
 

 

 

Recursive estimation on spatially rearranged data for dynamic order 
determination and nonlinear component detection 

Ming Su and R. Russell Rhinehart 
  

Abstract—Determination of dynamic order of variables is the 
first step in system identification. Order determination is in 
general difficult for nonlinear system identification due to the 
interaction of system structure (unknown orders) and unknown 
nonlinearity.  If the attenuation of unknown nonlinearity is 
possible, different system structures could then be fairly 
compared. Guided by this concept, this work uses a recursive 
estimation to reduce the effect of the underlying nonlinearity on 
parameter variation, and proposes a sequential nearest 
neighbor rearrangement to enhance the reduction.  The “best” 
dynamic order will minimize final prediction error with the 
consideration of the locality of the model parameters. In 
addition to determining dynamic orders, the sequential nearest 
neighbor rearrangement is also extended to detect nonlinear 
components.  

 

I. INTRODUCTION 

he first step in system identification is to determine the 
dynamic order of the model. Equation (1) is a generic 
expression of a single input and single output dynamic 

system with dynamic orders ny, nu, pure time delay d, and an 
additive disturbance e (t). 
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where, the estimation of ny, nu and d are expected before 
model coefficients values are estimated. It is also desired to 
know if f is linear or nonlinear with respect to its input 
arguments. 
 Dynamic order determination is well developed for linear 
systems where a preliminary analysis using autocorrelation or 
partial autocorrelation [1] is able to estimate dynamic orders. 
For static linear systems, subset selection methods [2] are 
often used to find influential regressors.  Analysis of variance 
(ANOVA) can also be used for regressor analysis [3]. 
 For nonlinear dynamic systems with unknown 
nonlinearities, there is no such general method; and order 
analysis falls into two categories. One accepts either known 
or assumed nonlinear structures.  There are various choices of 
nonlinear structures such as bilinear structures, Wiener, 
Hammerstein structures, or their combinations. With known 
nonlinear structures, analysis could be conducted rigorously. 

 
This work was supported in part by the Edward E. and Helen Turner 

Bartlett Foundation. 
M. Su is with the School of Chemical Engineering, Oklahoma State 

University, Stillwater, OK 74078-5021 USA (ming.su@okstate.edu).  
R. Russell Rhinehart is with the School of Chemical Engineering, 

Oklahoma State University, Stillwater, OK 74078-5021 USA 
(rrr@okstate.edu).  

 Another approach does not depend on a predefined 
nonlinear structure. The geometric method [4], False Nearest 
Neighbor [5], and Lipschitz Quotient [6] all belong to this 
category. These methods can be roughly argued upon the 
first-order Taylor expansion.  One common problem in these 
generic methods is their sensitivity to noise. 
  In this work, a generic method is proposed to determine 
the dynamic orders of stochastic dynamic systems from data. 
In addition, the order determination technique can be 
extended to detect the nonlinear components, which provides 
insights on the underlying structure of the model. 
 

II. RECURSIVE ESTIMATION ON  SPATIALLY ORDERED DATA 

The aim of this work is to detangle nonlinearity and order. 
In this work, the f in Equation (1) is assumed to be nonlinear; 
but its functional form is unknown, and adaptive linear 
models are used to treat nonlinearity. 
  

A. Recursive estimation 
The model in Equation (1) is described by the following 

model in Equation (2) in a linear format.  
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where model parameters c(t), ai(t) and bi(t) are not constants. 
They could be considered as either functions of time or 
viewed as functions of states. Equation (2) is represented in a 
compact form as: 
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where x(t) is the regressor vector and θ(t) is the parameter 
vector. The estimation of θ(t) can be approached in two ways. 
Windowing or weighting [7] techniques can estimate model 
parameters locally. Another approach is to model the 
parameters stochastically (such as random walk) and update 
them using a discrete Kalman filter [8]. There are discussions 
on high-order stochastic models with time varying parameters 
[9].  If the covariance matrix of model parameters is known a 
prior, the stochastic modeling is preferred. Otherwise, a 
windowing or weighting technique would be a proper choice.  

