
 

 

 

A novel rule antecedent structure  
and its identification for fuzzy models 

Ming Su and R. Russell Rhinehart 
  

Abstract—The existing combinatorial antecedent structure in 
fuzzy models makes them suffer from “the curse of 
dimensionality”.  In this work, a novel rule antecedent structure 
is proposed to design an efficient fuzzy model by using fewer 
rules. The new rule antecedent only uses nonlinear variables. 
Additionally, the proposed rule antecedents are expressed as 
ellipsoids covering the underlying local regions, which make 
spatial coverage more efficient.  

 

I. INTRODUCTION 

 uzzy models describe complex systems using human-like 
cause-and-effect rules. A fuzzy system employs a 
divide-and-conquer concept. Each rule is responsible for 

a local behavior, but all rules work together for a complete 
description. For a nonlinear mapping, y=f (x1,…,xn), to be 
expressed by a fuzzy model, a rule is defined by 
 

( ) ( )1 1 1is is , ,n n r r nx A x A y f x=IF AND AND THENL xL    (1) 
 
where, fr is a simpler function than f and represents local 
system behavior.  The subscript r indicates that it is the rth rule. 
The determining factors for complexity are the dimension, n 
and the number of linguistic categories for each. 
Permutations in the combinatorial structure in the antecedent 
lead to many rule possibilities.  
 In this work, the objective is to propose a flexible 
antecedent rule structure, which also reduces dimensionality. 
  

II. A FLEXIBLE ANTECEDENT STRUCTURE 

This approach has two separate ideas. One is to only place 
variables with a nonlinear impact in the antecedent. The other 
is to include variable interaction in antecedent structure. 

 
A. Antecedent variables 

As an example, Equation (2) represents a nonlinear 
dynamic model with three regressors, [y(t-1) y(t-2) u(t-1)].  
 

( ) ( ) ( ) ( ) ( )21 2 2.5 1y t y t y t y t u t⎡ ⎤= − − + + − −⎣ ⎦ 1

 

    (2) 

 
 Using the rule Structure (1), the rule antecedent is 
expressed as [y(t-1) is A1 AND y(t-2) is B1 AND u(t-1) is C1)]. 

The antecedent dimension is 3. Assuming that each regressor 
has 5 fuzzy sets, the standard combinatorial construction will 
then generate 125 possible rules. 
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 Equation (2) could be represented in a linear format in 
Equation (3) using functional parameters [1]  
 

( ) ( ) ( ) ( ) ( ) ( ) (1 2 11 2y t a t y t a t y t b t u t )1= − + − + −    (3)  

 
with ( ) ( ) ( ) ( ) ( )2

1 2 12.5, 1 , 1a t a t y t b t y t= = − = −  

where, model parameters a2 and b1 are functions of y(t-1). It 
indicates that the model can be expressed linearly in all 
variables except y(t-1). Therefore, the regressor, y(t-1)  
should be the only one included in the antecedent.  The 
simplified rule is then defined by 

( ) ( )1 11 is , ,iy t A y f x x− =IF THEN L n
. The antecedent dimension 

is reduced to 1. The possible rules are reduced from 125 to 5. 
Extending the representation, a nonlinear model is 

expressed by ( ) (1 1 1 1, , , ,m ny a c c x a c c= + +L L L )m nx . It 

then results in a rule with only m variables in the antecedent. 
 

( )1 1 1( is is , ,m m r r nc A c A y f x x=IF AND AND )THENL L    (4) 
 
where ci and xi are termed as antecedent and consequent 
variables, representing u and y in Equations (2) and (3). The 
rule Structure (4) has advantages when m is less than n.  
 
