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Abstract—A data-driven procedure is used to find linguistic 
rules that describe a dynamic process. In order to select valid 
rules, the concept of trip is proposed to reveal a rule status in a 
Truth Space Diagram (TSD). Based upon the trip, a normalized 
metric is proposed to assess a rule, which then makes the 
comparison possible among rules with the same antecedent but 
conflicting consequents. In addition, a novel rule structure is 
proposed to include linguistic delays. The procedure is 
evaluated.  
 

I. INTRODUCTION 

pplications of linguistic rules appear in chemical process 
industry operation instructions and manuals, where 
knowledge is rendered via linguistic levels such as High, 

Low, Fast or Slow to be intuitively understandable. Generally, 
such knowledge requires no background in a particular 
modeling field (for instance, time series, linear systems, 
differential equations, etc.). The human understanding of the 
fundamentals is the primary source of the linguistic 
knowledge. However, expert knowledge is often limited to 
idealized experimental conditions; and, the empirical 
knowledge is not updated often enough to acknowledge 
process evolution. On the other hand, autonomous learning of 
linguistic rules[1] appears to be an efficient alternative to 
obtain knowledge directly from data. 
 There are generically two major approaches to categorize 
linguistic rules.  Local approaches learn each rule 
individually. In [2], the criteria of confidence factor and 
interestingness was used  to assess each rule.  By contrast, 
global approaches tend to learn a set of rules in a parallel 
fashion.  To assess validity of rule sets,  fidelity  [3, 4] and 
complexity of rule sets [4] were proposed. Local and global 
approaches do not exclude each other.  In [5],  a local 
approach selects rules to initialize a fuzzy system. Redundant 
rules are then merged and rules are refined in a global 
approach to simplify models and improve accuracy.  
However, the reviewed techniques are not directly applicable 
if process dynamics are considered. In dynamic systems, the 
data are no longer independent to each other in time. 
Dynamics and correlations among the data should be 
involved for rule assessment.  

Lags , time delays, especially linguistically stated delays 

are not usually  addressed in fuzzy systems, although delay is 
a major concern in system identification and is often seen or 
prescribed by experts in a rule such as: 
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IF the fluid is flowing rapidly THEN a downstream sensor 
can detect fluid composition change after a short delay. 
 

A number of research articles analyze fuzzy systems with a 
constant delay [6, 7] or an artificially assigned time-varying 
delay [8, 9]. In this paper, a new rule structure is proposed to 
include linguistic delays in consequents. Accordingly, the 
rules with linguistic delays are evaluated and assessed by a 
data-driven procedure. Basically, the techniques proposed in 
this paper tend to   simulate experts that could investigate the 
data generated from dynamic processes and prescribe 
linguistic rules with a delay. 

 

II. METHODOLOGY 

A. Rule Structures 
With any empirical modeling approach, users need 

determine the kind of variables (input, output-feedback, 
prediction-feedback, and model error feedback) as well as 
their dynamic orders in rules.  This task in this paper is 
referred as rule structure determination.  The rules could 
adopt structure directly from linear models and result in 
different types of rules such as finite impulse response (FIR), 
autoregressive with exogenous (ARX), output error (OE), 
and Box-Jenkins-like rules.  Among them, ARX and OE are 
favorable choices in nonlinear systems.  In general, further 
complication in structures would compound the already 
existing nonlinearities without worthwhile compensation in 
model qualities in terms of predictions errors and 
computational cost [10]. An ARX-like linguistic rule (for 
instance, the ith rule) is defined in Rule (1) 
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where, the time-dependent delay d(t) is added, which is 
specified in the consequent part by level Fi and used to 
determine the time lags between the input, u and output, y.  

The dynamic orders are nu and ny for u(t) and y(t) 
respectively, which need to be specified, too.  In nonlinear 
system identification, there are a few techniques could be 
used for this purpose. A Lipschitz index [11] is introduced to 
identify a comprehensive coverage of influential inputs while 
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the index becomes steady. A false nearest neighbors based 
approach that finds the embedding dimensions of a nonlinear 
time series is implemented to determine model orders of 
nonlinear input/output systems in [12]. On the other hand, 
practical experience could also suggest some otherwise 
simple ad hoc choices. In this paper, nu and ny are set to 0 and 
1 respectively,  which represent a (1, 0) ARX-like or a 
first-order plus time delay rule as shown in Rule (2). The (1, 0) 
choice is a common choice in chemical processes.  
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 In addition to the rule structures, the number and shapes of 
fuzzy sets for u(t) and y(t) need to be initialized as well, which 
determine the space partitions in u and y. Unsupervised 
learning approaches are probable choices if rules are to be 
used for classification [10]. However, heuristics in 
unsupervised learning suggests nothing about nonlinearities 
that is important in modeling tasks. This work hence starts 
with a uniform partition, which is not only simple but also a 
reasonable initialization if users know nothing about the 
underlying nonlinearity between u and y. 
  

