
Optimal Path-planning Under Finite Memory Obstacle Dynamics

Based on Probabilistic Finite State Automata Models†

Ishanu Chattopadhyay‡ Asok Ray‡

ixc128@psu.edu axr2@psu.edu

Abstract— The ν⋆-planning algorithm is generalized to handle finite
memory obstacle dynamics. A sufficiently long observation sequence of
obstacle dynamics is algorithmically compressed via Symbolic Dynamic
Filtering to obtain a probabilistic finite state model which is subsequently
integrated with the navigation automaton to generate an overall model
reflecting both navigation constraints and obstacle dynamics. A ν⋆-based
solution then yields a deterministic plan that maximizes the difference
of the probabilities of reaching the goal and of hitting an obstacle. The
approach is validated by simulated solution of dynamic mazes.

Index Terms— Language Measure; Probabilistic Finite State Ma-
chines; Robotics; Path Planning; Supervisory Control

1. I &M

Recently, a novel path planning algorithm ν⋆ was reported that

models the navigation problem in the framework of Probabilistic

Finite State Machines and computes robust optimal plans via op-

timization of the PFSA from a strictly control-theoretic viewpoint.

In this paper, we present a significant improvement; ν⋆ is generalized

to handle finite memory obstacle dynamics. A sufficiently long

observation sequence of obstacle movement in terms of an evolving

obstacle map is symbolically compressed to obtain a finite state

probabilistic model of obstacle dynamics which is then used to

compute optimal plans in dynamic cluttered environments. It is

important to note that the problem considered in this paper is different

from the ones that modify plans on-the-fly (e.g. D⋆), to incorporate

newly learnt information about obstacle locations; in this paper we

propose an approach for optimally incorpoating apriori knowledge of

the expected dynamical evolution of obstacles. The key advantages

are:

1) Pre-processing is cheap: The cellular decomposition required by

ν⋆ is simple and computationally cheap. The cells are mapped to

PFSA states which are defined to have identical connectivity via

symbolic inter-state transitions.

2) Fundamentally different from search: ν⋆ optimizes the resultant

PFSA via a iterative sequence of combinatorial operations which

elementwise maximizes the language measure vector [1][2].

3) Computational efficiency: The time complexity of each iteration

step can be shown to be linear in problem size implying signif-

icant numerical advantage over search-based methods for high-

dimensional problems.

4) Global monotonicity: The solution iterations are globally mono-

tonic. The final waypoint sequence is generated essentially by

following the measure gradient which is maximized at the goal.

The measure gradient is reminiscent of potential field methods

[3]. However, ν⋆ automatically generates the measure gradient; no

potential function is necessary. Furthermore, the potential function

based planners often get trapped in local minimum which can be

shown to be a mathematical impossibility for ν⋆.

The paper is organized in five sections including the present one.

Section 2 briefly explains the language-theoretic models considered

in this paper, reviews the language-measure-theoretic optimal control

†This work has been supported in part by the U.S. Army Research
Laboratory and the U.S. Army Research Office under Grant No. W911NF-
07-1-0376 and by the Office of Naval Research under Grant No. N00014-08-
1-380. Any opinions, findings and conclusions or recommendations expressed
in this publication are those of the authors and do not necessarily reflect the
views of the sponsoring agencies.
‡The Pennsylvania State University, University Park, PA 16802, USA.

of probabilistic finite state machines and presents the necessary

details of the reported ν⋆ algorithm. Section 3 presents the approach

for symbolic compression of observed obstacle dynamics. Section 4

formulates the integration of the obstacle automaton and the navi-

gation automaton to generate the overall model to be subsequently

optimized via ν⋆ planning. Simulation examples are included for

illustration. The paper is summarized and concluded in Section 5

with recommendations for future work.

2. LM-O

This section summarizes the signed real measure of regular lan-

guages; the details are reported in [1]. Let Gi ≡ 〈Q,Σ, δ, qi,Qm〉 be a

trim (i.e., accessible and co-accessible) finite-state automaton model

that represents the discrete-event dynamics of a physical plant, where

Q = {qk : k ∈ IQ} is the set of states and IQ ≡ {1, 2, · · · , n} is the

index set of states; the automaton starts with the initial state qi; the

alphabet of events is Σ = {σk : k ∈ IΣ}, having Σ
⋂
IQ = ∅ and IΣ ≡

{1, 2, · · · , ℓ} is the index set of events; δ : Q×Σ→ Q is the (possibly

partial) function of state transitions; and Qm ≡ {qm1
, qm2
, · · · , qml

} ⊆ Q

is the set of marked (i.e., accepted) states with qmk
= q j for some

j ∈ IQ. Let Σ∗ be the Kleene closure of Σ, i.e., the set of all finite-

length strings made of the events belonging to Σ as well as the

empty string ǫ that is viewed as the identity of the monoid Σ∗ under

the operation of string concatenation, i.e., ǫs = s = sǫ. The state

transition map δ is recursively extended to its reflexive and transitive

closure δ : Q × Σ∗ → Q by defining ∀q j ∈ Q, δ(q j, ǫ) = q j and

∀q j ∈ Q, σ ∈ Σ, s ∈ Σ⋆, δ(qi, σs) = δ(δ(qi, σ), s)

Definition 2.1: The language L(qi) generated by a DFSA G initial-

ized at the state qi ∈ Q is defined as: L(qi) = {s ∈ Σ
∗ | δ∗(qi, s) ∈ Q}

The language Lm(qi) marked by the DFSA G initialized at the state

qi ∈ Q is defined as: Lm(qi) = {s ∈ Σ
∗ | δ∗(qi, s) ∈ Qm}

Definition 2.2: For every q j ∈ Q, let L(qi, q j) denote the set of all

strings that, starting from the state qi, terminate at the state q j, i.e.,

Li, j = {s ∈ Σ
∗ | δ∗(qi, s) = q j ∈ Q}

The formal language measure is first defined for terminating

plants [4] with sub-stochastic event generation probabilities i.e. the

event generation probabilities at each state summing to strictly less

than unity.