B. Antecedent structure 

Knowing the antecedent dimension, users might resort to 
the techniques in [2] to have a more compact fuzzy model. 
Given a two dimensional antecedent (c1 is A1 and c2 is B1), if 
Gaussian membership functions are assumed and the product 
operator is used for the AND conjunction, the antecedent is 
then evaluated by the truth of antecedent (TA) 

 
2 2

1 1 2 2

1 2e
c o c o

TA σ σ
⎛ ⎞ ⎛ ⎞− −

− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=                (5) 

 
where TA is an ellipsoid centering at (o1,o2) with width by σ1 
and  σ2. A contour plot of TA is shown in Fig. 1, where the 
highest value of TA =1 is reached at the centroid. The further 
out is the contour, the smaller the TA value. The value of TA 
can be interpreted as the belongingness of a data point to a 
local region.  A fuzzy model has several rules. Given a 
two-dimensional antecedent with equal number of fuzzy sets 
for each antecedent variable, a typical combinatorial 
antecedent space partition is shown in Fig. 2(a). 
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Fig 1. The ellipsoid contour of TA 

 

 
 (a)          (b) 

Fig 2. Antecedent space partition and representation   
 
where , 9 rules are resulted by the exhaustive combinations of 
3 fuzzy sets for each antecedent variable. The number of rules 
can be reduced by merging some regions that exhibit similar 
local behavior. Fig. 2(b) shows a possible simplified partition 
after merging some regions. The partition in Fig. 2(b) will 
also become inefficient as shown in Fig. 3, where neither 
horizontal nor vertical ellipsoid provides an efficient 
representation of the underlying local region represented by a 
rotated rectangle. 

  

 
Fig 3. A rotated local region covered by a horizontal or vertical ellipsoid 

 
The proposed solution is to have the ellipsoid rotated to 

match the underlying shapes of local regions. The concept of 
rotated ellipsoids is appealing. First, it offers one more degree 
of freedom, angles, to design ellipsoids. The following TA 
function with a centroid and a shape matrix 

 defines a rotated ellipsoid given the antecedent 
dimension is m . 

mR∈o
mR R∈ ×P

 
( ) ( )e

T cTA − − −= c o P o                (6) 
 

Second, it reduces the antecedent to one element defining 
truth. 

1c

2c

1o

2o
III. IDENTIFICATION 

A. Methodology 
A data-driven procedure could be used to estimate 

parameters in Equation (6), if the number of regions is known 
In this work, a regression tree [3] is used to determine the 

number and shapes of regions by a progressive binary 
partition of the antecedent space. A typical partition is shown 
in Fig. 4, where 5 regions (t4, t5, t6, t8, t9) are obtained by 4 
separations (s1, s2, s3, s4). 
 

 
Fig 4.   The resultant antecedent space partition 

 
B. Analysis of the splitting and regression problem 

The fundamental step is to solve a splitting and regression 
problem (SRP). Assuming that there are N data points, m 
antecedent variables and n consequent variables, the linear 
separation boundary equation is normally defined by 

 
1 ,1 ,i i m is c cθ θ= + +L               (7) 

 
Where i refers to the ith boundary.  To determine the 
belongingness of data to two categories A and B, use 
 

( )( ) 1
1 expi is tϕ

−
= + −               (8) 

 
where, t adjusts the ‘sharpness’ of the separation. At the 
limiting case, Equation (8) becomes a two-value (0,1) 
indicator  function when t approaches 0. 
 

0, 0
1, 0

i
i

i

s
s

ϕ
<⎧

= ⎨ ≥⎩
               (9) 

 
and then two local linear models A and B for the segregated 
data groups are defined by 
 

, 1 ,1 ,

, 1 ,1 ,

ˆ
ˆ

A i i n i n

B i i n i

y a x a x
y b x b x n

= + +

= + +

L

L
              (10) 

 
which is combined with Equation (8) or (9) to compute the 
output. 
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,ˆB iy( ) ,ˆ ˆ1i i A i iy yϕ ϕ= − +              (11) 

 
Parameters including a and b in Equation (10), and θ in 

Equation (7) are adjusted to minimize the criterion 
 

2

1

1
2

N

i
i

J ε
=

= ∑                   (12) 

 
where, ˆi iy yiε = −  is the residual.  

The derivatives of J with respect to θ, a and b can be 
analytically expressed as below if Equation (8) is used in 
Equation (11) since it is continuous and differentiable. 

