
A Real time Implementable All-Pair Dynamic Planning Algorithm for Robot Navigation
Based on the Renormalized Measure of Probabilistic Regular Languages⋆

Wei Lu‡ Ishanu Chattopadhyay‡ Goutham Mallapragada‡ Asok Ray‡

wxl185@psu.edu ixc128@psu.edu grm150@psu.edu axr2@psu.edu

Abstract— The recently reported ν⋆ planning algorithm is modified to
handle on-the-fly dynamic updates to the obstacle map. The modified
algorithm called All-Pair-Dynamic-Planning(APDP), models the problem
of robot path planning in the framework of finite state probabilistic
automata and solves the all-pair planning problem in one setting. We
use the concept of renormalized measure of regular languages to plan
paths with automated trade-off between path length and robustness under
dynamic uncertainties, from any starting location to any goal in the
given map. The dynamic updating feature of APDP efficiently updates
path plans to incorporate newly learnt information about the working
environment.

Index Terms— Path Planning; Language Measure; Discrete Event
Systems; Dynamic Updating

1. I &M

In recent years, dynamic updating algorithms based on graph-

search methods has been researched extensively [1] [2] [3], and the

current state-of-art dynamic replanning algorithm is the Field D*

reported in [3]. The proposed All-Pair-Dynamic-Planning algorithm

(noted as APDP in the sequel) builds on the ν⋆-algorithm proposed

in [4]. ν⋆ is a framework that is fundamentally different from the

current state of the art graph search-based algorithms. It reduces

the "search" problem into finding a solution to a sequence of linear

algebraic systems (i.e. matrix operations). Upon completion of cellu-

lar decomposition, ν⋆ optimizes the resultant PFS A via an iterative

sequence of combinatorial operations that maximizes the language

measure vector elementwise [5][6]. The time complexity of each

iteration step is linear relative to the problem size (e.g., dimension of

the PFS A state vector). This implies significant numerical advantage

over search-based methods for high-dimensional problems. APDP

adds the feature of dynamic updating to ν⋆. It performs the path

planning from any starting position to any goal position, based on the

renormalized language measure of the PFS A model [5][6]. Although

the underlying navigation model is probabilistic, the APDP-algorithm

yields path plans that can be executed in a deterministic setting

with automated trade-off between the path length and robustness of

computation under dynamic uncertainties. Upon detection of changes

in the environment, APDP dynamically updates path plan in an

efficient way, with computation complexity comparable with the

D* algorithm [1]. APDP-algorithm inherits the advantages of ν⋆,

together with the following:

1) Very Fast Initial Planning APDP computes feasible path plans

from any starting position to any goal position with only one

matrix inverse operation with O(N) run-time complexity [4].

And the results can be conveniently retrieved from the navi-

gation cost matrix Λ for different goals specified. Whereas for

other dynamic planning algorithm such as D*, a new plan has

to be computed every time a new goal is specified.

2) Straight-forward Dynamic Updating Strategy: unlike the com-

plicated data structure and cost updating operations in graph

algorithms like D*, APDP maintains a navigation cost matrix

Λ and uses the same equations to update all the states in one

‡Department of Mechanical Engineering, The Pennsylvania State Univer-
sity, University Park, PA 16802
⋆ This work has been supported in part by the U.S. Army Research Office

(ARO) under Grant No. W911NF-07-1-0376, and by the U.S. Office of Naval
Research under Grant No. N00014-08-1-380.

setting, thus making APDP easy to understand and potentially

very fast

The paper is organized into eight sections including the present

one. Section 2 succinctly presents the underlying concept of signed

real language measure and principles of language-measure-theoretic

modeling Section 3 formulates the basic problem of path planning

and Section 4 derives a decision-theoretic solution to this problem.

Section 5 introduces the dynamic updating strategy upon newly learnt

information about the environment. Section 6 introduces an efficient

algorithm for dynamic updating. Section 7 presents an examples of

planar robot path planning with inaccurate map information. The pa-

per is summarized and concluded in Section 8 with recommendations

for future work.

2. B R  LM T

This section summarizes the signed real measure of regular lan-

guages; the details are reported in [5]. Let Gi ≡ 〈Q,Σ, δ,qi,Qm〉 be a

trim (i.e., accessible and co-accessible) finite-state automaton model

that represents the discrete-event dynamics of a physical plant, where

Q= {qk : k ∈ IQ} is the set of states and IQ ≡ {1,2, · · · ,n} is the index

set of states; the automaton starts with the initial state qi; the alphabet

of events is Σ = {σk : k ∈ IΣ}, having Σ
⋂
IQ = ∅ and IΣ ≡ {1,2, · · · , ℓ}

is the index set of events; δ : Q× Σ→ Q is the (possibly partial)

function of state transitions; and Qm ≡ {qm1
,qm2
, · · · ,qml

} ⊆ Q is

the set of marked (i.e., accepted) states with qmk
= q j for some

j ∈ IQ. Let Σ∗ be the Kleene closure of Σ, i.e., the set of all

finite-length strings made of the events belonging to Σ as well as

the empty string ǫ that is viewed as the identity of the monoid Σ∗

under the operation of string concatenation, i.e., ǫs = s = sǫ. The

state transition map δ is recursively extended to its reflexive and

transitive closure δ : Q×Σ∗ → Q by defining ∀q j ∈ Q, δ(q j, ǫ) = q j

and ∀q j ∈ Q,σ ∈ Σ, s ∈ Σ⋆, δ(qi,σs) = δ(δ(qi,σ), s)

