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Abstract— This paper formulates a self-organization al-
gorithm to addresses the problem of emergent behavior
supervision in engineered swarms of arbitrary population
size. Based on collections of independent identical finite-
state agents, the algorithm is derived to compute necessary
perturbations in the local agents’ behavior, which guaran-
tees convergence to the desired observed state of the swarm.
A simulation example illustrates the underlying concept.

Index Terms— Swarms; Finite State Ergodic Markov
Chains; Ergodic Projections; Discrete Event Systems;

1. INTRODUCTION & MOTIVATION

With recent advances in sensor technology and affordable

miniaturization of mobile computing platforms, swarms of

simple agents are now capable of performing a variety of

complex coordinated tasks. Potential applications of such

human-engineered swarms range from self-organizing sen-

sor fields for military surveillance and civilian search & res-

cue operations to coordinated handling and transportation

of large objects. Motion coordination among teams of au-

tonomous agents has been studied extensively [1], [2] with

special emphasis on formation control of large groups [3].

The major distinction between a large group of au-

tonomous agents and a swarm is first clarified, and an

example from biology is pertinent here. Wolves hunt in

packs; however a pack is not a swarm. Members of a pack

play special roles in the highly coordinated process in the

sense that removal of a few members renders the pack

ineffective until the missing members are reinstated. In

contrast, a colony of honey bees functions as a swarm, where

removal of a few hundred workers have little impact on

the colony as a whole. This distinction is not merely due

to the size of the group; it arises from a difference in the

operational philosophy. In a swarm, an individual has no

importance; and attaining the group objective is all that

matters.

For human-engineered systems, the above philosophy

translates to having little or no performance requirements

on individual agents and control of emergent behavior is of

sole importance. Thus, the problem in swarm control is more

than to just come up with decentralized control policies; it

is one of engineering a framework that embodies a funda-

mental survival philosophy observed in nature. Largely the
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reported work in this field addresses coordination of groups

that are not large enough to qualify as swarms [2], [1] and

often makes application-specific modeling assumptions [4],

[5]. Recently, Belta and Kumar [6] have proposed an ab-

stract framework for computing decentralized controllers to

operate on locally available sensor information that realizes

coordinated task execution for finite autonomous teams.

However, there are performance criteria to be satisfied at

the agent level and the analysis does not necessarily carry

over to an unbounded population size. Apparently, formula-

tion of algorithms that reflect the above philosophy has not

yet been reported in open literature.

This paper addresses mathematical modeling of engi-

neered swarms as arbitrary collections of independent finite-

state Markov chains and formulates an algorithm to realize

emergent behavior supervision in sufficiently large non-

interacting populations of agents. The analysis, presented

here, does not address inter-agent communication, noise

corruption, actuation delays, and the associated practical

implementation issues, because the objective is to formulate

a relatively simple and unambiguous approach that lays the

framework rather than having one that attempts to offer a

complete solution to the complex overall problem, which is

a topic of future research.

The paper is organized in four sections including the

present one. Section 2 states the necessary definitions and

concepts and presents the formal statement of the control

problem. Section 3 presents the main results along with an

illustrative application example. The paper is summarized

and concluded in Section 4 with recommendations for future

work.

2. PRELIMINARIES & NOTATIONS

This section provides preliminary concepts and notations

that facilitate understanding of the concepts presented in

the sequel.

Definition 2.1: A finite-state homogeneous Markov chain

is a pair G = (Q,Π) where Q is a set of states with CARD(Q) =
n ∈ N, and Π is the (n × n) stationary transition probability

matrix such that ∀i, j ∈ {1, · · · ,n}, Πi j ≧ 0 with
∑

iΠi j = 1; and

Π is called a stochastic matrix.

Remark 2.1: Every stochastic matrix Π has at least one

unity eigenvalue; and all eigenvalues of Π are located within

or on the unit disk.