 

( ) ,
1

1
N

i i
ik

J
i kx

a
ε ϕ

=

∂
= − −

∂ ∑              (13) 

,
1

N

i i i k
ik

J x
b

ε ϕ
=

∂
= −

∂ ∑                (14) 

( ) ,

1
1

N
i k

i i i i
ik

cJ w
t

ε ϕ ϕ
θ =

∂
= −

∂ ∑             (15) 

          
where  is the difference between two local 

models. The Hessian matrix can also be analytically 
expressed 

,ˆ ˆi a i bw y y= − ,i

 

( )
2

2
, ,

1
1

N

i i k i
ik l

J
lx x

a a
ϕ

=

∂
= −

∂ ∂ ∑             (16) 

( )
2

, ,
1

1
N

i i i k
ik l

J
i lx x

a b
ϕ ϕ

=

∂
= −

∂ ∂ ∑             (17) 

( )

( ) ( )

2
,

,
1

, ,2
,

1 1

1

1 1

N
i l

i i i k i
ik l

N N
i l i l

i i i k i i i i
i i

cJ x w
a t

c c
,i kx w x

t t

ϕ ϕ
θ

ϕ ϕ ε ϕ ϕ

=

= =

∂
= − −

∂ ∂

+ − + −

∑

∑ ∑

     (18) 

2
2

, ,
1

N

i i k i l
ik l

J x x
b b

ϕ
=

∂
=

∂ ∂ ∑               (19) 

( ) ( )
2

,2
,

1 1
1 1

N N
i l i l

i i i k i i i i
i ik l

cJ ,
,i k

c
x w

b t
ϕ ϕ ε ϕ ϕ

θ = =

∂
= − − − −

∂ ∂ ∑ ∑ x
t

 (20) 

( )

( ) ( )

2
2 , ,2 2

2
1

2 , , , ,2
2

1 1

1

1 1

N
i k i l

i i i
ik l

N N
i k i l i k i l

i i i i i i i i
i i

c cJ w
t

c c c c
w

t

ϕ ϕ
θ θ

ε ϕ ϕ ε ϕ ϕ

=

= =

∂
= −

∂ ∂

+ − − −

∑

∑ ∑ 2 w
t

n

   (21) 

 
 Once the gradients and Hessian matrix are obtained, it is 
then possible to analyze equilibrium solutions. Only the 
limiting case in Equation (9) is considered for its simplicity. 
Equilibrium solutions are defined if Equations (13-15) are 
zero. One solution is to have all φi = 0 (or  φi = 1), which 
results in the following Hessian matrix. 
 

1,1 1,

,1 ,

0
; with

0 0

nT

N N

x x

x x

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

X X
H X

L

M O M

L

     (22) 

 
where, XTX is positive semidefinite if X has linear 
independent columns, which is a reasonable assumption for a 
linear regression model. H is hence positive semi-definite and 
the solution at φi = 0 is stable. Otherwise, the equilibrium 
condition is expressed as below  
 

, ,
1 1

0 ; 0
A BN N

i i k i j j k j
i j

x A xε ε
= =

B= ∈ =∑ ∑c c ∈

0
0

  (23) 

 
where, NA and NB are the number of data for  model A and B. 
Equation (15) is zero since φi is either 0 or 1.  

Equations (23) are satisfied if a and b are obtained by least 
square estimation. The Hessian matrix then becomes 
 

0 0
0
0 0

T
A A

T
B B

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

X X
H X X              (24) 

 
where XA and XB are similarly defined as in Equation (22) for 
model A and B respectively. The Hessian matrix (24) is also 
positive semidefinite and indicates a stable solution.  

It then provides a two-step procedure to reach an 
equilibrium solution starting from an arbitrary separation 
followed by least square estimation. A solution is trivial if the 
separation is outside the antecedent space. Otherwise, two 
local models are obtained.  Every solution is stable so that a 
gradient based optimization is easily trapped.  

 
C. Solving the splitting and regression problem 

In order to avoid the difficulty in using gradients for 
parameter tuning, the SRP is solved in this work by a heuristic 
suboptimal approach, which starts by guessing a and b, and 
optimizes the belongingness, φ. The optimal φ will be 
projected to a linear separation boundary to obtain the 
boundary parameters θ, which is then used to update  a and b. 