Definition 2.3: The event generation probabilities are specified by

the function π̃ : Σ⋆× Q→ [0, 1] such that ∀q j ∈ Q,∀σk ∈ Σ, ∀s ∈ Σ⋆,

(1) π̃(σk, q j) , π̃ jk ∈ [0, 1);
∑

k π̃ jk = 1 − θ, with θ ∈ (0, 1);

(2) π̃(σ, q j) = 0 if δ(q j, σ) is undefined; π̃(ǫ, q j) = 1;

(3) π̃(σk s, q j) = π̃(σk, q j) π̃(s, δ(q j, σk)).

The n × ℓ event cost matrix is defined as: Π̃|i j = π̃(qi, σ j)

Definition 2.4: The state transition probability π : Q × Q →

[0, 1), of the DFSA Gi is defined as follows: ∀qi, q j ∈ Q, πi j =∑

σ∈Σ s.t. δ(qi,σ)=q j

π̃(σ, qi) The n × n state transition probability matrix

is defined as Π| jk = π(qi, q j)

The set Qm of marked states is partitioned into Q+m and Q−m, i.e.,

Qm = Q+m ∪ Q−m and Q+m ∩ Q−m = ∅, where Q+m contains all good

marked states that we desire to reach, and Q−m contains all bad marked

states that we want to avoid, although it may not always be possible

to completely avoid the bad states while attempting to reach the

good states. To characterize this, each marked state is assigned a

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThA13.3

978-1-4244-4524-0/09/$25.00 ©2009 AACC 2403

real value based on the designer’s perception of its impact on the

system performance.

Definition 2.5: The characteristic function χ : Q → [−1, 1] that

assigns a signed real weight to state-based sublanguages L(qi, q)

is defined as: ∀q ∈ Q, χ(q) ∈



[−1, 0), q ∈ Q−m
{0}, q < Qm

(0, 1], q ∈ Q+m

The state

weighting vector, denoted by χ = [χ1 χ2 · · · χn]T , where χ j ≡ χ(q j)

∀ j ∈ IQ, is called the χ-vector. The j-th element χ j of χ-vector is

the weight assigned to the corresponding terminal state q j.

In general, the marked language Lm(qi) consists of both good and

bad event strings that, starting from the initial state qi, lead to Q+m
and Q−m respectively. Any event string belonging to the language

L0 = L(qi) − Lm(qi) leads to one of the non-marked states belonging

to Q − Qm and L0 does not contain any one of the good or bad

strings. Based on the equivalence classes defined in the Myhill-

Nerode Theorem, the regular languages L(qi) and Lm(qi) can be

expressed as: L(qi) =
⋃

qk∈Q
Li,k and Lm(qi) =

⋃
qk∈Qm

Li,k = L+m ∪ L−m
where the sublanguage Li,k ⊆ Gi having the initial state qi is uniquely

labelled by the terminal state qk, k ∈ IQ and Li, j ∩ Li,k = ∅ ∀ j , k;

and L+m ≡
⋃

qk∈Q
+
m

Li,k and L−m ≡
⋃

qk∈Q
−
m

Li,k are good and bad

sublanguages of Lm(qi), respectively. Then, L0 =
⋃

qk<Qm
Li,k and

L(qi) = L0 ∪ L+m ∪ L−m.

A signed real measure µi : 2L(qi) → R ≡ (−∞,+∞) is constructed

on the σ-algebra 2L(qi) for any i ∈ IQ; interested readers are referred

to [1] for the details of measure-theoretic definitions and results.

With the choice of this σ-algebra, every singleton set made of an

event string s ∈ L(qi) is a measurable set. By Hahn Decomposition

Theorem [5], each of these measurable sets qualifies itself to have

a numerical value based on the above state-based decomposition of

L(qi) into L0(null), L+(positive), and L−(negative) sublanguages.

Definition 2.6: Let ω ∈ L(qi, q j) ⊆ 2L(qi). The signed real mea-

sure µi of every singleton string set {ω} is defined as: µi({ω}) ≡

π̃(ω, qi)χ(q j). The signed real measure of a sublanguage Li, j ⊆ L(qi)

is defined as: µi, j ≡ µ
i(L(qi, q j)) =

(∑
ω∈L(qi ,q j)

π̃[ω, qi]
)
χ j

Therefore, the signed real measure of the language of a DFSA Gi

initialized at qi ∈ Q, is defined as µi ≡ µ
i(L(qi)) =

∑
j∈IQ
µi(Li, j).

