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Abstract— In this paper, we discuss the model reference
adaptive control problem of switched linear systems with
unknown parameters. Since we do not have information about
the system parameters nor the possible abrupt changes of
parameters, conventional integral adaptive law do not function
well for switched systems. We propose a variable structure
based adaptive controller to the switched system and show error
convergence and signal boundedness for a class of switching
signals by multiple Lyapunov function theory. A sufficient
condition for stability and error convergence of the switched
system with unknown parameters is given. To improve the chat-
tering phenomenon, we propose a switching adaptive controller
that switches between the leakage type and the VS adaptive
controller by hysteresis switching algorithm. Simulation results
are provided to support the analysis.

I. INTRODUCTION

A switched system consists of a family of continuous

subsystems and the switching signal which chooses the active

subsystem at switching time instants. Switched systems may

occur in real world, for example, when operating environ-

ment suddenly varies or parameter variations, etc. Stability

analysis and stabilization of switched systems have attracted

attentions in recent years. There are increasing applications

that require more thorough switched system theory in order

to seek better solutions. So far, there are various approaches

and results for such problems, such as those presented in

papers [1], [2], [3], [4], and the reference book [5]. For

linear switched systems, if the switching signal is known

or pre-specified, the stability analysis can be carried out

by direct manipulation with transition matrix during each

switching duration, e.g., [6] and [7]. For nonlinear switched

systems, Lyapunov theory is still useful and important tools

for stability analysis of such systems include one with

multiple Lyapunov function (MLF)[8], another with common

Lyapunov function, and the last with switched Lyapunov

function [9].

In this paper, we discuss the model reference adaptive

control (MRAC) problem of switched systems with unknown

parameters. Given a reference model, we want to design the

adaptive controller such that the output of the switched plant

system can track the output of the reference model. Although

switched systems can be deemed as the class of time-varying

parametric systems, the parameter variations are even abrupt
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in nature. Conventional adaptive control techniques claimed

to be able to cope with this class of systems usually assume

that the parameter’s variations should be slow, smooth, or

parameterizable. However, switched systems inevitably have

abrupt changes in plant parameters and thus conventional

adaptive control techniques can hardly handle such situations

so as to meet the stabilization purpose.

There two approaches to discuss this problem. One is

robust adaptive control and the other is supervisory switch-

ing control. Robust adaptive control approach aimed to

design the controller that can tolerate parameter jumps while

maintain the desired property. For example, [10], [11] and

[12]. In this approach, detection of plant switches is not

necessary. Supervisory switching control approach switches

the controllers between a family of pre-specified adaptive

controllers to improve the performance or robustness. The

works [13], [14], [15] can be classified into this appraoch.

Though supervisory control approach claims good perfor-

mance for many situations, analysis of this approach to

switched systems is not presented. One of the main problem

is switched system analysis. In [15], a general methodology

called multiple model adaptive control (MMAC) is proposed

to deal with linear time invariant systems. The controller

is capable of adapting rapidly to an unknown environment.

This idea has received great attention and is shown to be

applicable to many applications. Despite that good perfor-

mance of applying this approach to the switched linear time

invariant (LTI) systems has been observed via simulations,

rigorous stability analysis of MMAC applied to switched

systems remain missing in that paper. The problem we

considered involves theories of adaptive control, switching

control, and stability of switched systems. We utilize the

output feedback variable structure(VS) adaptive controller

to model reference control problem for a class of switched

systems. Though the performance of VS adaptive controller

to parameter variations has been shown to be good by

simulations [10], there is no stability results for MRAC of

switched systems in existing results. In this paper, we show

that if the switching signals satisfy some conditions, the

tracking error will converge to zero rather than being small

in the mean square sense. Stability properties are analyzed

by MLF and some simulations are provided to validate the

proposed controller.

The remainder of this paper is organized as follows.

Preliminaries and problem formulation are given in section

II. Variable structure based adaptive control of switched

systems are proposed in section III. are guaranteed under

suitable assumptions on switching signals using the VS
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adaptive controller. In section IV, some simulation results

are presented and the conclusions are given in section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

Switched systems are a class of hybrid systems that con-

sisting of a family of continuous subsystems and a switching

rule that governs the switching among subsystems. Consider

the switched system

ẋ = fσ(t)(x), σ(t) ∈ P
∆
= {1,2, . . . ,P} (1)

which consists of subsystems fi(x), i = 1,2, ...P, and the

piecewise constant switching signal σ : [0, ∞)→P. Solutions

of switched systems are in the sense of Carathéodory, that

is, they are those which satisfy the integral equation

x(t) = x(t0)+
∫ t

t0

fσ(t)(τ)dτ

The switched systems we consider in this paper have an

identity reset map which means that the instantaneous jumps

of the continuous state are identity. Thus the state trajectory

is continuous everywhere. For a given single switching

signal, the switched system can be viewed as a special case

of the time-varying system. Generally, study of switched

systems associates a family of admissible switching signals

S and discusses the properties of solutions to the switched

system.