Guessing a and b is the first step. Given two linear models 
in Equations (10), it would be reasonable to assume that yA 
and yB are two distinct distributions. Finding two models for 
these two distributions could be viewed as separating one 
from the other. A threshold variable, v, is introduced to 
conduct the separation in y. 
 

{ } { },A By y y v y y y v= < = ≥         (25) 

  
The optimal v is obtained by a linear search to minimize the 
following criterion S defined as the weighted sum of variance 
for two distributions yA and yB.  
 

2 2ˆ ˆ ,A A B BS N Nσ σ= +  
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with ( )( ) ( )22

1

1ˆ ,
AN

A A A A
iA

y i y y y i
N

σ
=

= − =∑
1

1 AN

A
iAN =
∑    (26)  

 
 The separation in y determines also the separation of X  
into XA and XB that is used to estimate a and b, and output 
prediction. 
 

( ) ( )1 1ˆˆ ;

ˆˆˆ ˆ;

T T T T
A A A A B B B B

A A B B

− −
= =

= =

a X X X y b X X X y

y X a y X b
     (27) 

 
The optimal iϕ  is then found by solving the problem  

( )( 2
, ,

1

ˆ ˆminimize 1

subject  to 0, 1

N

i i A i i B
i

i i

y y yϕ ϕ

ϕ ϕ
=

− − −

> <

∑ )i       (28) 

 
where,  iϕ  is bounded between 0 and 1.  The solution is used 
to obtain s by inverting Equation (8) with t = 1. 
  

( 1ln 1i is ϕ −= − − )

m

                (29) 

 
which then results in the following θ estimate  
 

1,1 1,

,1 ,

ˆ ; with
m

N N

c c

c c

−

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

T 1 Tθ (C C) C s C
L

M O M

L

   (30) 

 
 The estimated θ is used in Equation (7) and (9) to define a 
new separation,  φnew.  A trivial separation is obtained if φnew 
is constant (0 or 1). In this case, the following problem 
instead of the one in Equation (8) is solved, where two extra 
constraints are introduced to ensure that each local model 
contains sufficient number of data. The variable β is linear 
searched to minimize the objective function.  
 

( )( )

( )

2
, ,

1

1 1

ˆ ˆminimize 1

subject  to 0, 1

, 1 ,

N

i i A i i B i
i

i i
N N

i i
i i

y y yϕ ϕ

ϕ ϕ

ϕ β ϕ β

=

= =

− − −

> <

≥ − ≥

∑

∑ ∑

    (31) 

 
 A non-trivial φnew defines a new separation and the 
procedure then returns back to Equation (27) if two 
consecutive φnew values are significantly different.  

The SRP solving procedure is used to grow a tree. Tree 
growth and trim procedures could be found in [3].  

 
D. Rule antecedent identification 

The tree growth procedure generates a number of 
separation boundaries that partition the antecedent space. 
Given a partitioned antecedent space, there are many views 
on recognizing a local region.  

In this work, in using data points to identify an ellipsoid, 
the quality of each data point is also considered. The quality is 
related to the residual. The solid dots in Fig. 5 have small 
residuals. The circles represent data points with larger 
residuals. 

 

 
Fig 5. A local region in an antecedent space 

 
A rule antecedent in fact represents the region where the 

consequent model is accurate.  It is then reasonable to use 
only data samples with smaller residuals to estimate the 
antecedent parameters.  Extending this concept, each data 
point is then associated with a weight that reflects its 
influence on ellipsoid estimation. The weight used in this 
work is defined by 

 
2
,

,

r i
r T

r r
N

r i e
ε

β
−

= ε ε                  (32) 

 
where Nr is the number of data points in region r.  The script 
(r,i) represents the ith data in the rth region. βr,i reaches the 
highest value at 1 when εr,i is zero. High εr,i values mean small 
βr,i. Note: Equation (32) is the author’s choice for exploring 
weighting. It is effective in this work, but may not be an 
essential part.  Reasonable alternates would be to use 
problem-dependent knowledge or heuristics, or to ignore 
weighting by letting all βr,i = 1. The centroid or is estimated by 
 

, , ,
1 1

r rN N

r r i r i
i i

r iβ β
= =

= ∑ ∑o c               (33) 

 
and the matrix Pr is defined  by  its inverse 
 

( )( )1
, , , ,

1 1

r rN N
T

r r i r i r r i r
i i

r iβ β−

= =

= − −∑ ∑P c o c o       (34) 

 
E. Deffuzificaion 

Modeling and prediction using the fuzzy model consisting 
of the above identified rules is conducted by a conventional 
weighted average approach. 
 