Definition 2.2: A finite-state homogeneous Markov chain

G = (Q,Π), with CARD(Q) = n ≥ 2, is called irreducible if,

for any pair (i, j), 1 ≤ i, j ≤ n, there exists a positive integer

k(i, j) ≤ n such that the (i j)th element of the kth power of Π is

strictly positive, i.e., Π
(k)

i j
> 0; and Π is called an irreducible

matrix [7]. An irreducible finite-state homogeneous Markov

chain G is also called ergodic [7].
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Remark 2.2: For any n×n irreducible stochastic matrix Π

with n > 1, the diagonal terms are strictly less than unity, i.e.,

Πii < 1 ∀i. Upon unity sum normalization, the left eigenvector

vector ℘ = [℘1 ℘2 · · · ℘n] corresponding to the unique unity

eigenvalue of Π is called the stationary probability vector,

where
∑

i ℘i = 1 and ℘ j > 0 ∀ j. The stationary probability

vector ℘ has the following property.

lim
k→∞

1

k

k∑

j=0

Π
j
=




· · · ℘ · · ·
...

...
...

· · · ℘ · · ·




(1)

The (unity rank) matrix on the right hand side of Eqn. (1) is

called the ergodic projection matrix and is denoted as C(Π).
The rows of C(Π) define the stationary probability distribu-

tion for the ergodic chain G in the sense that ℘Π = ℘ and,

in general, C(Π)Π = ΠC(Π) = C(Π).

qi q j
1

qi q j

1

qi q j
γ

(1 − γ)

(a) Enabled Transition (b) Disabled Transition

(c) Probabilistically Disabled Transition

Fig. 1. Probabilistic Disabling of Finite-State Markov Chains

Definition 2.3: (Probabilistic Disabling and En-

abling) [8] Let G = (Q,Π) be an ergodic Markov chain and

let the i jth probability be non-zero, i.e., Πi j > 0. Referring

to Fig. 1, the probabilistic disabling and enabling from the

state i to the state j are respectively defined in terms of

perturbations in the state transition matrix Π as

D ISABLING : Πi j 7→ (1 − γ)Πi j, γ ∈ [0, 1] (2a)

Πii 7→ Πii + γΠi j (2b)

ENABLING : Πii 7→ Πii − γΠi j, (2c)

where γ ∈ [0, 1] ∧Πii ≧ γΠi j

Πi j 7→ (1 + γ)Πi j (2d)

In the sequel, the analysis is restricted to finite state

Markov chains for which every transition with non-zero

occurrence probability could be controlled in the sense of

Definition 2.3 for an arbitrary choice of the parameter γ in

[0, 1].
Definition 2.4: (Controlled Descendant) Let the

Markov chain G = (Q,Π) be derived from a given finite-

state Markov chain G̃ = (Q, Π̃). Then, G is defined to be

a controlled descendant of G̃ if the following condition is

satisfied.

∀i , j, Π̃i j = 0 =⇒ Πi j = 0 (3)

A descendant G is obtained by applying probabilistic dis-

ablings or enablings to one or more transitions of the Markov

chain G̃.

Definition 2.5: (Agent in Swarm Modeling) An agent

is a connected graph A = (Q,∆), where each state i ∈ Q
represents a distinct predefined behavior and each transition

(i, j) ∈ ∆ represents a controllable transition from state i to

state j.

The matrix ∆ in Definition 2.5 specifies state transitions

(i.e., behavior switching) of the agent A’s state (i.e., be-

havior) in the sense that A decides to continue in the

current state or make a transition to another state. The

probabilities of state transitions constitute a (finite-state)

ergodic Markov chain. Without any control, it is assumed

that the state transition probabilities are uniformly dis-

tributed over the defined transitions at each state and it

follows from the connectedness of the agent graph that

the uncontrolled agent corresponds to an ergodic Markov

chain. Therefore, specifications of switching probabilities

must obey the constraint that no transition, representing

a behavior switch, with non-zero probability is defined at a

state if the corresponding edge does not exist in the graph

of the agent. The notion is formalized next.

Definition 2.6: Let the uncontrolled behavior of an agent

A = (Q,∆) be represented by an ergodic Markov chain G0
=

(Q,Π0). Let the agent be controlled by specifying transition

probabilities in an ergodic Markov chain G = (Q,Π). Then,

following Definition 2.4, a control policy is defined to be

admissible if G is a controlled descendant of G0.

Definition 2.7: In the sense of Definition 2.5, a homoge-

neous swarm S is defined to be a collection of independent

identical agents A = (Q,∆), each of which is represented

by the same (finite-state) ergodic Markov chain G = (Q,Π).
Formally,

S = {Gα : α ∈ X} (4)

such that Gα = G and X is an index set.