The equations [7] for estimating θ(t)  by an exponential 
weighting  are: 
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where  is the vector of parameter estimates at t-1. (ˆ 1t −θ )

( )ŷ t  is the prediction of y(t) at time t using (ˆ 1t )−θ

( )t
. K(t) is 

the gain used to correct  to  based on the 

prediction error. P(t) records the covariance of 

(ˆ 1t −θ ) θ̂

( )ˆ tθ . 
 The tuning factor is the ‘forgetting factor’, α, which has to 
be chosen for a balanced performance for nonlinearity 
adaptation speed and parameter estimation precision. 
  

A. Spatial ordering 
In recursive estimation precision improves if α is increased, 

but also if the nonlinearity is reduced.  Unfortunately, the 
nonlinearity is inherited in the data and solely determined by 
the nature of the system, which users are unable to change at 
all. However, the nonlinearity is in fact not really the 
difficulty; but the source of the difficulty: parameter variation. 
Therefore, it is desired to minimize the parameter variation 
directly.   
 The time-varying parameters in Equation (2) could be 
defined as functions of states as  
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the exact functional form of ai is unknown. If its continuity 
and differentiability are assumed and its high order 
derivatives are negligible, the difference between ai(k-1) and 
ai(k) could be approximated by: 
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If the first-order derivative is bounded by a constant Gai, the 
minimum of  ||ai(k-1) - ai(k)|| is bounded by: 
 

( ) ( ) ( ) ( )min 1 min 1i i ia k a k Ga k k− − ≤ − −x x      (7)  

 
If x(k-1) is known, x(k) is chosen  to be the nearest neighbor 
to x(k-1). The selection procedure is then termed as 
Sequential Nearest Neighbor Rearrangement (SNNR). The 
resultant regressor and output are labeled as xsnnr and ysnnr. 
The rearrangement starts letting xsnnr(1) = x(1) and ysnnr(1) = 

y(1). If the nearest neighbor of  xsnnr(1) is found (at time t)), 
and x(t) and y(t) are then added to the rearranged data set by 
letting xsnnr(2) = x(t) and ysnnr(2) = y(t). Then the nearest 
neighbor of xsnnr(2) is found and added to the rearranged data 
set. The procedure continues until the xsnnr(N) is found.  
 By conducting the SNNR, the raw data in the time-ordered 
sequence is reorganized by state or “spatial” order, in order to 
reduce the parameter variation, which enables the choice of a 
larger forgetting factor, α, and in turn improves the parameter 
estimates. The impact of the improved parameter estimates on 
order determination will be demonstrated in the later section. 
 

III. DYNAMIC ORDER DETERMINATION 

A. Model comparison criterion 
The methodology for determination of dynamic orders is to 

try different sets of ny, nu and d and find the best values. 
Given a set of ny, nu and d, regressors are determined, first on 
the original time-sequenced data, x(t). A SNNR is then 
conducted on x(t)  and y(t) producing xsnnr(t) and ysnnr(t), to 
which an exponential weighting recursive estimation will be 
applied. The quality of the hypothesized ny, nu and d will 
then be evaluated by a criterion considering both fitting and 
generalization performance.  In this work, the final prediction 
error (FPE) metric is chosen and modified. The original FPE 
[10] is defined for a linear model with  N samples: 
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Equation (8) can be interpreted as a weighted mean squared 
error where the weighting is determined by N, the size of data 
set as well as the model complexity, np, the number of 
parameters. The FPE criterion results from the performance 
index: 
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 In exponential weighting recursive estimation, the 
definition of FPE should be modified according the 
exponentially weighted performance index 
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where  Vk is varying and progressively includes more data.  
The weighting factor, αk-t would become very small on its 
way back to t=1 that makes the remote error inconsequential 
in estimating θk. A critical number L is hence introduced to 
decompose Vk : 
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where, Vk is approximated by its recent portion. By this 
approximation, the number of data involved in Vk is a 
constant, L. Subsequently, the FPE based on Vk is redefined 
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where, the implicit constraints on t by k-L+1≥1 and k≤N 
bound k between L and N. The average of FPE(k) over all k is 
then defined as the performance criterion for the Equation (2) 
recursively estimated by Equations (4). 
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where, the double sum is decomposed into three parts after 
being switched 
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 The recursive estimation works well if parameter variation 
within a local range is assumed to be small. 
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which in turn results in the following approximation 
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The double sum is then simplified to  
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 If N is large. the second part dominates, which results in the 
further simplified average FPE as:  
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The FPE in Equation (18) is similar to the original one in 
Equation (9), and has the same interpretation as a weighted 
prediction error, except that the weighting is different. In fact, 
only the term including np makes a difference. Hence, a 