1 1

ˆ
R R

r r r
r r

y TA y T
= =

= A∑ ∑               (35) 

 
where is the prediction by the consequent model of the rth 
rule. They are blended by the TAs to give an overall 

ry

1c

2c
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prediction. 

IV. TESTING AND DISCUSSION 

A. Testing models 
Model 1 :   

( ) [ ]sin , 2,8y x x x= ∈ −  

 
 Illustrated in Fig. 6, Model 1 is a simple function with only 

one variable, which should occur in both antecedent and 
consequent parts. The vertical lines represent the linear 
separation boundaries.  Between each pair of adjacent 
boundaries is a local regime labeled by a number that is based 
upon the sequence of tree nodes being generated. The 
boundaries are placed where the function curves ‘most’. In a 
local regime, between boundaries, the function could be 
reasonably approximated by a linear function.  

-2 0 2 4 6 8

-4

-2

0

2

4

6
2

4
6 7

x

y(
t)

 
Fig 6. The boundaries for Model 1 by the suboptimal approach 

 
The estimated antecedent parameters o and P, and local 

model parameters are summarized in Table 1. 
 

TABLE 1  
RULES IDENTIFIED FOR THE MODEL 1 

Rule Antecedent Consequent 

 
o P  

2 6.4738 1.7993 -32.9778 + 5.2878 x 

4 3.4960 1.4483 8.0097 – 2.6437 x 

6 -1.0589 3.4511 -0.2281 – 1.0943 x 

7 1.0050 2.7209 -0.1636 + 1.0165 x 

 
The four consequent linear models provide reasonable 

piece wise linear approximation of the function in each 
regime. If only a piece wise linear model is used, the model is 
however discontinuous. By using the deffuzification (35), the 
sequential linear models become a smoothed function as 
shown in Fig. 7 (the dashed line, labeled yhat). The mean 
squared error (MSE) is 0.1285.  

-2 0 2 4 6 8
-5

0

5

x

y

y
yhat

 
Fig 7. Function approximation by the fuzzy model 

 
Model 2 [4]: 

( ) ( ) ( ) (( )
( )( ) ( )( ) ( )

0.3 1 0.6 2 0.6sin 1

0.3sin 3 1 0.1sin 5 1

y t y t y t u t

u t u t e t

π

π π

)= − + − + − +

− + − +
 

 
 Model 2 is a nonlinear dynamic model. The nonlinearity is 
due to the Sine function, which affects u(t-1). There are three 
regressors [y(t-1) y(t-2) u(t-1)], which should be included in 
consequent models.  However, there is not a generic method 
for discovering nonlinear regressors. One practical approach 
might be to try each regressor in the antecedent.  The 
difference will then hint which regressor is nonlinear. The 
experiment for this example is summarized in Table 2. The 
performance is evaluated by the sum of square error (SSE) 
between the output y and its prediction. Without any splitting, 
the SSE is 414.8067. Reduction of SSE is observed for each 
trial and the largest reduction corresponds to u(t-1). The other 
two due to y(t-1) or y(t-2)  barely improves the SSE. It then 
indicates that u(t-1) should be included in antecedent and also 
hints that u(t-1) has a nonlinear effect on y(t), which is true in 
this case.  
 

TABLE 2  
TRIALS OF ANTECEDENT VARIABLES FOR MODEL 2 

Antecedent Number of rules 
 

SSE 
u(t-1) 7 250.7703 

y(t-1) 5 397.8031 

y(t-2) 5 401.3424 

  
Having u(t-1) in the antecedent, the resultant separation 
boundary is shown in Fig. 8. 