Note that no restriction is imposed on the cardinality of

the index set X; hence the swarm can be finite, countably

infinite, or denumerable.

Notation 2.1: Denoting the cardinality of the state set Q
as CARD(Q), the following notation is used for the collection

of orthonormal basis vectors for the space RCARD(Q).

B = {νi ∈ RCARD(Q) : νi
j = δi j} (5)

Definition 2.8: (Local State) The local or the intensive

state qα(t) ∈ B for the swarm S = {G α : α ∈ X} at time t ∈
[0,∞) is defined as:

qα(t)
∣∣∣
i
=

{
1 if qi is the current state for agent Gα

0 otherwise
(6)

Definition 2.9: (Observed State) The observed or the

extensive state qS (t) of a swarm S at time t is defined as

qS (t) = lim
Y→X

1

µ(Y)

∫

α∈YjX

qα(t) dµ(α) (7)

where qα(t) is the local swarm state at time t and µ is the

appropriate measure for the index set X. Note that µ is

the counting measure if X is finite or countable; if X is a

continuum, then µ is the appropriate Lebesgue measure.

Under the assumption of ergodicity for a sufficiently large

swarm, the time average of the local state for a given α ∈ X
converges to the ensemble average at an equilibrium point,

i.e.,

lim
t→∞

∫ t

0

qα(τ) dτ = ℘ (8a)
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lim
Y→X

1

µ(Y)

∫

α∈YjX

qα(t) dµ = ℘ ∀t (8b)

Remark 2.3: (A Statistical Mechanical Analogy) In

the statistical mechanical framework, a homogeneous swarm

can be visualized as an ensemble of identical microsystems

that are the individual agents. The agent states correspond

to the microstates of the overall system, which are not ob-

servable externally. The state of the swarm in the sense of

Definition 2.9 is the average effect of all the microstates and

is thus an observable macrostate. The analogy is largely

similar to the case of an ideal gas where the microstates

correspond to the kinetic energies of the individual non-

interacting molecules; and the observed macrostate is tem-

perature that can be identified with the observed swarm

state. It is generally impossible to control the energy levels

of individual gas molecules; but the gas temperature can be

controlled at ease. Hence, the driving philosophy, presented

in this paper, is to formulate an implementable policy that

controls the observed swarm state without accessing the

agent microstates.

An external supervisor manipulates state transition (i.e.,

behavior switching) probabilities of the agents. However,

control communications are assumed to occur as general

broadcasts and no individual agent can be controlled in-

dividually. Under this constraint, the decision & control

problem is formally stated as follows.

A. Statement of the Control Problem

Following Definition 2.7, let S = {Gα : α ∈ X} be

a homogeneous swarm, where Gα = (Q,Π) is the ergodic

Markov chain corresponding to the uncontrolled agent G0
=

(Q,Π0) and a target observed state ℘⋆ for the swarm, where∑CARD(Q)

i=1
℘⋆

i
= 1 and ℘⋆

j
> 0 ∀ j. The problem is to synthesize

a controlled descendant G⋆ of G0 such that the perturbed

transition matrix Π⋆ satisfies the following conditions.

1) G⋆ is a finite state ergodic Markov chain i.e., the associated

state transition matrix Π⋆ is irreducible; and

2) Ergodic projection matrix C(Π⋆) =




· · · ℘⋆ · · ·
...

...
...

· · · ℘⋆ · · ·




The above conditions have the following implications.

1) Since G⋆ is a disabled descendant of G0, i.e., G⋆ has a

non-zero transition probability of switching states via a

particular event if the corresponding transition is defined

in the underlying agent graph.

2) It follows from Eqn. (8a) and Eqn. (8b) that the desired

swarm state is achieved at equilibrium.

3) Ergodicity of G⋆ (i.e., irreducibility of Π⋆) implies that the

initial state of the agents is unimportant for convergence

to the desired swarm state.

3. MAIN RESULTS

This section presents analytical formulation of the super-

vised self-organization algorithm and addresses the associ-

ated issues of computational complexity.

A. Derivation of the Supervised Self-organization Al-

gorithm

This subsection formulates a recursive algorithm to solve

the control problem stated in Section 2-A. To this end, two

supporting lemma and a theorem are presented.

