas the yeast
prefers lower temperatures.

6) The plant lab typically tests several items at various
times throughout the batch to measure the fermentation
progress; (a) Temperature, (b) pH, (c) Sugars: DP4,
DP3, Maltose and Glucose, (d) Byproducts: Lactic
acid, Acetic acid and Glycerol, and (e) Ethanol.

Enzymes are used in the fermentation process to break
down the carbohydrates of the corn kernels down to fer-
mentable sugars, namely glucose. Native starch as found in
the ethanol industry’s predominate feed supply, corn, is a
large chained polymer made up of many glucose molecules.
These polymers can be straight-chained molecules (Amy-
lose) or branched chained (Amylopectin). North American
corn is typically made of 25% Amylose and 75% Amy-
lopectin [3]. α-Amylase (AA) is used to hydrolyze the linear
bonds creating shorter-chained starch polymers, refered to as
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Figure 1: Typical Fuel Ethanol Fermentation Layout.

Figure 2: Typical fermentation concentrations.

dextrins. This enzyme is usually added in the liquefaction
section of the plant. Glucoamylase is added directly to the
fermentation tank resulting in simultaneous saccharification
(breaking down of the corn starch) and fermentation (conver-
sion if dextrose to ethanol). In the fuel ethanol industry, the
addition of glucoamylase is an important component in the
fermentation process as it can be used to regulate the amount
of fermentable sugars present in the yeast/mash mixture.

While there are several products of the fermentation pro-
cess, the main product of interest is ethanol. Other products,
such as the acids, can indicate a problem within the fermenter
if produced in large amounts. A key point of the process is
that not only is the yeast present, but it is active and repro-
ducing. Active yeast has the greatest capacity for producing
ethanol. Yeast cells go through four phases of growth in the
fermentation process:

1) Lag phase - yeast adapts to the mash environment.
2) Acceleration phase - adapted yeast cells begin to

reproduce
3) Exponential growth phase - yeast cells grow at their

fastest rate, producing the greatest amount of alcohol
4) Deceleration phase - the amount of actively growing

yeast begins to decline, slowing the alcohol conversion.

This cell growth pattern is not specific to ethanol production
and has been observed in other fermentation processes [4].

B. Bioreactor Control - Brief Survey

Spurred by the current increase in fuel ethanol production,
control of bioreactors has become an area of active research
over the past few years. An optimal control approach for
generalized bioreactors is proposed in [5] where the con-
troller performance is demonstrated using simulations of a
Penicillin G fed-batch bioreactor. An optimization approach
on a simulation of a fed-batch ethanol fermentation process
is studied in [6]. The formulated problem is solved using
an Iterative Dynamic Programming method. A nonlinear
multivariable predictive control for a continuous extractive
alcoholic fermentation process is proposed in [7]. Simulation
study (using an experimentally validated model) is used
to test controller performance. An overview of controlling
nutrient supply for the optimization of fed-batch fermentation
is provided in [8]. Control methodologies examined include
fuzzy control, inferential control and the use of neural net-
works. A methodology for the simultaneous optimization and
control of beer fermentation is described in [9]. Temperature
profiles were calculated and tested on a laboratory scale
bioreactor. An optimization-based approach for developing
optimal temperature profiles of a batch fermentation process
is proposed in [10]. The methodology is tested on a simula-
tion of a beer fermentation process.

The approach taken in this paper differs from those found
in the literature in that: (a) numerically efficient parametric
nonlinear models are used in an optimization-based approach
to the control of ethanol fermentation process [11], (b) con-
strained optimization is used to build numerically efficient
nonlinear process models using both empirical data and first-
principles knowledge of the process [12], (c) the control
strategy is based on the optimization of a key intrinsic
component of the fermentation process in order to maximize
the desired product, ethanol, and (d) control methodology
has been applied to industrial-scale ethanol production with
production capacity of up to 100 million gallons of ethanol
per year.