Definition 2.1: The language L(qi) generated by a DFSA G ini-

tialized at the state qi ∈ Q is defined as: L(qi)= {s ∈ Σ
∗ | δ∗(qi, s) ∈ Q}

The language Lm(qi) marked by the DFSA G initialized at the state

qi ∈ Q is defined as: Lm(qi) = {s ∈ Σ
∗ | δ∗(qi, s) ∈ Qm}

Definition 2.2: For every q j ∈ Q, let L(qi,q j) denote the set of all

strings that, starting from the state qi, terminate at the state q j, i.e.,

Li, j = {s ∈ Σ
∗ | δ∗(qi, s) = q j ∈ Q}

The formal language measure is first defined for terminating

plants [7] with sub-stochastic event generation probabilities i.e. the

event generation probabilities at each state summing to strictly less

than unity.

Definition 2.3: The event generation probabilities are specified by

the function π̃ : Σ⋆ × Q→ [0, 1] such that ∀q j ∈ Q,∀σk ∈ Σ,∀s ∈ Σ⋆,

(1) π̃(σk,q j) , π̃ jk ∈ [0,1);
∑

k π̃ jk = 1− θ, with θ ∈ (0,1);

(2) π̃(σ,q j) = 0 if δ(q j,σ) is undefined; π̃(ǫ,q j) = 1;

(3) π̃(σks,q j) = π̃(σk,q j) π̃(s, δ(q j,σk)).

The n× ℓ event cost matrix is defined as: Π̃|i j = π̃(qi,σ j)

Definition 2.4: The state transition probability π : Q × Q →

[0,1), of the DFSA Gi is defined as follows: ∀qi,q j ∈ Q,πi j =∑

σ∈Σ s.t. δ(qi ,σ)=q j

π̃(σ,qi) The n× n state transition probability matrix

is defined as Π| jk = π(qi,q j)

The set Qm of marked states is partitioned into Q+m and Q−m, i.e., Qm =

Q+m∪Q−m and Q+m∩Q−m = ∅, where Q+m contains all good marked states

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrB19.1

978-1-4244-4524-0/09/$25.00 ©2009 AACC 5174

that we desire to reach, and Q−m contains all bad marked states that we

want to avoid, although it may not always be possible to completely

avoid the bad states while attempting to reach the good states. To

characterize this, each marked state is assigned a real value based on

the designer’s perception of its impact on the system performance.

Definition 2.5: The characteristic function χ : Q → [−1,1] that

assigns a signed real weight to state-based sublanguages L(qi,q) is

defined as: ∀q ∈ Q, χ(q) ∈



[−1,0), q ∈ Q−m
{0}, q < Qm

(0,1], q ∈ Q+m

The state weight-

ing vector, denoted by χ= [χ1 χ2 · · · χn]T , where χ j ≡ χ(q j) ∀ j ∈ IQ,

is called the χ-vector. The j-th element χ j of χ-vector is the weight

assigned to the corresponding terminal state q j.

In general, the marked language Lm(qi) consists of both good and

bad event strings that, starting from the initial state qi, lead to Q+m
and Q−m respectively. Any event string belonging to the language

L0
= L(qi)− Lm(qi) leads to one of the non-marked states belonging

to Q−Qm and L0 does not contain any one of the good or bad

strings. Based on the equivalence classes defined in the Myhill-

Nerode Theorem, the regular languages L(qi) and Lm(qi) can be

expressed as: L(qi) =
⋃

qk∈Q Li,k and Lm(qi) =
⋃

qk∈Qm
Li,k = L+m∪ L−m

where the sublanguage Li,k ⊆Gi having the initial state qi is uniquely

labelled by the terminal state qk,k ∈ IQ and Li, j ∩ Li,k = ∅ ∀ j ,

k; and L+m ≡
⋃

qk∈Q
+
m

Li,k and L−m ≡
⋃

qk∈Q
−
m

Li,k are good and bad

sublanguages of Lm(qi), respectively. Then, L0
=
⋃

qk<Qm
Li,k and

L(qi) = L0 ∪L+m∪L−m.

A signed real measure µi : 2L(qi) → R ≡ (−∞,+∞) is constructed

on the σ-algebra 2L(qi) for any i ∈ IQ; interested readers are referred

to [5] for the details of measure-theoretic definitions and results.

With the choice of this σ-algebra, every singleton set made of an

event string s ∈ L(qi) is a measurable set. By Hahn Decomposition

Theorem [8], each of these measurable sets qualifies itself to have

a numerical value based on the above state-based decomposition of

L(qi) into L0(null), L+(positive), and L−(negative) sublanguages.