Definition 3.1: Let ℘⋆ ∈ Rn be a ℓ1 (i.e., sum)-normalized

non-negative vector and let Π ∈ Rn×n be an irreducible

stochastic matrix with the stationary probability vector ℘.

A perturbation Π ∈ Rn×n of the irreducible stochastic matrix

Π is defined as follows.

Π = Π +K E

[
Π − I

]
⇒ Π − I =

[
I +K E

][
Π − I

]
(9)

where Ei j , δi j(℘i − ℘
⋆
i ) (10a)

and Ki j ,


δi j

℘⋆
i

if Eii < 0

0 otherwise
(10b)

Remark 3.1: The following properties hold based on

Eqns. (9), (10a) and (10b) in Definition 3.1 and the facts

stated in Remark 2.1.

1) KiiEii ≤ 0 ⇒ KiiEii ≤
Πii

1−Πii
because Πii ∈ [0, 1).

2) 1 +KiiEii ∈ (0, 1] because KiiEii ∈ (−1, 0].
3)Πi j ≥ 0 ⇒ Π is a non-negative matrix.

Lemma 3.1: The perturbation Π in Definition 3.1 is an

irreducible stochastic matrix.

Proof: Since both K and E are diagonal matrices and

Π is a stochastic matrix, it follows that
∑

j

Πi j =

∑

j

Πi j +KiiEii(
∑

j

Πi j − 1) = 1 ∀i (11)

Stochasticity ofΠ is established by combining Eqn. (11) with

Property 3 in Remark 3.1. Irreducibility of Π is proved next.

Let ℘̂ be an elementwise non-negative vector representing

a direction in the eigenspace of Π corresponding to its unity

eigenvalue, i.e., ℘̂
[
Π−I

]
= 0. Such a ℘̂ is guaranteed to exist

for all stochastic matrices [9]. Eqn. (9) yields

℘̂
[
I +K E

][
Π − I

]
= 0

Since ℘ is unique, ℘̂
[
I +K E

]
= ℘ with scalar multiplicity

of 1. Then, it follows from Definition 3.1 and Property 2 of

Remark 3.1 that the stationary probability vector of Π is

obtained as

℘ ,
℘̂

||℘̂||1
=

1∑
i ℘̂i

℘̂ where ℘̂ = ℘
[
I +K E

]−1
(12)

Since Π has a unique stationary probability vector ℘ that is

positive elementwise, it is irreducible [7]. r

Lemma 3.2: The stationary probability vector ℘ of the

stochastic matrix Π satisfies the following strict inequality.

||℘ − ℘⋆||∞ < ||℘ − ℘⋆||∞ (13)

where ||x||∞ is the max norm of the finite-dimensional vector

x.

Proof: It follows from Eqn. 12 and Property 2 of

Remark 3.1 that

||℘̂||
1
=

∑

i

℘i

1 +KiiEii
(14)

=

∑

i:Eii<0

℘i

1 +KiiEii
+

∑

i:Eii≧0

℘i (15)
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An application of the bounds on Kii (See Eqns. (10a) and

(10b)) in Eqn. (15) results

||℘̂||
1
>
∑

i:Eii<0

℘i +

∑

i:Eii≧0

℘i =

∑

i

℘i = 1 (16)

Usage of the identity [I+K E ]−1
= I−K E [I+K E ]−1 yields

℘̂ − ℘⋆ = ℘ − ℘⋆ − ℘K E

[
I +K E

]−1

=⇒℘̂ − ℘⋆ =
(
℘ − ℘⋆

)[
I − A

]
(17)

where it follows from Eqns. (10a) and (10b) that

Ai j =
δi jKii℘i

1 +Kii(℘i − ℘
⋆
i

)
⇒ Aii =

Kii℘i

1 +KiiEii

∈ {0, 1} (18)

It is noted from Eqn. 14 that

1 − ||℘̂||1 = 1 −
∑

i

℘i

1 +KiiEii

=

∑

i

(
℘i −

℘i

1 +KiiEii

)
=

∑

i

(
℘iKiiEii

1 +KiiEii

)

=




...
Eii

...




T 

. . . 0
Aii

0
. . .