simplified criterion termed as pseudo FPE in Equation (19) is 
used in this work.  In the following elaboration, the pseudo 
FPE will continue to be denoted as FPE 
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The value of L is related to the decomposition (11) and  
determined by considering αL small enough to be negligible. 
In this work, L is determined as below  
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here (1-α)-1 is termed as memory time constant [10]. 

. Order determination procedure 
, their FPEs could be 

ev

haustive approach is expensive. Suboptimal 
m

dure starts with user’s input max_ny, max_nu 
an

rmine ny, nu and d 

w
Interpreted as a time-constant in a first order process, L, the 
window length could then be viewed as the settling time. 

 
B
Given several sets of ny, nu and d
aluated. The set with the minimum FPE is then reported as 

the determined order. The determination procedure could be 
conducted in an exhaustive approach for all possible 
combinations of different ny, nu and d given pre-defined 
max_ny, max_nu and max_d are pre-defined for maximum ny, 
nu and d. 

The ex
ethods using subset selection procedure exists for linear 

systems. A subset selection procedure is always combined 
with orthogonalization to remove the redundant components 
among regressors. In a nonlinear system with unknown 
nonlinearity, orthogonalization is not possible. However, it 
does not mean that the subset selection can not be 
implemented. In this project, a forward selection procedure 
combing the above mentioned recursive estimation on 
spatially ordered data is proposed to find important 
regressors.  

The proce
d max_d as in an exhaustive approach. Then, a number of 

candidate regressors are generated and denoted as [x1 x2 
x3… xm xrandom]. xrandom is a random regressor that 
presumably contains no meaningful information to predict 
output. At first, m+1 FPEs are computed for (y,[x1]), (y, 
[x2]), … , (y, [xm]), (y, [xrandom]), where y is the output and 
xi in bracket is the regressor in consideration.  The regressor 
with the minimum FPE is selected. If x2, for instance, is the 
first selected regressor, there will be other m FPEs to be 
evaluated for  (y, [x2, x1]), (y, [x2, x3]), …, (y, [x2, xm]), (y, 
[x2, xrandom]). Each bracket contains a combination of x2 
(first selected) with the rest of unselected ones. The regressor 
combination with the minimum FPE is then kept. The 
selection continues until a minimum FPE goes up or the 
xrandom is selected. The injection of a random regressor is 
mentioned in [2] as a stopping criterion. The selection of 
xrandom signifies that the rest of candidates are less influential 
on y than a presumably irrelevant one.  

The forward selection does not dete
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IV. NONLINEAR COMPONENT DETECTION 

nique to 
ob

rectly. Sometimes, it creates absences between regressors. 
For instance, a forward selection could end up with a set of 
regressors such as [y(t-1) y(t-4) u(t-1) u(t-3)].  In this example, 
the missing regressors, y(t-2), y(t-3) and u(t-2), should not be 
included, because they provide redundant information, and 
their inclusion increases the model complexity.  However, in 
this work, for programming convenience, absent regressors 
will be included using maximum ny, nu and d values due to 
the forward selection.   