There are many results of stability theories of switched

systems in recent years. Multiple Lyapunov function (MLF)

is a useful tool to study stability of switched systems.

MLF Theorem [8]: For switched system (1), if (i) for each

subsystem fi, there exists a Lyapunov function Vi and V̇i ≤
0 (V̇i < 0), ∀i ∈ P, along the solution, and (ii) for every pair

of switching time instants Tm < Tr such that σ(Tm) = σ(Tr) =
i ∈ P with σ(t) 6= i for Tm < t < Tr,

Vi(Tr)−Vi(Tm) ≤ 0(< 0). (2)

Then the switched system is stable (asymptotically stable).

Condition (ii) means that the values of Vi at the beginning

of each time interval with σ(t) = i should be non-increasing.

We will use this idea to discuss stability results of adaptive

control with switched systems.

B. Problem statement

Consider the SISO switched system

yp = Wpσ(t)(s)u = kpσ(t)

Zpσ(t)(s)

Rpσ(t)(s)
u (3)

where σ : [0,∞) → P is the switching signal that governs

the switching sequence of the switched system. The transfer

functions Wpi(s), i ∈ P, are strictly proper and parameters of

them are all unknown. The reference model is given by

ym = Wm(s)r = km

Zm(s)

Rm(s)
r (4)

where r is the reference input and ym is the reference output.

Only the input and output can be measured. The control

purpose is to design the output feedback control u such that

the output of switched plant tracks the reference output as

good as possible, or, make the output error e1 = yp − ym as

small as possible.

We denote the switching signal as

σ : {(T1,σ(T1)), . . . ,(Tr,σ(Tr)), . . .}

where σ(T1),σ(T2), . . . ∈ P are indices of active subsystems

and T1,T2, . . . are time instants at which the system is

switching. Throughout this paper, the switching signal is

assumed to be right continuous, that is, limt→T+ σ(t) = σ(T ).
The switching signals are nonzeno, which means that the

number of switchings will be finite in any finite time interval,

and the switching durations τr
∆
= Tr+1−Tr > 0 for all positive

integers r. Moreover, the switching signals will not stop

switching after finite switches.

In this MRAC problem of switched systems, we do

not have the information about the time instants at which

the switchings occurred nor the knowledge of the active

subsystem. The following assumptions for MRAC are made

[16]: (A1) For all the transfer functions Wpi, i ∈ P, Rpi(s)
is of order n and Zpi(s) is of order n− 1. This means, Wpi

has relative degree n∗ := 1. (A2) The reference model has

the same relative degree n∗ as the plant Wpi(s) (A3) All the

plants and the reference model are completely controllable

and observable. (A4) Wpi is minimum phase for all i ∈ P.

(A5) The signs of kpi and km are all positive.

III. SWITCHING ADAPTIVE CONTROL OF LINEAR

SWITCHED SYSTEMS

A. MRAC of switched systems using integral adaptive law

Suppose that the transfer function of reference model

Wm(s) is strictly positive real (SPR), and for i ∈ P, the state

space representation of each plant transfer function

yp = Wpi(s)u = kpi

Zpi

Rpi

(s)u (5)

is

ẋp = Apixp +bpiu,

yp = hT xp (6)

Note that in (6), we assume the output channel is fixed, (for

example, the observer canonical form). It should be noticed

that for the switched system (3), if the controller canonical

from is considered, there will be output “jumps” at switching

time instants due to parameter switches. As mentioned in

previous, in this paper we consider the case that the reset

map is identity and thus the realizations of the plant transfer

functions are restrictive to the from of (6).