B. Truth Analysis 
Truth analysis quantifies the truth of antecedent (TA) and 

consequent (TC) in a rule using observed data. To compute 
TA, users need to know the membership function values of 
input variables to their fuzzy sets. The fuzzy set Ai for u(t)  is 
described by a Gaussian membership function with the center 
at ci and the length of σi. The membership function value of 
u(t) to Ai is then defined by  
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 If the AND conjunction is interpreted as a product operator, 
the TA of Rule (2) is then defined by 
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where d(t) is unknown and not measured. In this work, 
however, the range of d(t) is assumed to be available. Given 
the minimum and maximum d(t) are integers d0 and dn 
respectively, an average truth of antecedent ( TA ) is then 
evaluated over all possible delays  
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 Following the similar approach, the average truth of 
consequent (TC ) is defined by 
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where ( )( )TC iE

y y tμ=  in Rule (2) since it has only one 

output. 
 
C. Rule Assessments 
TA and TC are able to tell how good a rule is. A Truth 

Space Diagram (TSD) [13] that is basically a plot of TA and 
TC with four disjointed quadrants, as shown in Figure 1, is 
used as a qualitative tool for this purpose.   
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Fig 1. TSD with four quadrants split at β = 0.5 and illustration of a validating 
trip in Q-I and an invalidating trip in Q-IV 

 
Generally, there is no restriction on how to split a TSD into 

4 quadrants. Users are free to choose preferred truth threshold 
(β), which is 0.5 in the illustrated example. At each sampling 
time one can calculate TA and TC. The TSD then reveals the 
paths of points as the process evolves in time and reveals 
validity of an individual rule. In this paper, completeness and 
parsimoniousness are assumed on rules structures. If the data 
expresses a rule, the rule will have a path within Q-I. 
Therefore, markers in Q-I validate a rule. Markers in Q-IV 
invalidate it. Markers in Q-II and Q-III are not directly 
helpful for rule assessment due to low TA. Logically, it is not 
possible to validate or invalidate a hypothesis if its 
proposition is not met. A summary is given in [14] to enlist 
other possibilities of occurrence of TA-TC in each quadrant. 
For instance, the markers in Q-II might be due to antecedent 
over-specification of an otherwise good rule.  

Random noise or spurious events could place a marker in 
quadrants. In this paper, a trip is a segment of a path of 
markers into a particular quadrant. In this work, p is the 
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minimum number of sequential markers required to define a 
trip. Validating trips (TRI) and invalidating trips (TRIV) are 
related to the quality of a rule. A validating trip is defined as a 
trip into Q-I that provides empirical evidence that the rule is 
consistent with data. An invalidating trip is defined as a trip 
into Q-IV, which reveals the inconsistence of a rule with data.  

With trips being defined, a simple metric is proposed to 
assess a rule so that comparison could be made in rules with 
same antecedent but conflicting consequents. The metric is 
based on following two quantities 
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where, L is the length of a trip (number of sequential markers 
along a trip) and should be greater than or equal to p.  lI and lIV 
are the numbers of validating trips in Q-I and invalidating 
trips in Q-IV. Accordingly, Iα  and IVα are the total number 
of sequential markers in all validating and invalidating trips. 
Based on Iα  and IVα , a normalized metric is then defined as 
below to assess a rule  
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The q-metric reveals the consistence of a rule with 

observed process behavior and is normalized from 0 to 1.  
 

III. RULES SELECTION AND VALIDATING 

Rules of a fuzzy system could be prescribed by experts. 
The experts’ knowledge has to be thorough so that the 
prescribed rules are able to describe the process behavior 
completely. Often, such a comprehensive prescription is not 
available. Alternatively, data-driven procedures could be 
taken to find all rules automatically. Heuristics based 
stochastic schemes are proposed for searching efficiency [1]. 
In this work, in order to obtain the optimal results, an 
exhaustive search scheme is used instead. The exhaustive 
search covers all antecedents and finds each antecedent the 
best consequent that has the highest q-metric (8).  The 
q-metric would select only and all valid rules expressed in the 
data. 