 

This section extends the above mentioned tech
tain more information on the system to be modeled, 

especially to discover the regressors that are affecting the 
output nonlinearly. The following example serves to 
demonstrate the concept of nonlinear components 

 
( ) ( ) ( ) ( )( ) ( ) ( )1 2 1 2.5 1y t y t y t y t u t e t= − − − + + − +   (21) 

 
here, u(t-1) has a linear affect on y(t) while y(t-1) and y(t-2) w

affect y(t) nonlinearly. In general, if Equation (3) could be 
represented by a linear model plus a nonlinear model as 
below, then the regressors, xk+1,.., xm, in function g are 
considered as nonlinear components 
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Such a decomposition of f is useful. Not only are some 

n 

j

 
insights on the model structure gained, it also directly results 
in the reduction of modeling effort. For instance, if a neural 
network model is used, users will get a smaller network for g 
plus a linear model, rather than a big network model for f.  
 The proposed method to approach this problem is based o
the result from the order determination to find out what 
regressors are included in the function g in Equation (22). In 
order to do that, the SNNR will be used again but in a subtle 
way. As discussed above, the purpose of conducting SNNR is 
to reduce parameter variation so that the recursive estimation 
is able to capture the variation better, which in turn results in a 
smaller FPE. The SNNR mentioned above rearranges data 
based on all the regressors in order to compare different sets 
of ny, nu and d. Given the decomposed structure in Equation 
(22), the corresponding time varying linear format for f is 
then described as: 
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here a (i=1,…,k)  is constant while a (j=k+1,…,m) is time 

ING AND DISCUSSION 

A. 
 in this work to test the proposed order 

d

Model 1 [11]: 

w i j
varying. Further more, the variation of aj is determined by 
regressor xj (j=k+1,…,m) only. Therefore, in Equation (23), 
the nonlinear regressor xj is responsible for parameter 
variation. It then is expected that a SNNR on [xk+1,…,xm] 
would result in the minimum FPE, while a SNNR on [x1,…,xk] 

should have no positive impact on FPE. In this work, the 
detection of nonlinear regressors simply exhausts all possible 
combinations of a set of identified regressors. The 
combination with minimum FPE is reported as including 
nonlinear components.  

V. TEST

Testing models 
Nine models are used
etermination and nonlinear component detection methods. 
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odel 3 [11]:  

1y t y t−
= +

M
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1y t y−
= +

2 2 1 1 1

1 2 3
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y t e t
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odel 4 [11]: M
( ) ( ) ( )( ) ( )( ) ( )1 1 0.8 1 0.5u t u t e t+ − − − + +  0.8y t y t= −

 
odel 5: M
( ) ( ) ( ) (1 0.6 2 0.4 1y t u t )0.8y t y t= − + − + −  

 
odel 6 [4]: M
( ) ( ) ( )( )1 1y t4 1y t y t= − − −  

 
odel 7: M
( ) ( ) ( )( ) ( )4y t y= 1 1 1t y t e t− − − +  

 
odel 8 [4]: M
( ) 1 1.4y t y ( ) ( )21 0.3 2t y t= − − + −  

 
odel 9: 

 
The first four models are nonlinear. Model 5 is a linear 

B. Testing on the impact of SNNR 
et of tests is conducted 

to

M
( ) 1 1y t = − ( ) ( ) ( )2.4 1 0.3 2y t y t e t− + − +  

 
model used to reveal some interesting observations. Models 6 
and 8 are deterministic nonlinear models mentioned in [4]. 
Models 7 and 9 are the stochastic version of Models 6 and 8.  
 

Assuming the order is known, this s
 reveal the impact of SNNR on recursive estimation 

compared to using of the original data in time order. The 
comparison results are summarized in Table 1, where further 

4401



  

 

TABLE I 
MSE DUE TO TIME AND SPATIAL ORDERIING 

Model Time Order 
Spatial Order 

comparisons on different norms are also provided. The 
numbers in Table 1 is the mean squared error (MSE). 
 