1
...
1



=
(
℘ − ℘⋆

)
A




1
...
1




Then, it follows from Eqns.(12) and (17) that

℘ − ℘⋆ =
℘̂

||℘̂||1
− ℘⋆ =

℘ − ℘⋆

||℘̂||1
+

(1 − ||℘̂||1
||℘̂||1

)
℘⋆

=

(℘ − ℘⋆
||℘̂||1

)[
I −A

]
+

1

||℘̂||1

(
℘ − ℘⋆

)
Aη℘⋆

=

(℘ − ℘⋆
||℘̂||1

) [
I − A + Aη℘⋆

]
=

(℘ − ℘⋆
||℘̂||1

)
W (19)

where η , [1 · · · 1]T and W ,
[
I −A + Aη℘⋆

]
.

Next it is shown that W in Eqn. (19) is a stochastic matrix.

It is obvious from Eqn. (18) that off-diagonal elements of W
are non-negative and the diagonal elements are given as

Wii = 1 − Aii + Aii℘
⋆
i =

{
1 if Aii = 0
℘⋆

i
if Aii = 1

Furthermore, since η℘⋆ is a stochastic matrix of rank 1 with

all rows identically equal to ℘⋆, it follows that
∑

j

Wi j = 1 − Aii + Aii

∑

j

℘⋆j = 1 (20)

Therefore, W is a stochastic matrix and hence the induced

norm ||W||∞ = 1. Using the inequality ||℘̂||1 > 1 from

Eqn. (16), Eqn. (19) yields
∣∣∣∣∣
∣∣∣∣∣℘ − ℘

⋆

∣∣∣∣∣
∣∣∣∣∣
∞

≦
( ||℘ − ℘⋆ ||∞
||℘̂||1

)
||W||∞ < ||℘ − ℘

⋆ ||∞ (21)

The proof is now complete. r

Theorem 3.1: Let ℘⋆ ∈ Rn be a ℓ1-normalized nonnegative

vector (for n>1) and Π ∈ Rn×n be an irreducible stochastic

matrix. Then, the recursive procedure

Π
[r+1]
= Π

[r]
+K

[r]
E

[r]
[
Π

[r] − I
]
, Π[0]

= Π (22)

where E [r] and K [r] satisfy the conditions specified in

Eqns (10a) and (10b),

1) iteratively estimates an irreducible stochastic matrix Π⋆

with ℘⋆Π⋆ = ℘⋆ i.e. we have

lim
r→∞
℘[r]
Π

[r]
= lim

r→∞
℘[r] lim

r→∞
Π

[r]
= ℘⋆Π⋆ = ℘⋆

2) ||℘[r] − ℘⋆||∞ strictly monotonically converges to zero.

3) ∀i , j, Π0
i j
= 0 =⇒ Π⋆

i j
= 0

Proof: It follows from Lemma 3.2 that {||℘[r] −℘⋆ ||∞}r∈N
is a strictly monotonically decreasing sequence . Non-

negativitity of norm implies that this sequence necessarily

converges, which in turn implies that {℘[r]}r∈N is a Cauchy

sequence in R. Recalling Eq.(19), it is noted that

℘[r+1] − ℘[r]
=

(
℘[r] − ℘⋆

)( W

||℘̂[r]||1
− I

)

⇒
∣∣∣
∣∣∣℘[r+1] − ℘[r]

∣∣∣
∣∣∣
∞

∣∣∣∣∣
∣∣∣∣∣
[

W

||℘̂[r]||1
− I

]−1∣∣∣∣∣
∣∣∣∣∣
∞

≧
∣∣∣
∣∣∣℘[r] − ℘⋆

∣∣∣
∣∣∣
∞

⇒
∣∣∣
∣∣∣℘[r+1] − ℘[r]

∣∣∣
∣∣∣
∞




∣∣∣
∣∣∣℘̂[r]
∣∣∣
∣∣∣
1∣∣∣

∣∣∣℘̂[r]
∣∣∣
∣∣∣
1
− 1


 ≧
∣∣∣
∣∣∣℘[r] − ℘⋆

∣∣∣
∣∣∣
∞

(23)

where Eq. (23) follows from stochasticity of W and the

inequality
∣∣∣
∣∣∣℘̂[r]
∣∣∣
∣∣∣
1
> 1, which implies that

||℘̂[r]||1−1

||℘̂[r]||1

[
I − W

||℘̂[r] ||1

]−1
is a stochastic matrix with unity infinity

norm. Then we have,

∣∣∣
∣∣∣℘[r+1] − ℘[r]