The validation of the selected rules could be conducted by 
comparing against experts’ knowledge, flow sequences as 
well as material or energy balance constraints, etc. The 
validation could also be conducted by comparing the 
predictions of the fuzzy system consisting of selected rules 
against the output measurements. In order to predict using the 
selected rules, Rule (2) is decoupled into two rules as below 
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where the fuzzy system with Rule (9) computes y(t) and Rule 
(10) computes d(t). Unfortunately, calculating d(t) is 
inapplicable since the d(t) is required to determine u(t-d(t)) in 
order to compute itself. This dilemma could be resolved by 
having the d(t) computation related to y(t-1) only, which 
results in following rules defined in Rule (11) 
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The simplification not only makes the computation possible 
but also is justifiable for transportation delays. For instance, if 
the input is a flowrate, the transportation delay d(t) is related 
to the past input from t-d(t) to t and the relation between 
u(t-d(t)) and d(t) is insignificant. Therefore, in Rule (10), the 
only variable that influences d(t) significantly is y(t-1) Since 
y(t-1) is somehow related to the delayed input, d(t) and y(t-1) 
are indirectly related.  

The computation starts with the time delay with the 
deffuzificaiton in [15] as below 
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where is the predicted time delay of d(t) and r is the 
number of rules. 
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y(t-1) is the only variable in the antecedent.  is the weight 
associated with the ith rule and represents contribution of the 
rule to the fuzzy system. Generally, more certain a rule is, the 
weight is higher.   and  are centroid and volume of the 
fuzzy set Fi and are defined by 
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iV generally represents the uncertainty [15] of a rule and 

therefore relates to rule weights inversely. The exact best 

relation between and is case dependent. In this work, 
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 is ( )-0.9 and the relation is found after several trials of 
different exponents between -2 and 0.   

d
iV

( )t

The d(t) estimate is used to evaluate TA in the y(t) fuzzy 
system  as below  
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with ( )y

i tTA  evaluated, defuzzificaton is applied again to 

obtain to  the output prediction 
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The performance index is then defined by a normalized 

squared error (nse) 
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where  is the output prediction and y  is the time 
average of y(t).   

 

IV. CASE STUDY  

In this section, the linguistic rules are selected and 
validated for a fluid mixing process.  

Figure 2 illustrates a fluid mixing process, where fluid with 
different temperatures (T1 and T2) and flowrates (F1 and F2) 
are mixed. In this process the T3 response to any of the 4 
inputs is nonlinear. The response delay of T3 to a process 
change is dependent on the F1+F2 history. This process has 
both nonlinear gain and dynamics, yet they are simple and 
well-understood,  making it an ideal testing case. In this paper, 
a simplified situation is considered instead, where T1, T2 and 
F2 are constants and only the dynamics of F1 and T3 are 
considered.  

 

 
Fig 2. The fluid mixing process 

 
Figure 3 presents time-series data of input, F1 (u), and 

output, T3 (y), data. A random signal is added to u(t) to 
simulate flowrate measurement noise. 
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Fig 3.a. The input signal F1(m/sec) 
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Fig 3.b.   The output response of T3 (�) 

 
 In this case, delays are assumed to be integer multiples of 
sampling interval between 0 and 20. Each variable is assigned 
three fuzzy membership functions labeled as High (H), 
Medium (M) and Low (L). The resulting specification of 
membership functions for u and y are listed in Table I, where 
“c” and σ represent the center and width of Gaussian 
membership functions. 
 

TABLE I.  
MEMBERSHIP FUNCTION PARAMETERIZATION 

 c σ 
u (L) 0.94 1.9433 
u (M) 5.52 1.9433 
u(H) 10.09 1.9433 
y (L) 64.59 4.64 
y (M) 75.51 4.64 
y(H) 86.43 4.64 
d(L) 1.0 4.03 

d (M) 10.5 4.03 
d(H) 20.0 4.03 

 
With the truth threshold of 0.52 and the minimum number 

of sequential markers of 10, the following 8 rules in Table II 
are selected.  

Based upon the process characteristics, the output, T3, 
should continuously change, which implies that adjacent T3 
measurements differ infinitesimally. This fundamental 
dynamical restriction is clearly observed in the selected rules, 
where each rule has a pair of identical fuzzy levels for y(t-1) 
in antecedents and y(t) in consequents. 

There could be 9 total rules in Table II; however, all rules 
are reported except the one with Medium u(t-d(t)) and Low 
y(t-1). The reason is that there is not sufficient data in the 
experimental sequence of Figure 3 to express that antecedent.  
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TABLE II.  