0

-5

-0.5 0 0.5

5
5 68 9 10 12 13

u(t-1)

y(
t)

 
Fig 8. The separation boundaries for Model 2 

 
 Fig. 9 shows the separations in the nonlinear part of Model 
2, g(u(t-1)), the sum of three Sine functions of u(t-1).  As with 
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the Model 1 test, Model 2 behaves relatively linearly in the 
seven local regions. 

 

 

-0.5 0 0.5

-0.5

0

0.5

u(t-1)

g(
u(

t-1
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Fig 9. The separation boundaries for the nonlinear part in Model 2 

 
Model 3 [4]: 

( ) ( ) ( ) ( )( )
( ) ( )

( ) (2 2

1 2 1 2.5
1

1 1 2

y t y t y t
y t u t e t

y t y t

− − − +
=

+ − + −
)+ − +  

V. CONCLUSION 

A procedure for reducing the curse of dimensionality in 
fuzzy models was described and demonstrated on simple 
cases.  

The proposed rule antecedent rule structure is able to 
control the complexity in a fuzzy model. As shown in the last 
test, only 5 rules are generated even when the antecedent 
dimension increased from 1 to 2.  

Instead of directly estimating model parameters, the 
proposed approach solves a series of splitting and regression 
problems to partition the antecedent space as well as compute 
the antecedent and consequent parameters. As shown in Fig.s 
6 and 9, the resultant antecedent partition is meaningful. The 
placed boundaries divide an antecedent space into regions 
where function or system behaves relatively linearly. 

The interpretability for individual antecedent variables will 
be lost due to the additional degree of freedom that combines 
all antecedent variables. However, the interpretability of the 
antecedent as a whole is still possible. A rule antecedent can 
be interpreted as a function that defines active region for the 
rules consequent model. 

 

 
 Model 3 also has regressors [y(t-1) y(t-2) u(t-1)]. The same 
procedure is applied to try each regressor in antecedents. The 
result is summarized in Table 3 
 

TABLE 3 
 TRIALS OF ANTECEDENT VARIABLES FOR MODEL 3 

REFERENCES 
Antecedent Number of rules 

 
SSE 

u(t-1) 5 197.3187 

y(t-1) 6 137.3870 

y(t-2) 6 131.6964 

[1] P. Young, "Time variable and state dependent modeling of 
non-stationary and nonlinear time series", in Developments in 
time series analysis, T.S Rao, Ed. New York: Chapman and 
Hall, 1993, pp 374-413. 

[2] J. Yen and W. Liang, "Simplifying fuzzy rule-based models 
using orthogonal transformation methods", IEEE Transactions 
on Systems, Man, and Cybernetics, Part B, Feb, 1999, pp 
13-24. 

 
The SSE due to having y(t-1) or y(t-2) in the antecedent is 
lower than that due to u(t-1). This observation is consistent 
with the Model 3, where u(t-1) has no nonlinear effect on y(t).  
The further investigation is to see if both y(t-1) and y(t-2) 
have interacting effect on y(t). Fig. 10 shows the result by 
having both y(t-1) and y(t-2) in antecedent. The separation 
boundaries are neither horizontal nor vertical, which indicates 
that there is interacting effect of y(t-1) and y(t-2) on y(t). To 
validate if it is necessary to include such interaction in 
antecedent, it then needs to check the SSE, which is 137.2988. 
The SSE is higher than that due to y(t-2). It then could 
conclude that the best antecedent in terms of SSE is y(t-2).  

[3] L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, 
"Classification and regression trees", Belmont: Wadsworth 
International Group, 1984.  

[4] K.S. Narendra and K. Parthasarathy, "Identification and control 
of dynamical systems using neural networks", IEEE 
transactions on neural network, vol. 1, no.1, March 1990, pp 
4-27  
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Fig 10. The separation boundaries for Model 3  

with y(t-1) and y(t-2) in the antecedent 
 

If preference is set to fewer local models, the antecedent 
might include both y(t-1) and y(t-2), which results in 5 local 
models only.  
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