It is shown in [1] that the language measure can be expressed as

µi =
∑

j∈IQ
πi jµ j + χi. The language measure vector, denoted as µ

= [µ1 µ2 · · · µn]T , is called the µ-vector. In vector form, we have

µ = Πµ + χ whose solution is given by µ = (I − Π)−1χ The inverse

exists for terminating plant models [4] because Π is a contraction

operator [1] due to the strict inequality
∑

j Πi j < 1. The residual

θi = 1 −
∑

j Πi j is referred to as the termination probability for

state qi ∈ Q. We extend the analysis to non-terminating plants with

stochastic transition probability matrices (i.e. with θi = 0, ∀qi ∈ Q)

by renormalizing the language measure [1] with respect to the

uniform termination probability of a limiting terminating model as

described next.

Let Π̃ and Π be the stochastic event generation and transition

probability matrices for a non-terminating plant Gi = 〈Q,Σ, δ, qi,Qm〉.

We consider the terminating plant Gi(θ) with the same DFSA

structure 〈Q, Σ, δ, qi,Qm〉 such that the event generation probability

matrix is given by (1 − θ)Π̃ with θ ∈ (0, 1) implying that the state

transition probability matrix is (1 − θ)Π.

Definition 2.7: (Renormalized Measure:) The renormalized mea-

sure νi
θ

: 2L(qi (θ)) → [−1, 1] for the θ-parametrized terminating

plant Gi(θ) is defined as: ∀ω ∈ L(qi(θ)), ν
i
θ
({ω}) = θµi({ω}) The

corresponding matrix form is given by νθ = θ µ = θ [I − (1 −

θ)Π]−1χ with θ ∈ (0, 1). We note that the vector representation allows

for the following notational simplification νiθ(L(qi(θ))) = νθ
∣∣∣
i

The

renormalized measure for the non-terminating plant Gi is defined to

be limθ→o+ ν
i
θ
.

A. Event-driven Supervision of PFSA

Plant models considered in this paper are deterministic finite state

automata (plant) with well-defined event occurrence probabilities. In

other words, the occurrence of events is probabilistic, but the state

at which the plant ends up, given a particular event has occurred,

is deterministic. Since no emphasis is placed on the initial state and

marked states are completely determined by χ, the models can be

completely specified by a sextuple as: G = (Q,Σ, δ, Π̃, χ,C)
Definition 2.8: (Control Philosophy) If qi −→

σ
qk , and the event σ

is disabled at state qi, then the supervisory action is to prevent the

plant from making a transition to the state qk , by forcing it to stay

at the original state qi. Thus disabling any transition σ at a given

state q results in deletion of the original transition and appearance

of the self-loop δ(q, σ) = q with the occurrence probability of σ from

the state q remaining unchanged in the supervised and unsupervised

plants. For a given plant, transitions that can be disabled in the sense

of Definition 2.8 are defined to be controllable transitions. The set of

controllable transitions in a plant is denoted C . Note controllability

is state-based.

B. The Optimal Supervision Problem: Formulation & Solution

A supervisor disables a subset of the set C of controllable

transitions and hence there is a bijection between the set of all

possible supervision policies and the power set 2C . That is, there

exists 2|C | possible supervisors and each supervisor is uniquely

identifiable with a subset of C and the language measure ν allows a

quantitative comparison of different policies.

Definition 2.9: For an unsupervised plant G = (Q,Σ, δ, Π̃, χ,C),

let G† and G‡ be the supervised plants with sets of disabled

transitions, D† ⊆ C and D‡ ⊆ C , respectively, whose measures

are ν† and ν‡. Then, the supervisor that disables D† is defined to

be superior to the supervisor that disables D‡ if ν† ≧(Elementwise) ν
‡

and strictly superior if ν† >(Elementwise) ν
‡.

Definition 2.10: (Optimal Supervision Problem) Given a (non-

terminating) plant G = (Q,Σ, δ, Π̃, χ,C), the problem is to compute a

supervisor that disables a subset D⋆ ⊆ C , such that ν⋆ ≧(Elementwise)
ν† ∀D† ⊆ C where ν⋆ and ν† are the measure vectors of the

supervised plants G⋆ and G† under D⋆ and D†, respectively.

Definition 2.11: We note that algorithms reported in [2] compute a

lower bound for the critical termination probability for each iteration

of such that the disabling/enabling decisions for the terminating plant

coincide with the given non-terminating model. We define θmin =

mink θ
[k]
⋆ where θ

[k]
⋆ is the termination probability computed in the kth

iteration.

Definition 2.12: If G and G⋆ are the unsupervised and supervised

PFSA respectively then we denote the renormalized measure of the

terminating plant G⋆(θmin) as νi
#

: 2L(qi) → [−1, 1] (See Defini-

tion 2.7). Hence, in vector notation we have: ν# = θmin[I − (1 −

θmin)Π#]−1χ where Π# is the transition probability matrix of the

supervised plant G⋆, we note that ν# = ν
[K] where K is the total

number of iterations required for convergence.

C. Formulating A PFSA Model of Autonomous Navigation

Purely for expositional simplicity, we consider a 2D workspace

for the mobile agents. The workspace is first discretized into a finite

grid. The underlying theory does not require the grid to be regular;

however for the sake of clarity we shall present the formulation under

the assumption of a regular grid. The obstacles are represented as

blocked-off grid locations in the discretized workspace. We specify

a particular location as the fixed goal and consider the problem of

finding optimal and feasible paths from arbitrary initial grid locations

in the workspace. Figure 1(a) illustrates the basic problem setup.