II. NONLINEAR MODEL PREDICTIVE CONTROL FOR
ETHANOL FERMENTATION

The key to producing ethanol is to maintain the healthy
growth of yeast. Saccharomyces cerevisiae, the yeast most
commonly used in the fermentation process, reproduces
by division. The cell produces buds which become new
independent cells. Fermentation due to cell reproduction is an
order of magnitude greater than non-reproducing cells [13].
Therefore, a successful control strategy must ensure yeast
growth by optimizing the growth conditions in the fermen-
tation tank. As most ethanol production facilities operate
with simultaneous sacchrification and fermentation, the dex-
trose levels in the fermentation tank can be controlled by
the concentration of the Glucoamylase enzyme. Therefore,
we implemented a nonlinear receding-horizon controller in
which the fermentation temperature and enzyme flow to
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the fermenter are the manipulated variables, and the yeast
growth and dextrose concentrations in the fermenter are the
controlled variables. Note that we treated the concentration
of ethanol, the amount of dextrins entering the fermenter, and
the volume of mash in the fermenter as disturbance variables,
and designed the nonlinear MPC controller such that it
could appropriately respond to the changes in these variables.
Predictive use of projections of ethanol concentration over
prediction horizon enables the nonlinear controller to take
appropriate actions that ensure maximum ethanol production.

III. KINETIC MODEL FOR FUEL ETHANOL
FERMENTATION

Fermentation process models have become a research area
of increasing significance due to the desire to optimize and
control these process units. A simplified fermentation model
based on neural networks is presented in [15]. A method-
ology for estimating parameters of ethanol production from
dextrose using high temperature tolerant yeast is described
in [16]. A model based on concentration of dissolved oxygen
and carbon dioxide is proposed in [17]. This model did not
include any enzyme conversions. A detailed model of the
kinetics included in the production of dextrose through a
series of enzymatic reactions is presented in [18]. In a more
recent study, a metabolic model is used to predict glycerol
production in the fermentation process [19].

Despite significant research efforts, a kinetic model of the
fermentation process that captures the relevant details for
an industrial scale nonlinear MPC implementation proved
a significant challenge. In particular, an appropriate model
for MPC implementation must incorporate all aspects of
an industrial process including: mash flow to fermenter,
solids in mash flow, addition of yeast from propagation tank,
addition of glucoamylase enzyme, fermentation temperature,
yeast growth, glucose creation and depletion, starch depletion
(sugar source - dextrin), and ethanol production. We used a
parametric dynamic model of the following type, shown in
Figure 3, to capture the process behavior1:

X(k + 1) = F (X(k), U(k), P (k)) (1)
Y (k) = X(k) (2)

where k is the discrete time index, X ∈ R7×1 is the state
vector (in this case the same as the output vector):
• x1/y1: volume of fermenter,
• x2/y2: concentration of lag yeast (yeast not yet active),
• x3/y3: concentration of active yeast,
• x4/y4: concentration of convertible sugars (glucose,

dextrose),

1While the details of the proprietary models developed during this project
are not disclosed here, it is important to point out that they are carefully
constructed parametric models in which, (a) model structure is based on the
first-principles process model, and (b) model parameters are static nonlinear
mappings identified through constrained optimization using actual plant
data. The constraints for the constrained training of the model parameters
are also derived from first-principles knowledge of the process.

• x5/y5: concentration of ethanol,
• x6/y6: concentration of dextrin (longer chain sugars -

DP2, DP3, etc.)
• x7/y7: concentration of glucoamylase,

U ∈ R4×1 is the input vector:
• u1: flow of mash slurry,
• u2: flow from propagation tank,
• u3: enzyme flow.
• u4: temperature.

and, P ∈ R11×1 is the parameter vector:
• p1: amount of yeast in propagation tank,
• p2: fermentable sugars in mash feed,
• p3: fermentable sugars in propagation tank at drop,
• p4: ethanol in propagation tank,
• p5: ethanol in feed mash,
• p6: sugar concentration in feed stream,
• p7: conversion rate for lag yeast,
• p8: growth rate for active yeast,
• p9: conversion rate of dextrins to glucose by Glucoamy-

lase,
• p10: conversion rate of sugar,
• p11: conversion rate of ethanol,

Of the parameters listed above, parameters p7-p11, are mod-
eled as neural networks via a constrained training procedure
using empirical process data and knowledge of the parameter
variations as a function of process inputs [20].