Definition 2.6: Let ω ∈ L(qi,q j) ⊆ 2L(qi). The signed real mea-

sure µi of every singleton string set {ω} is defined as: µi({ω}) ≡

π̃(ω,qi)χ(q j). The signed real measure of a sublanguage Li, j ⊆ L(qi)

is defined as: µi, j ≡ µ
i(L(qi,q j)) =

(∑
ω∈L(qi ,q j) π̃[ω,qi]

)
χ j

Therefore, the signed real measure of the language of a DFSA Gi

initialized at qi ∈ Q, is defined as µi ≡ µ
i(L(qi)) =

∑
j∈IQ
µi(Li, j).

It is shown in [5] that the language measure can be expressed as

µi =
∑

j∈IQ
πi jµ j + χi. The language measure vector, denoted as µ

= [µ1 µ2 · · · µn]T , is called the µ-vector. In vector form, we have

µ =Πµ+χ whose solution is given by

µ = (I−Π)−1χ = Λχ (1)

The inverse, i.e. Λ in Eq. (1) exists for terminating plant mod-

els [7][9] because Π is a contraction operator [5] due to the strict

inequality
∑

j πi j < 1. The residual θi = 1−
∑

j πi j is referred to as the

termination probability for state qi ∈ Q. It can be derived that the i jth

element of Λ is the sum of the cost of all possible transitions from

qi to q j, i.e.

Λi, j =

∑

ω∈L(qi ,q j)

π̃(qi,ω) (2)

Therefore, Λ is called the navigation cost matrix in the sequel.

We extend the analysis to non-terminating plants with stochas-

tic transition probability matrices (i.e. with θi = 0, ∀qi ∈ Q) by

renormalizing the language measure [5] with respect to the uniform

termination probability of a limiting terminating model as described

next.

Let Π̃ and Π be the stochastic event generation and transition

probability matrices for a non-terminating plant Gi = (Q,Σ, δ,qi,Qm).

We consider the terminating plant Gi(θ) with the same DFSA

structure (Q,Σ, δ,qi,Qm) such that the event generation probability

matrix is given by (1− θ)Π̃ with θ ∈ (0,1) implying that the state

transition probability matrix is (1− θ)Π.

Definition 2.7: (Renormalized Measure) The renormalized mea-

sure νi
θ

: 2L(qi (θ)) → [−1,1] for the θ-parametrized terminating plant

Gi(θ) is defined as:

∀ω ∈ L(qi(θ)), ν
i
θ({ω}) = θµ

i({ω}) (3)

The corresponding matrix form is given by

νθ = θ µ = θ [I− (1− θ)Π]−1χ with θ ∈ (0,1) (4)

in terms of Λ:

νθ = θΛχ (5)

We note that the vector representation allows for the following

notational simplification

νiθ(L(qi(θ))) = νθ
∣∣∣
i

(6)

The renormalized measure for the non-terminating plant Gi is defined

to be limθ→0+ ν
i
θ
.

The following results are retained for the sake of completeness.

Complete proofs can be found in [5].

Proposition 2.1: The limiting measure vector ν0 , limθ→0+ νθ ex-

ists and ||ν0||∞ ≤ 1.

Proposition 2.2: Let Π be the stochastic transition matrix of a

finite Markov chain (or equivalently a probabilistic regular lan-

guage). Then, as the parameter θ→ 0+, the limiting measure vector is

obtained as: ν0 =Pχ where the matrix operator P , lim
k→∞

1

k

k−1∑

j=0

Π
j.

Corollary 2.1: (to Proposition 2.2) The expression Pνθ is inde-

pendent of θ. Specifically, the following identity holds for all θ ∈ (0,1).

Pνθ =Pχ (7)

3. F   P P P

Fig. 1. Illustration of the path planning problem formulation. (a) shows
the vehicle (marked "R") with the obstacle positions shown as black squares
and the star identifies the goal. (b) shows the finite state representation of
possible one-step moves from the current position q5. (c) shows the "boundary
obstacles" and a map with locations 1 and 8 blocked. (d) shows uncontrollable
transitions "σu" from states corresponding to blocked states.

Let GN = (Q,Σ, δ,Π̃,χ,C) be a PFS A model. In the absence

of dynamic uncertainties and state estimation errors, the alphabet

Σ contains only one uncontrollable event σu, i.e., Σ = ΣC
⋃
σu},

where ΣC is the set of controllable events corresponding to the

possible moves of the robot. The uncontrollable event σu is defined

from each of the blocked states and leads to an additional state,

called the obstacle state q⊖, which is a deadlock state and does

not correspond to any physical grid location; all other transitions

(i.e., moves) are removed from the blocked states. Thus, the state

set Q consists of states that correspond to grid locations and the

additional deadlock state q⊖. The grid squares are numbered in a

pre-determined scheme such that each qi ∈Q\{q⊖} denotes a specific

square in the discretized workspace, where the particular numbering

scheme chosen is irrelevant. Thus, if a robot moves into a blocked

5175

state, it uncontrollably transitions to the deadlock state q⊖ which is

physically interpreted to be a collision. It is also assumed that the

robot fails to recover from collisions which is reflected by making

q⊖ a deadlock state.