We further assume that at any given time instant the robot occupies

2404

Fig. 1. (a) shows the vehicle (marked "R") with the obstacle positions shown
as black squares. The green dot identifies the goal (b) shows the finite state
representation of the possible one-step moves from the current position. (d)
shows uncontrollable transitions "u" from blocked states

one particular location (i.e. a particular square in Figure 1(a)). As

shown in Figure 1, the robot has eight possible moves from any

interior location. The possible moves are modeled as controllable

transitions between grid locations since the robot can "choose" to

execute a particular move from the available set. We note that the

number of possible moves (8 in this case) depends on the chosen

fidelity of discretization of the robot motion and also on the intrinsic

vehicle dynamics. The complexity results presented in this paper

only assumes that the number of available moves is significantly

smaller compared to the number of grid squares, i.e., the discretized

position states. Specification of inter-grid transitions in this manner

allows us to generate a finite state automaton (FSA) description of

the navigation problem. Each square in the discretized workspace

is modeled as a FSA state with the controllable transitions defining

the corresponding state transition map. The formal description of the

model is as follows:

Let GN = (Q,Σ, δ, Π̃, χ) be a Probabilistic Finite State Automaton

(PFSA). In the absence of dynamic uncertainties and state estimation

errors, the alphabet contains one uncontrollable event i.e. Σ =

ΣC

⋃
{u} such that ΣC is the set of controllable events corresponding

to the possible moves of the robot. The uncontrollable event u is

defined from each of the blocked states and leads to q⊖ which is a

deadlock state. All other transitions (i.e. moves) are removed from

the blocked states. Thus, if a robot moves into a blocked state, it

uncontrollably transitions to the deadlock state q⊖ which is physically

interpreted to be a collision. We further assume that the robot fails to

recover from collisions which is reflected by making q⊖ a deadlock

state. We note that q⊖ does not correspond to any physical grid

location. The set of blocked grid locations along with the obstacle

state q⊖ is denoted as QO j Q. Figure 1 illustrates the navigation

automaton for a nine state discretized workspace with two blocked

squares. Next we augment the navigation FSA by specifying event

generation probabilities defined by the map π̃ : Q × Σ → [0, 1] and

the characteristic state-weight vector specified as χ : Q → [−1, 1].

The characteristic state-weight vector [2] assigns scalar weights to

the PFSA states to capture the desirability of ending up in each state.

Definition 2.13: The characteristic weights are specified for the

navigation automaton as follows: χ(qi) =



−1 if qi ≡ q⊖
1 if qi is the goal
0 otherwise

In the absence of dynamic constraints and state estimation uncertain-

ties, the robot can "choose" the particular controllable transition to

execute at any grid location. Hence we assume that the probability

of generation of controllable events is uniform over the set of moves

defined at any particular state.

Definition 2.14: Since there is no uncontrollable events defined

at any of the unblocked states and no controllable events defined

at any of the blocked states, we have the following consistent

specification of event generation probabilities: ∀qi ∈ Q, σ j ∈ Σ,

π̃(qi, σ j) =

{
1

No. of controllable events at qi
, if σ j ∈ ΣC

1, otherwise
The boundaries are handled by "surrounding" the workspace with

blocked position states shown as "boundary obstacles" in the upper

part of Figure 1(c).

Definition 2.15: The navigation model id defined to have identical

connectivity as far as controllable transitions are concerned implying

that every controllable transition or move (i.e. every element of ΣC)

is defined from each of the unblocked states.

D. Problem Solution as PFSA Optimization

The above-described probabilistic finite state automaton (PFSA)

based navigation model allows us to compute optimally feasible path

plans via the language-measure-theoretic optimization algorithm [2]

described in Section 2. We refer to the language-measure-theoretic

algorithm as ν⋆ in the sequel. For the unsupervised model, the

robot is free to execute any one of the defined controllable events

from any given grid location (See Figure 1(b)). The optimization

algorithm selectively disables controllable transitions to ensure that

the formal measure vector of the navigation automaton is element-

wise maximized. Physically, this implies that the supervised robot is

constrained to choose among only the enabled moves at each state

such that the probability of collision is minimized with the probability

of reaching the goal simultaneously maximized. Although ν⋆ is based

on optimization of probabilistic finite state machines, it is shown that

an optimal and feasible path plan can be obtained that is executable

in a purely deterministic sense.

Let GN be the unsupervised navigation automaton and G⋆
N

be

the optimally supervised PFSA obtained by ν⋆. We note that νi
#

is

the renormalized measure of the terminating plant G⋆
N

(θmin) with

substochastic event generation probability matrix Π̃θmin = (1− θmin)Π̃.

Denoting the event generating function (See Definition 2.3) for G⋆
N

and G⋆
N

(θmin) as π̃ : Q × Σ → Q and π̃θmin : Q × Σ → Q

respectively, we have π̃θmin (qi, ǫ) = 1 and ∀qi ∈ Q, σ j ∈ Σ, π̃
θmin (qi, σ j) =

(1 − θmin)π̃(qi, σ j)

Notation 2.1: For notational simplicity, we use νi
#
(L(qi)) = ν#(qi) =

ν# |i where ν# = θmin[I − (1 − θmin)Π#]−1χ

Definition 2.16: (ν⋆-path:) A ν⋆-path ρ(qi, q j) from state qi ∈ Q
to state q j ∈ Q is defined to be an ordered set of PFSA states ρ =
{qr1
, · · · , qrM

} with qrs ∈ Q, ∀s ∈ {1, · · · ,M},M ≤ C(Q) such that

qr1
= qi, qrM

= q j, ∀i, j ∈ {1, · · · ,M}, qri
, qr j

(1a)

∀s ∈ {1, · · · ,M},∀t ≦ s, ν#(qrt
) ≦ ν#(qrs

) (1b)

We reproduce without proof the following key results pertaining to

ν⋆- planning as reported in [6].