∣∣∣
∣∣∣
∞
≧
∣∣∣
∣∣∣℘[r] − ℘⋆

∣∣∣
∣∣∣
∞


1 −

1∣∣∣
∣∣∣℘̂[r]
∣∣∣
∣∣∣
1


 (24)

For proof of statement 2 in the theorem by contradiction, let

us assume that

lim
r→∞
||℘[r] − ℘⋆ ||∞ = ǫ > 0 (25)

Strict monotonicity of the sequence {||℘[r] − ℘⋆||∞}r∈N implies

that
∣∣∣
∣∣∣℘[r] − ℘⋆

∣∣∣
∣∣∣
∞
> ǫ ∀r ∈N (26)

It is claimed that
∣∣∣
∣∣∣℘̂[r]
∣∣∣
∣∣∣
1
> 1 + ǫ (27)

which follows from Eqns. (10a), (10b), and (15)) that
∣∣∣
∣∣∣℘̂[r]
∣∣∣
∣∣∣
1
=∑

i max(℘[r]
i
, ℘⋆

i
). Then, Eqn. (27) yields

∣∣∣
∣∣∣℘[r+1] − ℘[r]

∣∣∣
∣∣∣
∞
≧ ǫ
(
1 −

1

1 + ǫ

)
∀r ∈N

⇒
∣∣∣
∣∣∣℘[r+1] − ℘[r]

∣∣∣
∣∣∣
∞
≧
ǫ2

1 + ǫ
∀r ∈N (28)

which contradicts the fact that {℘[r]}r∈N forms a Cauchy se-

quence. Hence, it is concluded that ǫ = 0 implying ||℘[r]−℘⋆ ||∞
monotonically converges to zero. The proof of statements (1)
and (2) is now complete.

Statement (3) follows from noting that the recursive pro-

cedure guarantees:

Π
[r]
i j
= 0 =⇒ Π[r+1]

i j
= 0 ∀r ∈N and ∀i , j

r

Algorithm 1 is formulated based on Theorem 3.1 to solve

the control problem stated in Section 2-A. The compu-

tational aspects of Algorithm 1, called Supervised Self-

organization of Swarms (S3), are discussed in Section 3-B.

2925



4.5 5 5.5 6 6.5 7
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

 
Fit Eqn:−> y = 1.9*x − 9.8

 

 

Max Time

Min Time

Mean Time

Linear Fit

ln
( 

T
im

e
 i
n
 S

e
c
 )

ln( No. of States )

Fig. 2. Algorithm Execution Time versus Number of States

0 500 1000 1500 2000 2500
−4

−3

−2

−1

 

 

Error Norm

lo
g

1
0
(|

℘
 −

 ℘
∗
| ∞

)

No. of Iterations

Fig. 3. Illustrative Case: Error Norm versus Number of Iterations

Algorithm 1: Supervised Self-organization of Swarms

(S3)

input : Π0 , ℘⋆,Tolerance
output: Π⋆

begin1

Set r = 0, Error = 1; /* Initialize */2

while (Error > Tolerance ) do3

Compute E [r];4

Compute K [r];5

Π
[r+1]

= Π
[r]
+K [r]E [r]

[
Π

[r] − I
]
;6

Compute ℘
[r+1]

; /* stationary7

distribution [10] */

Error = ||℘
[r+1]
− ℘⋆||∞;8

Set r = r + 1;9

endw10

Π
⋆
= Π

[r−1];11

end12

B. Computational Complexity

Simulation results indicate high computational efficiency

of the proposed control algorithm. A possible bottleneck in

Algorithm 1 is computation of the stable probability vector

℘[r] in each step of the iterative refinement process. The com-

putation of stationary distributions of irreducible Markov

chains is well-studied [10] and efficient algorithms have

been reported. Numerical results are illustrated in Figure 2,

which suggest a quadratic bound on the asymptotic run-time

complexity. Figure 2 was generated by considering 1, 000
randomly chosen input stochastic matrices for each N in the

range [100, 1000]. The ’Mean Time’ is the average runtime

over the input samples considered for each N.