Definition 3.1: The set of blocked grid locations along with the

obstacle state q⊖ is denoted as QO j Q.

Figure 1 illustrates the navigation automaton for a nine-state dis-

cretized workspace with two blocked squares. Note that the only

outgoing transition from the blocked states q1 and q8 is σu. The

navigation PFS A is augmented by specifying event generation prob-

abilities defined by the map π̃ : Q×Σ→ [0,1] and the characteristic

state-weight vector specified as χ : Q→ [−1,1] that assigns scalar

weights to the PFS A states [6].
Definition 3.2: In the APDP setting, the characteristic weights

are specified for the navigation automaton as follows:

χ(qi) =

{
1 if qi is the goal
0 otherwise

(8)

In the absence of dynamic constraints and state estimation uncer-

tainties, the robot can "choose" the particular controllable transition

to execute at any grid location. Hence, the probability of generation

of controllable events is assumed to be uniform over the set of moves

defined at any particular state.

Definition 3.3: Under the modeling assumption that there are

no uncontrollable events defined at any of the unblocked states

and no controllable events defined at any of the blocked states,

event generation probabilities are defined based on the following

specification: ∀qi ∈ Q,σ j ∈ Σ,

π̃(qi,σ j) =

{
1

No. of controllable events at qi
, if σ j ∈ ΣC

1, otherwise
(9)

It is shown in the sequel that computation of path plans requires

the navigation automaton to have a constant number of moves or

controllable transitions from each of the unblocked states, as stated

below in Definition 3.4.

Definition 3.4: The navigation model is defined to have identical

connectivity as far as controllable transitions are concerned implying

that every controllable transition or move (i.e., every element of ΣC)

is defined from each of the unblocked states.

4. APDP S   P P P

The above-described PFS A-based navigation model facilitates the

traversal of robot in the 2D grid. As Eq.(4) gives the language-

measure of all states with regard to a goal state qG, the robot

uses the following greedy strategy to move from current state to

next state, until qG is reached.

Algorithm 1: Computation of Next State

input : Current State qC, νθ, δ
output: Next State qN

begin1

Set M = -INF; /* Large Negative Number */2

for j = 1 to C(ΣC) do3

q j = δ(qC,σ j);4

if νθ(q j) > M then5

qN = q j;6

M = νθ(q j);7

endif8

endfor9

end10

Here we prove the above mentioned algorithm guarantees to find

the qG .

Notation 4.1: For notational simplicity, we use

νiθ(L(qi)) , ν(qi) = νi (10)

where ν = θmin[I− (1− θmin)Π]−1χ
Definition 4.1: (APDP-path:) A APDP-path ρ(qi,q j) from state

qi ∈ Q \ {qθ} to state q j ∈ Q \ {qθ} is defined to be an ordered set
of PFSA states ρ = {qr1

, · · · ,qrM
} with qrs

∈ Q, ∀s ∈ {1, · · · ,M},M ≤
C(Q) such that

qr1
= qi (11a)

qrM
= q j (11b)

∀i, j ∈ {1, · · · ,M}, qri
, qr j

(11c)

∀s ∈ {1, · · · ,M},∀t < s, ν(qrt
) < ν(qrs

) (11d)

Lemma 4.1: (Absence of Local maxima) If there exists a APDP-

path from qi ∈ Q to q j ∈ Q and a APDP-path from qi to qG then

there exists a APDP-path from q j to qG , i.e.,

∀qi,q j ∈ Q

(
∃ρ1(qi,qG)

∧
∃ρ2(qi,q j)⇒∃ρ(q j,qG)

)

Proof: For qi , qG , χi = 0 we have

νi =
∑

j∈IQ

(1− θmin)πi jν j (12)

Recall that in the APDP setting, πi j = π̃(qi,σ j), where δ(qi,σ j) = q j.
From Eq. (9), we get

π̃i j =
1

C(ΣC)
(13a)

⇒ νi =
1− θmin

C(ΣC)

∑

j,σ j∈ΣC

ν j (13b)

Since θmin > 0, it follows that

νi < max
j,σ j∈ΣC

(ν j),∀qi , qG (14)

Eq.(14) implies the absence of local maxima in language measure. It

also follows that measure of qG, i.e. νG is the global maximum.

r

Proposition 4.1: (Existence of APDP-paths:) There exists a

APDP-path ρ(qi,qG) from any state qi ∈ Q to the goal qG ∈ Q

if and only if ν(qi) > 0.
Proof: Partitioning L(qi) based on terminating states,

ν(qi) = ν({ω : δ(qi,ω) = qG})

+ ν({ω : δ(qi,ω) , qG}) (15)

Since ∀q j , qG,χ(q j) = 0, we have ν({ω : δ(qi,ω) , qG}) = 0.
Hence we conclude

ν(qi) = ν({ω : δ(qi,ω) = qG}) (16)

It follows from χ(qG) = 1 that δ(qi,ω) = qG ⇒ ν({ω}) > 0

implying there exists an enabled sequence of controllable transitions

from qi to qG in GN if and only if ν(qi) > 0. The result then

follows from Lemma 4.1. It is also obvious that the path computed

by Algorithm 1 is a APDP-path. r

Corollary 4.1: (Obstacle Avoidance:) There exists no APDP-path

leading to any blocked state in the navigation automaton GN.