1) There exists an enabled sequence of transitions from state qi ∈

Q \ QO to q j ∈ Q \ {q⊖} in G⋆
N

if and only if there exists a

ν⋆-path ρ(qi, q j) in G⋆
N

.

2) For the optimally supervised navigation automaton G⋆
N

, we have

∀qi ∈ Q \ QO, L(qi) j Σ
⋆
C

3) (Obstacle Avoidance:) There exists no ν⋆-path from any un-

blocked state to any blocked state in the optimally supervised

navigation automaton G⋆
N

.

4) (Existence of ν⋆-paths:) There exists a ν⋆-path ρ(qi, qG) from

any state qi ∈ Q to the goal qG ∈ Q if and only if ν#(qi) > 0.

5) (Absence of Local Maxima:) If there exists a ν⋆-path from qi ∈ Q

to q j ∈ Q and a ν⋆-path from qi to qG then there exists a ν⋆-

path from q j to qG, i.e., ∀qi, q j ∈ Q

(
∃ρ1(qi, qG)

∧
∃ρ2(qi, q j)⇒

∃ρ(q j, qG)

)

3. O- I  O D

The ν⋆ algorithm assumes a known obstacle map to compute

the optimal plan. In this paper, we investigate scenarios where the

obstacle map varies with time and solve the problem under the

assumption that there exists a finite state symbolic representation

2405

of the obstacle dynamics. This requires that the number of possible

configurations for the obstacle locations be finitely bounded. Also,

if each configuration is mapped to an unique abstract symbol, then

the sequence obtained from a discrete observation sequence of the

dynamic obstacles, must have bounded memory.

A. Data-driven PFSA Construction Algorithms

The Data-driven PFSA construction approach is built upon the

concepts of Symbolic Dynamics [7], Probabilistic Finite State Au-

tomata [8], [9] and Pattern Recognition [10] as means to capture the

information on fast scale dynamical behavior in terms of symbol

sequences. Partitioning the space of process dynamics yields an

alphabet which is subsequently used to obtain symbol sequences

from time-series data. Among several papered algorithms [9], the

following are relevant for this paper:

1) Causal-State Splitting Reconstruction: CS S R [11] constructs

PFSA which belong to the class of sofic shifts [7] and has an a

priori unknown structure; it yields optimal pattern discovery in

the sense of mutual information [12].

2) Symbolic Dynamic Filtering:S DF [13] constructs PFSA which

belong to the more restricted class of shifts of finite type [7] and

has an a priori known structure that can be freely chosen.

Both algorithms stated above exhibits remarkable insensitivity to

spurious noise and exogenous disturbances due to:

• Inherent "coarse graining" [14] of the time series data in the

process of space partitioning [15].

• Very small variance in the estimated parameters of probability

distribution, which is a consequence of repeated recurrences of

paths in the graph of the finite state machine with a relatively

small number of states and a very large number of sample

points [1].

It is important to mention here that conventional HMM-based

approaches could be sensitive to variations in initial conditions

especially if the resulting model is initially off-phase with the

current behavior. Also, in Dynamic Bayesian Networks [16], the

state machines are hand-coded and the probabilities are estimated

with Expectation-Maximization algorithms that are computationally

much slower than either S DF or CS S R [9].

h1 h2

h3

h4

A | 0.8

B | 0.4 B | 0.2

A | 0.5 B | 0.5

A | 0.2

B | 0.8A | 0.6

B

A

Fig. 2. Symbolic Obstacle dynamics model generation: The left plat
illustrates the first few observed obstacle maps with the black spot denoting
the moving obstacle and gray denoting static obstacles. White denotes open
space. The plate on the right illustrates the constructed HO which is
shown to have 4 states and a two event alphabet {A,B}, where the maps
corresponding to A and B are also shown. Note M(h1) = M(h4) = {B} and
M(h2) =M(h3) = {A}

B. Symbolic Identification of Obstacle Dynamics

Let
{
Mi

}
i=1,...,N denote the discrete observed sequence of obstacle

maps with Mi being the map observed at the ith observation instant.

The observed sequence is symbolized by using Algorithm 1.