For each subsystem with index i ∈ P, we know that

there exists θ ∗
i = [k∗i ,θ

∗T
1i ,θ ∗

0i,θ
∗T
2i ]T ∈ R

2n such that when

u = θ ∗T
i ω with

ω̇1 = Λω1 + lu

ω̇2 = Λω2 + lyp (7)
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where Λ ∈ R
(n−1)×(n−1), det(sI − Λ) = λ (s) = sn−1 +

λn−2sn−2 + ..+ λ1s + λ0 is a designed monic Hurwitz poly-

nomial that contains Zm(s) as a factor, ω1, ω2 ∈ R
n−1,

l = [1,0, ...0]T ∈ R
n−1, and ω = [r,ωT

1 ,yp,ω
T
2 ]T ∈ R

2n, then

yp = Wpi(s)u = Wm(s)r. Since parameters of the plants are

unknown, θ ∗
i are unknown. Use θ as the estimation of θ ∗

i ,

and θ = [k,θ T
1 ,θ0,θ

T
2 ]T . Then with this certainty equivalence

principle controller

u = θ T ω, (8)

and if the there is no switching, we have

yp = Wm(s)(r +
1

k∗i
(θ̃ T

i ω))

where θ̃i = θ −θ ∗
i , i ∈ P. Now consider the switched plant

case with the switching signal σ(t). Let e1 = yp − ym, then

use u = θ T ω will lead to the error equation

e1 =
1

k∗σ
Wm(s)(θ̃ T

σ ω) (9)

Let xp = [xT
p ,ωT

1 ,ωT
2 ]T ∈ R

3n−2, then the state space repre-

sentation of the closed-loop systems would be

ẋp =





Apσ +bpσ θ ∗
0σ hT bpσ θ ∗T

1σ bpσ θ ∗T
2σ

lθ ∗
0σ hT Λ+ lθ ∗T

1σ lθ ∗T
2σ

lhT 0 Λ



xp

+





bpσ

l

0



k∗σ r +





bpσ

l

0



(θ −θ ∗
σ )T ω

yp = [hT , 0, 0]xp, (10)

or,

ẋp = Amσ xp +Bmσ r +Bpσ (θ̃ T
σ ω)

yp = CT xp (11)

where

CT (sI −Ami)
−1Bmi = Wm(s), ∀i ∈ P. (12)

Note that for all i ∈ P, Bmi = k∗i Bpi, and k∗i = km
kpi

. From (12),

the reference model can be realized by the nonminimal state

space representation

ẋm = Amσ xm +Bmσ r

ym = CT xm (13)

and if we define e = xp −xm, then the error equation of (9)

can be realized as

ė = Amσ e+Bpσ (θ̃ T
σ ω)

e1 = CT e (14)

We should note that system (14) is a switched system and

switches between stable systems may lead to an unstable

system. Since Wm(s) is SPR, from MKY lemma (see [16])

we know that for i∈P, given Qi > 0, there exists Pi = PT
i > 0

such that

AT
miPi +PiAmi = −Qi < 0 (15)

and

PiBmi = C, or, PiBpi =
1

k∗i
C =

kpi

km

C (16)

If we employ the gradient adaptive law

θ̇ = −sgn(kpσ )e1ω = −e1ω, (17)

then for each subsystem, the multiple Lyapunov function can

be defined as

Vi = eT Pie+ θ̃ T
i θ̃i, i = {1,2, . . . ,P}

and

V̇i = −eT Qie ≤ 0,

for each subsystem. This means that if the plant is non-

switching, signal boundedness and error tracking can be

derived by Lyapunov theorem and Barbalat’s lemma. How-

ever, switches between stable systems may lead to unstable.

According to the MLF theorem, the decreasing condition of

Vi at switching time instants (condition (ii) of MLF theorem)

is not guaranteed and thus stability of the switched system

can not be concluded. The stability problem is mainly caused

by the parameter variations. It is possible that for Tm < Tr

such that σ(Tm) = σ(Tr) = i∈P with σ(t) 6= i for Tm < t < Tr,

θ̃(Tr) = θ −θ ∗
σ(Tr)

> θ̃(Tm) (18)

which may lead to Vi(Tr)−Vi(Tm) > 0. That is, overall, the

energy function V may be increasing.

Remark 1. In [12], a robust adaptive controller is pro-

posed for the linear time varying (LTV) systems with jump

parameters. Robust adaptive law with projection is employed

to cope with the time varying and jump parameters. There

is no strategy to handle the switched parameters except the

projection adaptive law to bound the parameter estimation.

The tracking error is shown to be small in the mean square

sense. In [11], the authors proposed a leakage type robust

adaptive controller for switched systems. The problem is

formulated as a continuous system with impulse and step

change in input at the switching time instants. Thus stability

analysis of switched systems are avoided.