Proof: ∀qi ∈ QO , the only transition defined is δ(qi,σu) =

qθ. Therefore, according to Eq. (16), the measure of a blocked state

is always zero. And it follows from Definition 4.1 that there is no

APDP-path leading to any blocked state. r

5. D R S

This section proposes a dynamic updating method under APDP

path planning scheme. The robot scans the environment with various

sensors (sonar, laser range finder, etc) in real time and compare the

signal with the original map stored in its memory. If a grid location

is detected blocked while in the original map it is open, then the

5176

corresponding state is marked as a newly blocked state; whereas if

a newly opened grid location is detected, the corresponding state is

marked as a newly opened state. The robot updates its plan according

to newly changed states. Instead of recalculating the whole problem

again, it is more efficient to dynamically update the measure of states

based on new information. First we handle newly blocked states, and

subsequently extend the analysis to newly opened states.

A. Dynamic Updates for Newly Blocked States

To facilitate the formulation of updating strategy, we define Γ as

follows:

Definition 5.1: (Contribution to Traversal) The sum of cost of

all strings starting from qi, passing qk, and ends at q j is defined as

the contribution of traversal of qk , which is specified by the function

Γ : Q×Q×Q→ [0, 1
θ] such that ∀qi,qk,q j ∈ Q

Γ(i,k, j) =
∑

ω∈L(qi ,qk ,q j)

π̃(qi,ω) (17)

Γ(i,k, j) quantifies the contribution of state qk to the cost of

traversing from qi to q j. Therefore it can be used to update the

changes in language measure of other states. Proposition 5.1 shows

the calculation of Γ for open states:

Proposition 5.1: (Calculation of Γ(i,k, j)) ∀qi,q j ∈ Q,qk ∈ Q \

QO:

Γ(i,k, j) =



Λi,kΛk, j

Λk,k
, j , k

Λi,k

Λk,k
, j = k

(18)

Proof: To facilitate the proof, we define set of substrings as

follows:

Definition 5.2: (Set of Substrings) ∀ω ∈ Σ∗,ω , ǫ , S (ω)

is the set of nonempty substrings of ω, i.e. S (ω) = {s ,

ǫ | s is a substring of ω}.

Consider a string ω ∈ L(qi,q j,qk). Intuitively, one would con-

sider ω consisting of two substrings: {ωik} = S (ω)∩ L(qi,qk) and

{ωk j} = S (ω)∩ L(qk,q j). However, because APDP allows self-loops

(transitions from qkto qk), the substring

{ωkk} =
(
S (ω)∩L(qi,qk)

)⋂(
S (ω)∩L(qk,q j)

)
= S (ω)∩L(qk,qk)

is counted twice. Therefore to calculate the cost of ω, according to

Definition 2.3, ∀qi,q j ∈ Q,qk ∈ Q \QO , and ∀ω ∈ L(qi,qk ,q j)

π̃(qi,ω) =
π̃(qi,ωik)π̃(qk,ωk j)

π̃(qk,ωkk)
(19)

By Eq.(2), summing up the cost of all singleton strings ω ∈

L(qi,qk,q j), and Γ(i,k, j) is obtained in Proposition 5.1. r

Each time when a newly blocked states qk is detected, the robot

updates Λ to reflect the influence if qk in language measure.

For notational clarity, we use Λ[n] to denote its nth version, i.e.

the accurate value of Λ after n newly changed states are discovered;

we use Λ̃
[n]

to denote an estimate of Λ[n]. Other quantities used in

the formulation of dynamic updating (such as Γ and ν) follow the

same rules.

Proposition 5.2: (Updates for Newly Blocked States)

∀qi,q j ∈ Q,qk ∈ Q \QO , the updating equation

Λ
[n]
i, j
= Λ

[n−1]
i, j

−Γ[n−1](i,k, j), n = 1,2, . . . (20)

gives the accurate value of the new navigation cost Λ
[n]
i, j

, as if the

whole problem is calculated all over again.

Proof: Since qk is a now a blocked state, L(qi,qk,q j) = ∅,

i.e, qk has no contribution to the cost of traversal from qi to q j.

The proof then follows Definition 5.1. For multiple newly blocked

states, Eq.(20) is used iteratively. Since each iteration using Eq.(20)

is accurate, it returns the accurate Λ
[n]
i, j

at the end of iterations. r

Remark 5.1: (to Proposition 5.2) The language measure obtained
by the following equation is accurate.

ν[n]
= θminΛ

[n]χ (21a)

where χ(qi) =

{
1, if qiis the goal

0, otherwise
(21b)

B. Dynamic Updates for Newly Opened States

The situation of newly opened states requires more explanation.