Note that Algorithm 1 generates both the symbolic sequence ωM

input : Model
{
Mi

}
i=1,...,N

output: Symbolic Sequence ωM , Alphabet ΣM

begin1

Let Σ = σ0;2

Assign M1 7→ σ0;3

Set k = 1;4

for i = 1 : N do5

for r = 1 : k do6

if d(Mi,Mr) < T then7

; /* d: appropriate metric, T: threshold */
Assign Mi 7→ σ where Mr 7→ σ;8

else9

ΣM = ΣM ∪ {σk+1}; /* Augment alphabet */10

k = k+1;11

Assign Mi 7→ σk;12

13

14

15

end16

Algorithm 1: Symbolic Observation Sequence Generation

and the appropriate alphabet ΣM . The size of the alphabet is

dependent on the value of the classification threshold T (See Line

7 of Algorithm 1). Thus, if the exact configuration space is infinite,

we obtain a finite state approximation by using a non-zero threshold

over an appropriate metric d. The exact metric is unimportant; if the

obstacle maps are represented as matrices, then d can be chosen

to be the infinity norm of the matrix difference. The generated

symbolic sequence can now be compressed to a PFSA. Note the

assumption that N < ∞ guarantees that one can always construct

a finite state model from ωM ; the trick, however, is to construct

one that has a small number of states and yet captures the relevant

obstacle dynamics. Here we assume that the sequence length N is

large enough for convergence of the PFSA construction algorithms.

In the sequel, we will assume that, inspite of the suboptimal output,

SDF is used for this PFSA construction. This choice simplifies the

approach to a considerable degree, as will be elucidated in the sequel.

Definition 3.1: The probabilistic obstacle automaton HO =

(QM ,ΣM , δM , Π̃M) is defined to be the PFSA obtained via Sym-

bolic Dynamic Filtering (SDF) on the symbolic observation sequence

ωM . As before, QM is the set of states, ΣM is the event alphabet,

δM : QM ×ΣM → QM is the transition map and Π̃M is the event

generation probability matrix.

Lemma 3.1: Given the comparison metric d(·, ·) and the classifi-

cation threshold T , each state qi ∈ QM of HO can be uniquely

associated with a set of observed obstacle maps M(qi) satisfying

∀Mr,Ms ∈ M(qi), d(Mr ,Ms) < T (2)

Proof: SDF output has a special structure which is genrally de-

noted as D-Markov PFSA models [13] or equivalently as Probabilistic

Suffix Automata [9]. PFSA states are right invariant equivalence

classes [17] of symbolic sequences; for D-Markov models we have

∀qi ∈ QM ,∃s, τ(qi) ∈ Σ
⋆
M
, s.t. qi ≡ {ω ∈ Σ

⋆
M

: ω = sτ(qi)} (3)

where τ(qi) is a unique string depending on qi. It follows that each

state qi in QM can be uniquely associated with a symbol from ΣM ,

namely the terminating symbol for τ(qi). The result then follows from

noting that each symbol in ΣM corresponds to a set of observed

obstacle maps that satisfy Eq.(2) (See Algorithm 1). r

Each observed obstacle map Mi is a specification of the obstacle

locations at the corresponding observation instant and therefore is

a specification of the characteristic weights on the states of the

navigation automaton (See Definition 2.13) at that instant. Let for

each Mi, the corresponding characteristic weight vector be denoted

as χMi . Once HO is constructed, we are required to assign the state

2406

characteristic weights, which, in light of Lemma 3.1, can be done

easily as follows:

Definition 3.2: The characteristic weights on the states of HO is

defined as follows:

∀hi ∈ QM , χ(hi) =
1

C(M(hi))

∑

Mr∈M(hi)

χMr (4)

where M(hi) is as defined in Eq. (2).

Thus, each hi ∈ QM can be associated with a single symbol

(Lemma 3.1), and the characteristic of hi quantifies an average effect

of all obstacle maps that are identified to this symbol by Algorithm 1.

The procedure is illustrated in Figure 2, where we end up with a 4

state HO and M(h1) = M(h4) = {B} and M(h2) = M(h3) = {A},

where A, B are the two distinct obstacle maps observed. Next we

integrate the constructed HO and the navigation automaton GN

to obtain the overall description of estimated obstacle dynamics and

navigation constraints and transitions in the PFSA framework.

4. I  N A & O A
We note that the event alphabet Σ defined by GN consists of

controllable transition (except the collision transition u), while ΣM

in HO consists of uncontrollable transitions that capture the obstacle

dynamics. Also, the generation probabilities (specified by Π̃M) of the

events in HO must be preserved in the integrated model, implying

that a simple product construction would not suffice. We employ the

a input-output automata [18] based approach to define the syntactics

of the integration. Namely, we define the states of the integrated

model to be of the type (q, h), where the first coordinate specifies

the current state in the underlying navigation model. The second

coordinate relates to the state of the obstacle dynamics. However,

we need two distinct states (q, h), (q, h◦) for the same underlying

navigation state q and the same state h of the obstacle dynamics to

capture the required segregation of navigation events and obstacle-

dynamics events. Thus for the state set Q� of the integrated model,

we have C(Q�) = 2C(Q)C(QM). It is important to note

that the obstacle locations in the modified model are specified by the

individual obstacle maps which evolve according to HO. Hence,

the navigation automaton GN = (Q,Σ, δ, Π̃, χ,C) no longer needs

to have the obstacle state q⊖. Hence, in the sequel, GN is assumed

to represent purely the navigation constraints and the uncontrollable

collision event u is eliminated from Σ. Also, note that this implies

every event in Σ is now controllable. The formal consruction is

presented next:
Definition 4.1: The integrated model denoted as GN � HO ,

(Q�, Σ�, δ�, Π̃�, χ�,C �) is constructed from the navigation au-
tomaton GN and the obstacle automaton HO by the following
relations. Note that Q◦

M
is an isomorphic copy of QM and h◦j is the

image of h j in the isomorphic copy.