SELECT 8 RULES WITH β OF  0.25 AND p OF 10 

Rule u(t-d(t)) y(t-1) y(t) d(t) 

1 L L L H 

2 L M M L 

3 L H H L 

4 M M M L 

5 M H H H 

6 H L L L 

7 H M M L 

8 H H H H 

 
A fuzzy system with the 8 selected rules is used for 

prediction as shown in Figure 4, where prediction is dashed 
line of yhat(t). The normalized squared error (nse) is 0.0093 
oC2. 
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Fig.4 Output prediction yhat vs. output  measurement y using selected 8 rules 

 
In order to explore the validity of the selected rules to 

validate the proposed technique, the following comparison is 
made by replacing some of the 8 selected rules with 
unselected rules. For instance, if High y(t) is replaced by 
Medium y(t) in the consequent of the first rule, the resulting 
nse is then 0.2483 oC2. As observed in Figure 5, the 
replacement results in a significant process-model mismatch 
between 200 and 400 seconds. 
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Fig.5 Output prediction yhat vs. output  measurement y with the replacement 
of the Rule 1 by an unselected one  

 

V. DISCUSSION AND PERSPECTIVES 

As mentioned in Section IV, two threshold numbers are 
chosen in order to count trips, the truth threshold β to split a 
TSD into 4 quadrants and the minimum number of sequential 
markers, p, to define a trip. It is desired to have the algorithm 
to be robust to the choice of them.  

 The initial β might be easy to set if users have any 
preference for truth value, like 0.52 used in this paper. The 
initial choice of p should be based on the number of samples 
to reject spurious events.  For the fluid mixing process, the 
following experimental study is conduced over a number of 
choices of p, where it is observed that a wide range of choices 
of p from 5 to 15 are acceptable with nse at 0.0093 oC2. It 
could conclude that the proposed technique is robust to the 
choice of p as long as it is not any small or large extreme 
numbers.  An underestimated p might cause uncertainty in 
counting trips and produce unqualified trips, especially when 
there is presence of process noise. Several random markers 
(less than the desired trip length) might “jump” into the Q-I to 
be recognized as a validating trip due to noise. An 
inappropriately large p makes it very difficult to find a trip, 
which makes the algorithm unable to assess rules or result in 
statistically insignificant selection with far less number of 
trips.  
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Fig. 6 Influence of the minimum number of sequential markers, p, on the 
prediction ability of the resulting fuzzy system 
 
 Figure 7 shows the experimental investigation of influence 
of β on resulting fuzzy systems given p at 10 as a reasonable 
value suggested by Figure 6.  
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Fig. 7 Influence of the truth threshold, β,  on the prediction ability of the 
resulting fuzzy system 
 As for the β, it seems that one does not have as many 
choices as for p. As observed in Figure 7, there are only two 
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acceptable β, 0.52 and 0.62 with nse at 0.0093 and 0.0094 
respectively. Fortunately, the β choice of 0.52 or 0.62 meets 
our intuition on truth. As a matter of fact, inappropriately 
small β would behave as poorly as too large β since both make 
no distinction on validating and invalidating trips. A too small 
β labels all trips as validating ones while an inappropriately 
large β admit no validating trips at all. 
 In addition to the above mentioned choices, other choices 
have to be made based on users’ preference. The proposed 
technique has no restriction on choice of membership 
functions, although Gaussian functions are preferred in this 
work. There is neither restriction on types of logical operators 
for AND conjunction. A good summary of possible choices is 
found in [16], where every technique could be applied. In this 
paper, the choice of product operator is due to its well-known 
characteristics for better numerical accuracy [15] as well as 
the differentiability of the resulting fuzzy system, which 
could be further exploited to optimize model parameters. 
Instead of uniform partition of input space, other heuristics 
could certainly be applied if users prefer.  
 In this work, a simple rule structure, (1,0) ARX is applied. 
As mentioned in Section II, other types of rule structures (OE, 
ARMA and Box-Jenkins) could also be used. However, users 
should be cautious in using complex rule structures. The 
exponential growth of computational cost would easily make 
a complex choice inapplicable. For most cases, especially 
chemical processes, the preference is set to ARX or OE 
structure. 

VI. CONCLUSION 
The use of the Truth Space Diagram and a q-metric to 

select valid rules is demonstrated in a case study of a fluid 
mixing process. The proposed procedure is able to discover 
valid rules that produce useful predictive models when 
combined as a rule set.  In addition, the technique is robust to 
the algorithm configurations. 
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