Newly opened states were considered as blocked, and blocked states

have no contribution for the traversal from qi to q j,∀qi,q j ∈ Q\ {qθ}.

But we are interested in their contribution after they are detected as

open states. Therefore, we define potential contribution for blocked

states as below:

Definition 5.3: (Potential Contribution to Traversal) ∀qk ∈

QO,∀qi,q j , qθ, the potential contribution Γ′(i,k, j) of qk is its

contribution to the traversal from qi to q j, as if qk is a open state.

Proposition 5.3: (Estimation of Γ
′(i,k, j)) ∀qi,q j ∈ Q,qk ∈

QO, the equation

Γ̃
′(i,k, j) =

{
Λi,kΛ j,k, j , k

Λi,k, j = k
(22)

gives an under-estimate of Γ′(i,k, j), which satisfies:

Γ̃
′(i,k, j) = αΓ′(i,k, j),where α ∈ (0,1] (23)

Proof: For blocked states, there is no transition to open states.

However, transitions from open states to blocked states are allowed.

Let ωik ∈ L(qi,qk), ω jk ∈ L(q j,qk). As qk becomes open, transitions

from qk to q j also becomes allowed. And a corresponding string

ωk j ∈ L(qk,q j) can be constructed by reversing ω jk. Moreover, in

the setting of APDP, π̃(ω jk) = π̃(ωk j). So we can construct a string

ωik j ∈ L(qi,qk,q j) by connecting ωik and ωk j, and the cost of the

new string is given as:

π̃(ωik j) = π̃(ωik)π̃(ω jk) (24)

Summing up costs of all strings constructed in this way and an

estimate of Γ′(i,k, j) is obtained in Eq.(22)

Note that the strings ωik j ∈ L(qi,qk,q j) constructed in the above

mentioned way do not contain self-loops from qk to qk , i.e. S (ωik j)∩

L(qk,qk) = ∅. Since qk was considered blocked, as ωik and ω jk reach

qk, the very next transition is δ(qk,σu)= qθ. Now that qk is considered

open, and self-loops are actually allowed. So Eq.(22) only takes into

account a subset of all possible strings ω ∈ L(qi,qk,q j).

By similar arguments in the case of newly blocked states, the true

value of Γ′(i,k, j) is given by

Γ
′(i,k, j) =

{
Λi,kΛ j,kΛ

′
k,k
, j , k

Λi,kΛ
′
k,k
, j = k

(25)

where Λ′
k,k

is the sum of costs of all self-loop strings of qk if it

is treated as a open state. Since π̃(qk , ǫ) = 1 (see Definition 2.3),

∀qk ∈ Q,Λk,k ≥ 1, and generally for qk ∈ Q \QO,Λk,k > 1.

The true value of Λ′
k,k

cannot be obtained in APDP method. So the

result given by Eq.(22) is an under-estimate of Γ′(i,k, j) as indicated

by Eq.(23), where α = 1
Λ
′
k,k

∈ (0,1] (in reality, α is close to unity). r

The updates for newly opened states is similar to newly blocked

states. As qk is detected as a newly opened state, Λ is updated by:

Λ̃
[n]
i, j
= Λ̃

[n−1]
i, j
+ Γ̃

[n−1](i,k, j), n = 1,2, . . . (26)

and then the new language measure is given by:

ν̃[n]
= θminΛ̃

[n]
χ (27a)

where χ(qi) =

{
1, if qiis the goal
0, otherwise

(27b)

5177

C. Effectiveness of Dynamic Updating

From the above analysis, we know if there only exist newly blocked

states, the updated language is the same as recalculating the whole

problem again. However, if there exist newly opened states, since the

accurate value of Γ′ cannot be obtained for qk ∈ QO, only an

estimate of language measure can be calculated. Despite the possible

inaccuracy in language measure, we are to show ν̃[n] obtained in the

above described way preserves the key property of absence of local

maxima in language measure, and hence it guarantees the robot to

find APDP feasible path plans to the goal.

Proposition 5.4: ∀qi,q j,qk ∈ Q \ {qθ}, ν̃
[n] obtained by Eq.(20),

(21), (26) and (27) preserves the property of absence of local maxima,

described in Lemma 4.1.

Proof: Substituting Eq.(5) into Eq.(12), we get

Λi,G =

∑

j∈IQ

(1− θmin)πi jΛ j,G, qi , qG (28)

Since the choice of qG does not influence the relation described

by Eq.(28), we can generalize this relation as:

Λi,k =

∑

j∈IQ

(1− θmin)πi jΛ j,k, ∀qi , qk (29)

Rewriting Eq.(22) using Eq.(29):

Γ̃
′(i,k, l) = Λi,kΛl,k = Λl,k

∑

j∈IQ

(1− θmin)πi jΛ j,k (30a)

⇒ Γ̃′(i,k, l) =
∑

j∈IQ

(1− θmin)πi jΓ̃
′(j,k, l) (30b)

Similar conclusion can be derived for the case of newly blocked

states (Eq.20). We know that the original language measure ν[0]

satisfies:

ν
[0]
i
=

∑

j∈IQ

(1− θmin)πi jν
[0]
j
, qi , qG (31)