(1) Q� = (Q × QM)
⋃(

Q × Q◦
M

)

(2) Σ� = Σ
⋃
ΣM

(3) ∀qi ∈ Q, h j ∈ QM , δ
�((qi, h j), σ) =

{
(δ(qi, σ), h◦

j
) , if σ ∈ Σ

Undefnd. , otherwise

(4) ∀qi ∈ Q, h◦j ∈ Q◦
M
,

δ�((qi, h
◦
j), σ) =

{
(qi, δM (h j, σ)) , if σ ∈ ΣM

Undefnd. , otherwise

(5) ∀qi ∈ Q, h j ∈ QM , Π̃
�((qi, h j), σ) =

{
Π̃(qi, σ) , if σ ∈ Σ
0 , otherwise

(6) ∀qi ∈ Q, h◦j ∈ Q◦
M
, Π̃�((qi, h

◦
j), σ) =

{
Π̃M (h j, σ) , if σ ∈ ΣM

0 , otherwise

(7) ∀qi ∈ Q, h j ∈ QM , χ
�((qi, h j)) = 0

(8) ∀qi ∈ Q, h◦j ∈ Q◦
M
, χ�((qi, h

◦
j)) = ξ(χM (h j), χ(qi))

where ξ : [0, 1]2 → [0, 1] is defined as ξ(a, b) =

{
a , if b = 0

b , otherwise

(9) σ ∈ Σ are controllable; σ ∈ ΣM are uncontrollable

It follows that χ�(q, h◦) is −1 if the location denoted by q is blocked

in the obstacle map currently active, and χ�(q, h◦) is 1, i.e., (q, h◦)

is a goal if q is the goal in the underlying navigation automaton and

it is not currently blocked. It is interesting to note that in the trivial

case of C(QM) = 1, i.e., where the obstacles are static, we obtain

twice the number of states as compared to GN. However, it can be

easily shown, that the integrated model obtained in this special case

is in fact a non-minimal realization [17] of GN.

A. ν⋆-Optimization of the Integrated PFSA

The integrated PFSA model GN�HO can be optimized to obtain

optimal plans in a straightforward manner by using the ν⋆ planning

algorithm. The semantics of the plan plan execution is however,

somewhat different. Algorithm 2 summarizes the overall approach.

We note that the computed optimal measure vector ν# induces

input : Observation sequence
{
Mi
}
i=1,...,N

output: Optimal plan and execution
begin1

Compute HO, GN , GN � HO;2

ν⋆-Optimize GN � HO and obtain ν#;3

Set initial state (q, h) ;4

while GOAL_NOT_REACHED do5

Compute W = {set of reachable states from (q, h)};6

Compute (qnext , h
◦) = argmax

w∈W

ν#(w ∈ W);
7

Move to (qnext , h
◦); /* Controllable Move */8

Set q = qnext ;9

Estimate current HO state hnext ;10

Move to (q, hnext); /* Uncontrollable Move */11

set h = hnext ;12

13

end14

Algorithm 2: Plan computation & Execution

a gradient on the state space Q�, which the robot can follow to

reach the goal. Thus the computed plan is not probabilistic; given the

current state, the plan deterministically specifies the next move. In the

case of static obstacles [6], it was shown that the planned path never

collides. However, in the generalized situation, this is not guaranteed

deterministically. Due to the symbolic compression of the obstacle

dynamics, there is always a small probability that the obstacle appears

where it is not generally expected, resulting in a small probability of

collision. The key point to be noted in Algorithm 2, is the alternating

sequence of controllable and uncontrollable moves. The robot can

decide which controllable move to execute; but not how the obstacle

map will evolve. However, incorporation of the symbolic dynamic

model of obstacle evolution in the planning phase implies that the

robot can decide upon the best controllable move at any point. Also,

there is the implicit assumption that the time scales of the obstacle

dynamics is slower compared to the move execution time scale for the

robot. This is critical, since, if the obstacle map switches faster than

than the robot can move, then the state estimates will be erroneous

leading to incorrect execution. We have the following result:

Proposition 4.1: The proposed planning and execution approach

solves the following optimization problem: Maximize Ψ = (℘G −

℘O) under the navigation constraints and observed history of

obstacle dynamics, where ℘GOAL is the probability of reaching the

goal and ℘OBS is the probability of hitting an obstacle.

Proof: We recall that the language-measure-theoretic optimiza-

tion of PFSA accomplishes the maximization of ℘Tχ where ℘ is

the stationary probability vector on the automaton states [2]. Since

χ(G) = 1 and χ(O) = −1 and all other states have zero

characteristic, it follows that Ψ gets maximized in the optimization.

r2407

0 10 20 30 40 50 60 70 80

0

5

10

15

20

25

30

(a)

0 10 20 30 40 50 60 70 80

0

5

10

15

20

25

30

(b)

0 10 20 30 40 50 60 70 80

0

5

10

15

20

25

30

(c)

Fig. 3. Simulated execution on a 30 × 80 dynamic maze. The plates (a) - (c) are snapshots at different times. Note that the obstacle map is different in the
three cases. The red circles indicate locations where the simulated robot decided to wait for one or more ticks as the obstacles continued to evolve

B. Simulation Examples on Dynamic Mazes

4 6 8 10 12 14 16 18 20 22
20

40

60

80

100

120

140

Simulation Data

 Exponential Fit

A
v
e
ra

g
e
 P

a
th

 L
e
n
g
th

Number of states in obstacle PFSA

(a)

4 6 8 10 12 14 16 18 20 22

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Simulation Data

 Polynomial Fit

C
o

lli
s
io

n
 P

ro
b

a
b

ili
ty

Number of states in obstacle PFSA

(b)

Fig. 4. Effect of increasing complexity of obstacle dynamics: (a) shows the
exponential increase in average path lengths to reach goal, (b) shows linear
increase of collision probability

The proposed algorithm is validated on simulated models. Figure 3

illustrates one such simulation run on a 30 × 80 grid. Plates (a)

- (c) capture snapshots of the plan execution at different times.