1-norm 2-  norm 

1 0.0692 

norm ∞

0.0728 0.0751 0.0748 

2 0.0740 0.0351 0.0365 0.0348 

3 0.0052 0.0024 0.0026 0.0024 

4 0.0244 0.0164 0.0164 0.0158 

5 0.0242 0.0236 0.0240 0.0238 
 

s observed in Table 1, SNNR is able to reduce the MSE 
si

tests 
su

ight increase of MSE in the Model test 1 is interesting. 
R

lso be concluded that that the choice of norm is 
a

C. Testing on dynamic order determination 
he dynamic 

or

A
gnificantly in Model 2, 3 and 4 tests. A slight increase of  

MSE is however observed in the Model 1 test. In the Model 5 
test, the impact of SNNR is trivial and it could be argued that 
there is no statistically significant difference. It is evident that 
the strength of the influence of SNNR depends on the level of 
nonlinearity. It then brings forth one possible usage of the 
SNNR to tell if a given system is linear or nonlinear.  

The improvements observed in Model 2, 3 and 4 
bstantiate the hypothesis that parameter variation slows 

down. 
The sl
egardless what norm is used, the SNNR consistently 

produces a slightly higher MSE. The consistent impact of 
SNNR suggests the existence of nonlinearity. The small 
magnitude of the increase MSE implies a low level of 
nonlinearity. The nonlinearity in Model 1 is merely due to the 
Sine functions that are not terribly nonlinear when the input is 
small. The slight increase in MSE is actually due to the 
inclusion of y(t-1) and y(t-2) when SNNR is operated. An 
ideal SNNR should be based on u(t-1) since it is the only 
nonlinear regressor. It then offers the opportunity in nonlinear 
component detection to discover which regressor is 
nonlinear. 

It could a
rbitrary.  However, it is still beneficial to try different norms. 

It appears that the model should be linear if different norms 
have random-like effects as shown in Model 5 test, where the 
MSE due to different norms wandering around the one based 
on time-ordered data. If results due to different norms deviate 
from the ‘Time Order’ MSE consistently, the nonlinearity 
should be suspected as shown in first four tests.  

 

The following testing is devised to investigate t
der determination. The detail on the determination 

procedure will be provided for the testing on Model 1. The 
maximum possible values for ny, nu and d are set to 5, 4 and 1. 
It then generates 11 candidate regressors [y(t-1), …, 
y(t-5),u(t-1), …, u(t-5), random] to be involved in the forward 

selection. The selection procedure is summarized in Table 2, 
where the four regressors are selected and u(t-4) is discarded 
since the FPE starts increasing.   

 
TABLE 2 

FORWARD SELECTION FOR MODEL 1 

Step 1 2 3 4 5 

Selected y( ) u( ) y( ) y( ) u( ) t-1 t-1 t-2 t-5 t-4

FPE 0. 0. 0.1090 0850 0.0809 0.0800 0818
 

he selection result in Table 2 generates the absences of 
y(

 
TABLE 3 

EXHAUSTIVE ORDER SEARCH FOR MODEL 1 

  ny = 1 ny = 2 ny = 3 ny = 4 ny = 5 

T
t-3) and y(t-4). An exhaustive order search with max_ny = 5, 

max_nu = 1 and max_d = 0 is then conducted. The result is 
summarized in Table 3. 

nu = 1, d= 0 0.0850 0.0809 0.0814 0.0846 0.0878
 

The minimum FPE is 0.0809 at ny = 2.  It then reports three 

TABLE 4 
RESULTS OF ORDER DETERMINATION FOR MODELS 1-4 

Model Time Order SNNR Truth 

 
regressors, [y(t-1), y(t-2), u(t-1)]. The results for the first 
four models are summarized in Table 4. The results using 
time-ordered data are also provided in Table 4. 
 