Therefore, it is easy to derive by induction that at each update using

Eq.(20), (21), (26) and (27), the following relation is preserved:

ν̃
[n]
i
=

∑

j∈IQ

(1− θmin)πi jν̃
[n]
j
, n = 1,2, . . . (32)

Following the same arguments in Lemma 4.1 we know:

ν̃
[n]
i
< max

j,σ j∈ΣC

(ν̃ j
[n]), ∀qi , qG (33)

Hence the absence of local maxima. r

6. A  I  D R

This section introduces the implementation of dynamic replanning

strategy described in Section 5. A fast online re-planning algorithm

that is comparable with the current state of the art grid based 2D

planning algorithms is derived. The key to dynamic updating is to

keep Λ up to date. We can simply update every element of Λ each

time a newly changed state is detected, but that takes O(N2) time,

where N is the number of states. Since the language measure with

regard to qG is derived from the Gth column of Λ (see Eq.(21)

and (27)), we only need to make sure Λi,G, i ∈ IQ is correctly

updated each time. And we delay the updating for other elements in

Λ until needed. Suppose qkm is the newest changed state, and (m−1)

newly changed states qk1,qk2, . . .qk(m−1) are detected prior to qkm.

By Eq.(18), (22), (20) and (26), Λ
[m−1]
i,km

, i ∈ IQ is needed to update

Λ
[m]

i,G
. Since we delayed the updates for qkm, only Λ

[0]
i,km
, i ∈ IQ

are available. Therefore we update Λi,km, i ∈ IQ with regard to the

(m−1) newly changed states detected prior to qkm. Algorithm 2 uses

the above mentioned lazy approach to update Λ. A list of all newly

changed states is maintained. When a newly changed state qkm is

detected, it is added to the end of the list, and Algorithm 2 is called.

Algorithm 2 "catches up with" the update for qkm from Line 5 to

Line 17. For the mth changed state, the ’For’ loop from Line 5 to

Line 17 run (m− 1) times, each loop updates N elements of Λ, and

takes O(N) time; the update for qG from Line 18 to Line 27 runs

once, and it takes O(N) time. So for mth changed state, the running

time of Algorithm 2 is O(mN). Since generally m≪ N, Algorithm 2

is significantly faster than updating every element of Λ. Algorithm 3

Algorithm 2: Dynamic Updating of Λ

input : ΛL, list of newly changed states qChange()
output: ΛN

begin1

N = size(ΛL);2

n1 = length(qChange);3

qk = qChange(n1) ; /* Newest changed state */4

; /* Lazy update for qk with regard to previously
changed states */
for n2← 1 to (n1 −1) do5

ql = qChange(n2);6

if ql is a newly blocked state then7

for i← 1 to N do8

ΛN(i,k) = ΛL(i,k)−
ΛL (i,l)ΛL(l,k)

ΛL(l,l)
;9

endfor10

else if ql is a newly opened state then11

for i← 1 to N do12

ΛN(i,k) = ΛL(i,k)+ΛL(i, l)ΛL(k, l);13

endfor14

endif15

ΛL = ΛN;16

endfor17

; /* Update for qG, i.e. Λ
[n−1]
i,G

to Λ
[n]
i,G
, i ∈ IQ */

if qk is a newly blocked state then18

for i← 1 to N do19

ΛN(i,G) = ΛL(i,G)−
ΛL (i,k)ΛL(k,G)

ΛL (k,k)
;20

endfor21

else if qk is a newly opened state then22

for i← 1 to N do23

ΛN(i,G) = ΛL(i,G)+ΛL(i,k)ΛL(G,k);24

endfor25

endif26

end27

summarizes the execution of APDP method.

7. A E  2D D P P

Let a workspace be defined by a 10 × 10 grid as shown in

Figure 2(a). The goal is labeled and prominently marked with a dot.

The obstacles, i.e., states in the set QO (See Section 3), are

illustrated as blocked-off grid locations in black while the navigable

space is shown in white. From the formulation presented in Section 3,

it follows that each grid location (i, j) is mapped to a state in

the constructed navigation automaton GN which has a total of

10× 10+ 1 = 101 states. State numbers are encoded by first moving

along rows and then along columns, i.e.,

state_num = column_num+ (row_num−1)×10

The 101st state q101 is the special obstacle state q⊖ defined in

Section 3. We note that since (3,6) is the goal (See Figure 2(a)), we

have χ(6+ (3−1)×10) = χ(26) = 1. The robot follows the procedure

illustrated in Algorithm 3 to plan paths and execute the movements.