Note that the obstacle map (gray for blocked locations; white for

open spaces) is different in the three plates. Also note, that the

executed path is significantly rough. However, the optimization result

of Proposition 4.1 guarantees that the executed path indeed is optimal.

The obstacle automaton in this case has 10 events and 100 states. The

red circles in Figure 3 indicates where the simulated robot waited

for one or more ticks, i.e., decided not to execute any controllable

move. Note that while it is futile to “wait” at any location for a

static obstacle map; it is often the optimal course of action when the

obstacles are dynamic.

We simulate the effect of increasing complexity of obstacle dy-

namics by considering HO with larger and larger number of states.

The results are shown in Figure 4(a)-(b). Note that while the collision

probability increases only linearly with increased complexity of the

obstacle dynamics, the average path length required to reach the goal

increases exponentially.

5. S & F R

The ν⋆ planning algorithm is augmented to handle dynamic

obstacles. The obstacle dynamics is first encoded symbolically from

a finite but sufficiently long observation sequence as a probabilistic

finite state machine. This symbolic dynamic model of the obstacles is

then integrated with the navigation automaton and is subsequently op-

timized by the language-measure theoretic approach. It is shown that

the proposed approach maximizes the difference in the probability

of reaching the goal and the probability of hitting an obstacle and is

optimal in that sense. Future work will extend the language-measure

theoretic planning algorithm to address the following problems:

1) Multi-robot coordinated planning: Future work will address

multi-robot scenarios, with each robot treating the remaining

group as moving obstacles.

2) Hierarchical implementation to handle very large workspaces:

Large workspaces can be solved more efficiently if planning is

done when needed rather than solving the whole problem at once.

3) Handling partially observable dynamic events: Physical errors

and onboard sensor failures may need to be modeled as unobserv-

able transitions and will be addressed in future publications.

R

[1] I. Chattopadhyay and A. Ray, “Renormalized measure of regular lan-
guages,” Int. J. Control, vol. 79, no. 9, pp. 1107–1117, 2006.

[2] I. Chattopadhyay and A. Ray, “Language-measure-theoretic optimal
control of probabilistic finite-state systems,” Int. J. Control, August,2007.

[3] J. Barraquand, B. Langlois, and J.-C. Latombe, Robot motion planning
with many degrees of freedom and dynamic constraints. Cambridge, MA,
USA: MIT Press, 1990.

[4] V. Garg, “An algebraic approach to modeling probabilistic discrete
event systems,” Proceedings of 1992 IEEE Conference on Decision and
Control, pp. 2348–2353, Tucson, AZ, December 1992.

[5] W. Rudin, Real and Complex Analysis, 3rd ed. McGraw Hill, New York,
1988.

[6] I. Chattopadhyay, G. Mallapragada, and A. Ray, “ν⋆ : a robot path
planning algorithm based on renormalized measure of probabilistic
regular languages,” International Journal of Control, in press.

[7] D. Lind and M. Marcus, An Introduction to Symbolic Dynamics and
Coding. Cambridge University Press, United Kingdom, 1995.

[8] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, 2nd ed. Addison-Wesley, 2001.

[9] K. Murphy, “Passively learning finite automata,” 1996.
[10] R. Duda, P. Hart, and D. Stork, Pattern Classification. John Wiley &

Sons Inc., 2001.
[11] C. R. Shalizi, K. L. Shalizi, and J. P. Crutchfield, “An algorithm for

pattern discovery in time series,” Technical Report, Santa Fe Institute,
October 2002.

[12] T. M. Cover and J. A. Thomas, Elements of Information Theory. John
Wiley, New York, 1991.

[13] A. Ray, “Symbolic dynamic analysis of complex systems for anomaly
detection,” Signal Processing, vol. 84, no. 7, pp. 1115–1130, 2004.

[14] C. Beck and F. Schlogl, Thermodynamics of chaotic systems: an intro-
duction. Cambridge University Press, United Kingdom, 1993.

[15] V. Rajagopalan and A.Ray, “Symbolic time series analysis via wavelet-
based partitioning,” Signal Processing, vol. 86, no. 11, pp. 3309–3320,
2006.

[16] E. Denis, N.; Jones, “Spatio-temporal pattern detection using dynamic
bayesian networks,” In Proceedings of 42nd IEEE Conference on Deci-
sion and Control, vol. 5, pp. 4533–4538, 9-12 Dec. 2003.

[17] I. Chattopadhyay and A. Ray, “Structural transformations of probabilistic
finite state machines,” International Journal of Control, vol. 81, pp. 820–
835, May 2008.

[18] N. Lynch and M. Tuttle, “An introduction to input/output automata,”
Technical Memo MIT/LCS/TM-373, Massachusetts Institute of Technol-
ogy, November 1988.

2408