1 y(t-1)y(t-2)u(t-1) y(t-1)y(t-2)u(t-1) y(t-1)y(t ) -2)u(t-1

2 y(t-1)u(t-1)u(t-2) y(t-1) y(t-2) y(t-3) 
u(t-1) 

y(t-1)y(t-2)u(t-1) 

3 y(t-1) u(t-1) y(t-1) y(t-2) y(t-3) 
y(t-4)u(t-1) 

y(t-1)y(t-2)y(t-3) 
u(t-1)u(t-2) 

4 y(t-1) y(t-2)u(t-1) y(t-1) u(t-1) y(t-1)u(t-1) 

 
Modeling could make two types of mistakes with the 

ch

s also 

oice of regressors: Either missing regressors that should be 
included or adding ones that do not exist in the true models. 
As observed in Table 4, both approaches are tie in Model 1 
test. In the Model 2 test, the Time Order arrangement misses 
y(t-2) but adds u(t-2), while the SNNR arrangement adds 
y(t-3).  ‘Time Order’ makes three and one mistakes in the 
Model 3 and 4 tests. ‘SNNR’ makes two mistakes in the 
Model 4 test. For the first 4 tests, ‘Spatial’ has three mistakes 
while ‘Time Order’ makes 6 mistakes. By this criterion, data 
arranged by SNNR outperforms that by Time Order. 
 The proposed order determination technique i
compared to the geometric method [4]. The testing is 
conducted on Models 6-9, and results are summarized in 
Table 5.    The best method is the one in which the identified 
regressors provide a closest match to the truth.  As observed, 
the geometric method performs well for deterministic 
dynamic models while poorly for stochastic models. The 
geometric method is sensitive to noise. The proposed 
technique makes one mistake in the Model 8 test. Its 
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TABLE 5 
RESULTS OF ORDER DETERMINATION FOR MODELS 6-9 

Model SNNR Geometric [4] Truth 

performance is much less influenced by noise than the 
geometric method.  
 
 

6 y(t-1) y(t-1) y(t-1) 

7 y(t-1) y(t-1) y(t-2) y(t-3) y(t-1) 

8 y(t-1) y(t-2) y(t-3) y(t-1) y(t-2)  y(t-1)y(t-2) 

9 y(t-1) y(t-2) y(t-1) y(t-1)y(t-3)y(t-4) y(t-1)y(t-2) 

 
  

Nonlinear component detection 
onlinear component

d

TABLE 6 
1 

Regressors 1 2 3 12 13 23 

D. 
The last testing task considers n  
etection. The implementation detail is given for the Model 1 

test with selected regressors, [y(t-1), y(t-2), u(t-1)]. The result 
is recorded in Table 6. 

EXHAUSTIVE COMBINATORIAL TRIALS FOR MODEL 

123 
MSE 0.0832 0.0856 0.0598 0.0849 0.0711 0.0736 0.0751 

 
In the first trial, the SNNR is conducted based on 

Th
y(t-1). 

e resultant data is then used in a recursive estimation that 
results in a MSE of 0.0832. The trial continues until all 
combinations are exhausted. The minimum MSE is 0.0598 
that corresponds to the third regressor, u(t-1). If the model 
structure (23) is adopted, one might have the following 
structure for the Model 1, where g represents a nonlinear 
function, ( ) ( ) ( ) ( )( )1 21 2

ults of nonlinear component detection for the fi

TABLE 7 
RESULSTS FOR NONLINEAR COMPONENT DETECTION 

Model  Detected nonlinear components 

1y t a y t a y t g u t= − + − + −   

 The res rst 
four models are summarized in Table 7. 
 

1 u(t-1) 

2 y(t-2) 

3 y(t-1) y(t-2) y(t-3) 
y(t-4) u(t-1) 

4 u(t-1) 

  
iscrepancy between detected and desired nonlinear 

VI. CONCLUSIONS 

The SNNR n a useful tool to 
de
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