B. VS-based adaptive controller

From analysis above we find that transient performance

of the adaptive system is crucial to the stability of switched

systems. Since during each non-switching time interval,

all subsystems are stable and the reason that may cause

unbounded signals is the transient response. Motivated by

[10], [17], and [18], we propose a variable structure based

adaptive controller with robust adaptive law for the switched

system. Consider the control

u = θ T ω +uvs (19)

where

uvs = −sgn(e1)(β1‖ω‖) (20)

Here ‖ω‖= (ωT ω)
1
2 and β1 is a constant that satisfies β1 ≥

maxi∈P ‖θ ∗
i ‖. The adaptive law is designed with a leakage

term by

θ̇ = −(e1ω + γθ) (21)
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Then the error equation of the switched system with adaptive

controller (19) is

ė = Amσ e+Bpσ (θ̃ T
σ ω +uvs)

e1 = CT e (22)

Define the multiple Lyapunov function

Vi = eT Pie+
1

k∗i
θ T θ , i = {1,2, ...,P}.

Then the time derivative of Vi along the ith subsystem is

V̇i = −eT Qie+ eT Pi(Bpi(θ̃
T
i ω +uvs))−

1

k∗i
θ T (e1ω + γθ)

= −eT Qie+
1

k∗i
e1[(θ −θ ∗

i )T ω − sgn(e1)(β1‖ω‖)]

−
1

k∗
θ T (e1ω + γθ)

≤ −eT Qie−
1

k∗i
|e1|(β1‖ω‖− |θ ∗T

i ω|)−
γ

k∗i
θ T θ

≤ −eT Qie−
γ

k∗i
θ T θ < 0 (23)

Thus the output tracking error e1 will decrease at least

exponentially during non-switching time intervals. If we can

show that condition (ii) of MLF theorem holds, that is,

Vi(Tr) ≤Vi(Tm),

where Tm < Tr such that σ(Tm) = σ(Tr) = i∈ P with σ(t) 6= i

for Tm < t < Tr, then we can conclude that e1 → 0 as t → ∞
by MLF stability Theorem. For all i, j ∈ P, there exist two

positive constants M1 and m1 such that

M1 ≥
maxi∈P λmax(Pi)

min j∈P λmin(Pj)
, (24)

and

0 < m1 ≤
λmin(Qi)

λmax(Pi)
, (25)

where λmax(A) and λmin(A) stand for the maximum and

minimum of eigenvalues of matrix A. Existence of M1 and

m1 is guaranteed by the positiveness of Pi and Qi. Define

m2 = min{m1, γ}. From (23), we have

V̇i ≤−m2Vi (26)

Define

M2 = max{M1, max
i∈P

1

k∗i
}. (27)

Then

Vj(t) ≤ M2Vi(t), ∀i, j ∈ P (28)

If the switching signal switches slower than the conver-

gence rate, we can show that condition (ii) of MLF theorem

will be satisfied and thus all signal are bounded and e1 → 0 as

t →∞. From the analysis of dwell time switching system and

average dwell time switching system discussed in [20], we

derive the sufficient condition for stability of the VS-based

MRAC of switched linear systems.

Theorem 1. (Dwell time switching): If the switching signal

σ(t) has dwell time τd ≥
lnM2
m2

, that is, time intervals between

switchings are always greater than τd , then the relative degree

1 switched system (3) with variable structure adaptive control

(19), (20 and (21) is stable and e1 → 0 as t → ∞.

Proof. The system is shown to be exponentially convergent

during the non-switching time interval from (26). Thus if

condition (ii) of MLF Theorem is satisfied, we can conclude

the switched system stability from multiple Lyapunov func-

tion. Suppose that the switching signal has dwell time τd .

Without loss of generality, assume that at switching instant

Ti, σ(Ti) = i and at time Ti+1, σ(Ti+1) = j, and at time Ti+2,

σ(Ti+2) = i. From (26) and (28), we know that ∀τ ∈ [Ti,Ti+1),

Vi(Ti + τ) ≤ e−m2τVi(Ti) (29)

and for all i, j ∈ P,

Vj(Ti+1) = eT Pje ≤ M2eT Pie

≤ M2Vi(Ti+1) (30)

Thus at Ti+2,

Vi(Ti+2) ≤ M2Vj(Ti+2) ≤ M2e−m2τdVj(Ti+1)

≤ M2
2 e−m2τdVi(Ti+1)

≤ M2
2 e−2m2τdVi(Ti) (31)

Now we can check condition (ii) of the MLF Theorem by

Vi(Ti+2)−Vi(Ti) ≤ (M2
2 e−2m2τd −1)Vi(Ti)

If M2
2 e−2m2τd < 1, the conditions of Theorem 1 are satisfied.