Figure 3 exhibits a rapid decrease of the error norm

with respect to the number of iterations in a sample case.

(Note the logarithmic scale of the ordinate.) The convergence

rate is determined by the second largest eigenvalue of the

computed stochastic matrix Π⋆. The rapid convergence ob-

served in simulation results from the fact that we initiate S
3

Algorithm 1) with Π0 for which the transition probabilities

are defined to be uniform over the transition set at each

state. Estimation of a rigorous upper bound on the second

largest eigenvalue of the computed transition matrix Π⋆ is

a topic of future research.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Self-organization of the Sensor Field subsequent to Control
Broadcast. The initial field is concentrated at the top-right corner
as seen in (a) which subsequently organizes to peak at the activity
hotspots. The spatial convergence is illustrated by the plates (b)-(h).
A similar simulation result for a smaller problem can be viewed
in the movie form by running the “swarm.avi” supplied as an
attachment
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C. Supervised Self-organization of A Simulated Mo-

bile Sensor Field

This section presents simulated control of a mobile sensor

field as an application of the proposed control algorithm.

The swarm is assumed to consist of a large number of

identical mobile sensors in a sufficiently large rectangular

2-D grid of dimension N×M. In this scenario, the parameters

are chosen as N = M = 1000. The graph for each agent

therefore consists of N ×M nodes representing the spatial

grid locations. Each agent may decide to move to any of

the adjacent grid locations in one step implying that each

agent state has 8 defined edges. The uncontrolled agents

correspond to the ergodic finite state Markov chain G0 with

the transition probabilities defined to be uniform over the

outgoing edges at each state. The simulation experiment is

conducted as follows.

At the beginning the majority of the sensors are concen-

trated at the top-left corner of the grid (See Figure 4(a))

with the exception of a few that are distributed randomly

over the remaining grid locations. Detection of activity by

the the latter at three different locations is communicated

to an external supervisor which determines that the sensor

field density needs to peak at the corresponding “hotspots”.

The supervision policy is computed via the S
3 Algorithm and

is communicated to the sensors via a general broadcast.

The eight plates in Figure 4 exhibit progressive effects of

the swarm control algorithm to achieve the goal of locating

the “hotspots”. The field density gradually moves out from

the top-left corner (See Figure 4, plates (a) & (b)) and self-

organizes to peak at the desired locations (See Figure 4

plates (g) & (h)). A similar simulation result for a smaller

problem can be viewed in the movie form by running the

“swarm.avi” supplied as an attachment. It is seen in the

attached movie that as the activity hotspots change (at a

slower time scale), the supervised sensor swarm rapidly self-

organizes to track the active zones. It is important to note

that the control broadcast occurs only once each time the

tactical scenario (i.e. location of the hotspots) changes. No

communication with the supervisor is necessary for the sub-

sequent self-organization process. Each agent needs to know

its current location; which can be obtained from onboard

GPS and communication with neighbors is unnecessary in

this example.

4. SUMMARY, CONCLUSIONS, AND FUTURE WORK

This paper presents an algorithm, called Supervised Self-

organization of Swarms (S3), for supervision of emergent

behavior supervision of homogeneous engineered swarms

of potentially unbounded population size. The swarm is

modeled as an arbitrary collection of independent identi-

cal finite-state agents. The algorithm for computing the

necessary perturbations in the switching probabilities for

the individual agents that guarantee convergence of the

observed swarm state to a desired distribution. A simulation

example is presented to illustrate the concept.

Future research is planned to pursue the following areas.

1) Estimation of a rigorous upper bound on the magnitude of

the second largest eigenvalue of the computed transition

matrix: The convergence rate of the overall swarm is

faster if the bound is smaller and slows down as it

approaches unity from below.

2) Generalization to swarms of interacting agents: This is

analogous to extending the ideal gas formulation in basic

thermodynamics to that of real gases and is of enormous

importance from the implementation standpoint.

3) Investigation of the possibility of executing the proposed

algorithm in a distributed manner rather than on an

external supervisor

4) Resolution of practical implementation issues concerning

observation delays, broadcast bandwidth limitations etc.
prior to deployments in real-world systems
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