The computational efficiency of the receding horizon
control algorithm requires efficient use of the process model
of Eqs. (1)-(2) for prediction calculations. For this purpose
we used the following nonlinear discrete structure that has
its roots in the theory of Taylor series expansion around
trajectories:

yj (k) = yj (k−1) +

Nu∑
i=1

δyj,i(k) (3)

δyj,i(k) = aji,1(k)δyj,i(k−1) + aji,2(k)δyj,i(k−2) + · · ·
+ bji,1(k)δui(k−1−∆ji)

+ bji,2(k)δui(k−2−∆ji) + · · ·

aji,l(k) = αji,l

(
u1(k), · · · , uNu

(k), y1(k), · · · , yNy
(k)

)
bji,l(k) = βji,l

(
u1(k), · · · , uNu

(k), y1(k), · · · , yNy
(k)

)
where Nu is the number of inputs (four for this problem),
Ny is the number of outputs (seven in this problem), y

j
(k) is

the j-th output (control variable), j ∈ {1, · · · , Ny}, at time
k, δyj,i(k) is the incremental change in the output yj from
time step k − 1 to k due to the incremental change in input
(manipulated or disturbance variable) u

i
, i ∈ {1, · · · , Nu},

and ∆
ji

is the delay. Note that a
ji,l

(·) and b
ji,l

(·) are
appropriately defined functions of the operating condition of
the process that offer degrees of freedom in describing the
effect of the i-th input on the j-th output.
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Figure 3: Block diagram of the parametric model for fermen-
tation

We have developed robust algorithms for the identification
of the nonlinear mappings α

ji,l
(·) and β

ji,2(·). In particular,
extrapolating gain-constrained neural networks are shown to
be capable of using both process data and first-principles
knowledge in developing such nonlinear mappings [14], [11].

Some key features of the parametric nonlinear model of
Eq. (3) are:

1) It offers good approximation capability not only locally
but also over the prediction horizon (normally selected
to be the time needed to reach the steady-state).

2) It enables engineers and operators to easily understand,
develop, and maintain the models.

3) It allows fast and stable execution of the real-time non-
linear optimization problem as the functions α

ji,l
(·)

and β
ji,l

(·) are smoothly differentiable functions.

IV. PERFORMANCE RESULTS

In this section we discuss some representative results from
the application of our parametric nonlinear MPC technology
to the control of ethanol fermentation in an industrial setting.

To our knowledge, prior to our work, there has been no
reliable methods for online analysis of key fermentation
variables, particularly ethanol concentration and dextrose
concentration. We have used our parametric hybrid modeling
methodology to develop effective virtual analyzers for pro-
cess variables that are needed in an MPC control strategy.

Figure 4 demonstrates the performance of the ethanol
concentration model developed using our parametric hybrid
modeling methodology versus plant HPLC lab results. The
ethanol concentration model provides accurate prediction of
ethanol concentration at a frequency needed by the nonlinear
MPC controller. In the reported example, lab samples are
available only 5 times throughout approximately 50 hours of
batch operation.

Figure 5 demonstrates the performance of the dextrose
concentration model developed using our parametric hybrid
modeling methodology versus plant HPLC lab results. The
dextrose concentration model provides accurate prediction of
sugar concentration at a frequency needed by the nonlinear
MPC controller. Again, lab samples are available only 5
times throughout the batch operation.

Figure 4: Ethanol VOA comparison to HPLC Data

Figure 5: Dextrose VOA comparison to HPLC Data

Figure 6 demonstrates the performance summary for an
ethanol fermentation process prior to the application of the
nonlinear MPC controller. A total of 53 batches are used to
generate the histogram of Fig. 6. As the figure indicates,
the mean for the % ethanol produced at the end of the
fermentation is 12.214 with the standard deviation of 0.564.

Figure 7 reflects the results after the introduction of the
nonlinear MPC controller. A total of 57 batches are used to
generate the histogram of Fig. 7. After the introduction of
the nonlinear model predictive control strategy, the mean for
the final ethanol production is increased to 12.933, while the
standard deviation is reduced to 0.430. In this case a 5.9%
increase in ethanol production is recorded.

The control strategy described here is applied to several
industrial units and the results reported are typical of perfor-
mance benefits in these applications.

V. CONCLUSIONS

Accurate and computationally efficient models of the pro-
cess are key to the success of a nonlinear MPC solution es-
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Figure 6: Ethanol production performance without nonlinear
MPC

Figure 7: Ethanol production performance with nonlinear
MPC

pecially in a complex batch fermentation process. We report
successful implementation of an optimization-based control
strategy for the ethanol fermentation process in an industrial
setting using a parametric hybrid modeling technology that
utilizes both process data and first-principles knowledge of
the process. Representative plots indicating the quality of the
models and controller performance are reported.
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