In the example shown in Fig. 2 (b) to (d), color gradient indicates the

measure of each state. Note in Section 4 it is shown the measure of

blocked state is exactly zero. Here we set ν(q) = −2θmin,q ∈ QO

to show the blocks more clearly in the figure (the true measures of

q ∈ QO are stored in Λ as Λ(q,qG), and are used in dynamic

5178

Algorithm 3: APDP Algorithm for Path Planning

input : Map, Goal Location
output: APDP-path to Goal
begin1

Discretize map;2

Generate GN;3

Compute Λ[0],ν[0];4

νN = ν
[0];5

qChange()← ∅;6

Get current state qC;7

if ν(qC) = 0 then8

Goal is unreachable ;9

Abort;10

else11

count = 1;12

Set Path(count) = qC;13

while qC , qG do14

count = count+1;15

qN = Algorithm 1(qC,νN);16

Go to qN;17

Set qC = qN;18

Scan environment for map changes;19

if any state qk is changed then20

Add qk to the end of qChange();21

ΛN = Algorithm 2(Λ,qChange);22

νN = θminΛNχ23

endif24

Save Path(count) = qC;25

endw26

endif27

end28

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

GOAL

START:

A

(a)

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10
−2

−1.5

−1

−0.5

0

0.5

1

A

(b)

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10
−2

−1.5

−1

−0.5

0

0.5

1

A

B

(c)

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10
−2

−1.5

−1

−0.5

0

0.5

1

B

C

A

(d)

Fig. 2. Illustration of 2-D path planning. (a) shows a goal (GOAL) and
the start location (Point A). (b) shows the gradient induced by APDP in
the workspace. The initial path plan from A to GOAL given by the APDP-
algorithm (solid blue line) is compared with the shortest path (dashed purple
line) (c) When the robot reaches point B (grid location (6,7)), a new obstacle is
detected at grid location (8,5). It updates the path plan with APDP-algorithm
dynamically from B to GOAL (shown in solid blue line) (d)With the updated
plan, the robot reaches point C (grid location (6,5)), where it detects grid
location (4,5) is open. APDP-algorithm dynamically updates the path plan
from C to GOAL to take advantage of this new opening (shown in solid blue
line)

updating). The following observations are made on the theoretical

results derived in Section 4 and Section 5.

1) Absence of local maxima: it is clearly shown by the vector field

in Fig. 2 (b) to (d). The only local maximum (grid location with

only incoming arrows) is the GOAL. And this property is held

after dynamic updating, as shown in Fig. 2(c) and Fig. 2(d).

2) Existence of APDP path and obstacle avoidance: There exists

no APDP-path (See Definition 4.1) from any navigable state to

any blocked grid location (i.e., to any state in QO). And

by following Algorithm 1, it is impossible to run into obstacles.

3) Robustness of APDP path: in Fig. 2(a), the robot avoids the

shortest path (purple dashed line) because it passes through

the narrow single-path corridor on the left, and is more risky.

Instead, it takes a longer but more robust path through the open

area on the right. Whereas in Fig. 2(c), after detecting a new

obstacle at grid point (8,5), the robustness benefits of navigating

through the right area no longer offset the benefits of shorter

paths by navigating through the left area.

4) Effectiveness of dynamic updating: as shown in Fig. 2(c) and

Fig. 2(d), the measure of all states are updated upon detection

of newly changed states. The dynamically updated measure

maintains all the properties mentioned above.

8. S & F R

A novel path planning algorithm APDP is introduced that adds

dynamic updating feature to language measure-based path planning

algorithms. The resulting algorithm calculates paths with automated

trade-off between path length and robustness between all pairs of

locations in the given map. The dynamic updating for changed

environment is efficient, easy to understand and implement. The

current dynamic updating updates the measure of every state in the

map. The efficiency can be further improved by focusing the updating

on states that are relevant with navigation. Proper heuristic is needed

to focus the updates and an incremental updating strategy will be

developed in the future.

R

[1] A. T. Stentz, “Optimal and efficient path planning for partially-known
environments,” Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA ’94), vol. 4, pp. 3310 – 3317, May
1994.

[2] S. Koenig and M. Likhachev, “D*lite,” Eighteenth national conference
on Artificial intelligence, pp. 476–483, 2002.

[3] D. Ferguson and A. T. Stentz, “The field d* algorithm for improved path
planning and replanning in uniform and non-uniform cost environments,”
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep.
CMU-RI-TR-05-19, June 2005.

[4] I. Chattopadhyay, G. Mallapragada, and A. Ray, “ν⋆ : a robot path plan-
ning algorithm based on renormalized measure of probabilistic regular
languages,” International Journal of Control, in press.

[5] I. Chattopadhyay and A. Ray, “Renormalized measure of regular lan-
guages,” Int. J. Control, vol. 79, no. 9, pp. 1107–1117, 2006.

[6] ——, “Language-measure-theoretic optimal control of probabilistic finite-
state systems,” Int. J. Control, vol. 80, no. 8, pp. 1271–1290, 2007.

[7] V. Garg, “An algebraic approach to modeling probabilistic discrete
event systems,” Proceedings of 1992 IEEE Conference on Decision and
Control, pp. 2348–2353, Tucson, AZ, December 1992.

[8] W. Rudin, Real and Complex Analysis, 3rd ed. McGraw Hill, New York,
1988.

[9] V. Garg, “Probabilistic languages for modeling of DEDs,” Proceedings
of 1992 IEEE Conference on Information and Sciences, pp. 198–203,
Princeton, NJ, March 1992.

5179