Hence if

τd >
lnM2

m2
, (32)

the switched system preserves stability and the tracking error

e1 converges to zero as t → ∞. �

The dwell time assumption can be relaxed to average dwell

time [20]. Let Nσ (t, t0) denote the number of switchings of

the switching signal σ during the time interval (t0, t). We call

the switching signal σ has average dwell time τa if given any

time interval (t0, t), it satisfies

Nσ (t, t0)−N0 ≤
t − t0

τa

(33)

where N0 is a given positive constant and τa is called the

average dwell time.

Theorem 2. (Average dwell time switching): If the switch-

ing signal σ has average dwell time τa > lnM2
m2

, then the

switched system (3) with variable structure adaptive control

(19), (20 and (21) is stable and e1 → 0 as t → ∞.

Proof. The proof is achieved by showing that when the

average dwell time satisfies the bound, we can derive that

∀T > 0,

Vσ(T−)(T ) ≤ eµ1 e−µ2TVσ(0)(0) (34)

where µ1, µ2 are positive constants. Thus when T → ∞,

Vσ(T−)(T ) converges to 0.

For any arbitrary T > 0, the switching time instants

during the time interval (0,T ) are T1, T2, ...TNσ (T,0). For
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i ≤ Nσ(T,0)−1,

em2Ti+1Vσ(Ti+1)(Ti+1) ≤ em2Ti+1M2Vσ(Ti)(Ti+1)

= em2Ti+1M2Vσ(T−
i+1)(T

−
i+1)

≤ M2em2TiVσ(Ti)(Ti). (35)

Note that the first inequality is implied by (30) and the last

inequality of (35) is implied by (29). Apply (35) from t = 0

to t = T−, that is, from i = 0 to i = Nσ(T,0)−1, then we have

em2TVσ(T−)(T ) ≤ M
Nσ (T,0)
2 Vσ(0)(0).

And thus

Vσ(T−)(T ) ≤ e(−m2T+(N0+ T
τa

) lnM2)Vσ(0)(0)

= e(N0 lnM2)e
(

lnM2
τa

−m2)T
Vσ(0)(0) (36)

Hence if τa > lnM2
m2

, then (34) is satisfied and thus Vσ(T−) → 0

as T → ∞. This completes the proof. �

Remark 2: The VS based adaptive control of unknown

switched linear systems guarantees that output error con-

verges to zero as time goes to infinity under infinite times

of switchings. This result is not shown in literatures that

discussed the issue about control of unknown switched

systems. Most of the existing results concluded that the error

converges to a small residue set. For example, [11], [12].

Remark 3: In [19], the control problem of jump parameter

systems is considered. The authors proposed a switching

algorithm and a family of pre-specified controllers to sta-

bilize the switched system and the error is converged to

zero. However, this approach requires the condition that all

the subsystems in the switched plant must be members of a

“known” family of models. If the parameters of the switched

plant are unknown, this approach is not applicable.

Remark 4: Since parameters are unknown, Ami and thus Pi

are unknown, ∀i ∈ P, which means that M1 and m1 are not

available. Though we can arbitrarily choose Qi, the value of

Pi is in turn determined and m1 and M1 are effected by Pi.

Thus the value of dwell time τd (τa) is not exactly known.

However, from above analysis we can still know that the

system stability will not be destroyed unless the switching

is exponentially fast.

C. VS based hysteresis switching adaptive control

The VS based adaptive controller (19) has chattering prob-

lem, especially in switched system case. Thus we modified

the controller to a hysteresis switching adaptive controller

which is

u = θ T ω +(1−α(t))uvs (37)

where the controlled switching signal α(t) is governed by

the hysteresis switching algorithm

α(t) = φ(α(t−),e1(t))

=















0, if α(t−) = 0 and |e1(t)| > ε,
or if α(t−) = 1 and |e1(t)| > ε +δ ,

1, if α(t−) = 0 and |e1(t)| ≤ ε,
or if α(t−) = 1 and |e1(t)| ≤ ε +δ .

(38)

where ε and δ are positive constants that can be assigned.

The variable δ called “hysteresis constant” is used to prevent

fast switchings of α(t) in the case that |e1(t)| oscillates

around ε caused by parameter switches. Our idea is that

when the output error is large, we utilize the exponential

convergence property of VS based controller to improve the

transient response. When the error is small, we turn off the

VS part of the controller and thus the chattering of control

input can be alleviated. It is shown in simulation results that

control input of the switching VS based controller is smaller

and has fewer sign changes than the VS based adaptive

controller. However, the output error only converged to a

small residue set depends on ε and δ .

IV. SIMULATION RESULTS

In this section, we give some simulation results by the

following example. For simplicity, consider the case that P =
{1,2}. Let

Wp1 = 2
s+2

s2 −3s+2
, Wp2 = 1

s+1

s2 −4s+4
, (39)

and

Wm =
1

s+3
, (40)

Then θ ∗
1 = [ 1

2
,0,6,−4, ]T and θ ∗

2 = [1,1,16,−9]T . The ref-

erence input r(t) = 2sin5.9t and the filter is chosen as

λ (s) = (s + 2). Given a persistently switching signal as

in Fig. 1(c). Tracking error of the switched system using

integral adaptive law is oscillating as shown in Fig. 1(a)

and value of estimation parameters is given in Fig. 1(b).

Under the same switching signal as given in Fig. 1(c),

variable structure adaptive controller is applied. By definition

of (15), (24), (25), (26) and (27), we find that the value

of dwell time can be chosen as M2 = 800, and m2 = 0.05

where Q1 = Q2 = I4×4. The value of γ in (21) is set to

be 0.2 and β1 in (20) is 20. Performance of the proposed

VS adaptive controller and VS hysteresis switching adaptive

controller is shown in Fig. 2. Here we choose ε = 0.02 and

δ = 0.08. In Fig. 2, we can see that the tracking error of

VS based adaptive controller is converged to zero with some

chattering which is due to fast switching of the sign function.

However, the output error using hysteresis switching adaptive

control did not converge to zero due to the nature of leakage

term in adaptive law and the effect of the switched system.

Both the two controllers used in switched system have very

short time period of bursts at switching time instants. The

control input of VS adaptive controller has obvious chattering

phenomenon. We can see in Fig. 3 that the control input u of

hysteresis switching adaptive controller is smaller and there

are fewer sign changes in control gain.

In the simulation results, we can see that the error tracking

of switched systems is preserved under dwell time switching

signals. Note that in our example, the computed dwell

time ln(800)/0.05 ≈ 133.69 is very conservative. However,

the simulations show that even the time intervals between

switchings are shorter than the dwell time we computed,

the error can still converge. This shows that the conditions
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in Theorem 1 and 2 we derived are only sufficient, not

necessary.
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Fig. 1. Tracking error of MRAC of switched systems
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Fig. 2. Tracking error of switched systems using VS-adaptive control

V. CONCLUSIONS

In this paper, we extend the result of model reference

adaptive control problem to switched systems. Using the

proposed output feedback variable structure based adaptive

controller, we derive a sufficient condition for zero error

convergence and signal boundedness of switched systems

by multiple Lyapunov function theory. We also propose

a hysteresis switching adaptive controller and show that

chattering phenomenon can be reduced by simulation results.

Many issues can be further studied for MRAC of switched

systems. For systems with higher relative degree, the analysis

is more involved. It is assumed in this paper that the sign of

high frequency gains of all the subsystems are all the same. If

not, we have to detect the change of the signs. The stability

analysis for switched systems with switching controller is

more involved. These problems are under investigation.
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[6] D. Cheng, L. Guo, Y. Lin ,and Y. Wang, “Stabilization of switched

linear systems,” IEEE Trans. Automat. Contr., vol. 50, no. 5, pp. 661-
666, May 2005.

[7] Zehndong Sun and S. S. Ge, “Analysis and synthesis of switched linear
control systems,” Automatica, vol. 41, Issue 3, pp.181-195, 2005.

[8] M. S. Branicky, “Multiple Lyapunov functions and other analysis tools
for switched and hybrid systems,” IEEE Trans. Automat. Contr., vol.
43, no. 4, pp. 475-482, April 1998.

[9] J. Daafouz, P. Rideinger, and C. Iung, “Stability analysis and
control synthesis for switched systems: A switched Lypaunov function
approach,” IEEE Trans. Automat. Contr. vol. 47, pp. 1883-1887, 2002.

[10] L. Hsu, F. Lizarralde, and A. D. de Araújo, “NEw results on output-
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