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Abstract— A significant generalization to the language-measure-
theoretic path planning algorithm ν⋆ is presented that accounts for
average dynamic uncertainties in plan execution. The planning problem
thus can be solved with parametric input from the dynamics of the
robotic platform under consideration. Applicability of the algorithm
is demonstrated in a simulated maze solution and by experimental
validation on a mobile robotic platform in the laboratory environment.
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1. I &M

Recently, a novel path planning algorithm ν⋆ was reported that

models the navigation problem in the framework of Probabilistic

Finite State Machines and computes robust optimal plans via op-

timization of the PFSA from a strictly control-theoretic viewpoint.

In this paper, we present a significant improvement; the average

dynamic uncertainty in plan execution is integrated with the planning

process, resulting in plans that are highly robust and take into account

the average effect of physical dynamic limitations of individual

robotic platforms and possibly different operating conditions and

execution parameters. Thus we address the fact that robots have

physical limitations on what commands can be executed and with

what precision; the planning must take this into account to yield

robust execution. It is important to note that we still consider a static

known map in this paper; however the proposed approach allows for

the possibility that planned command sequence may not executed

perfectly. The key advantages are:

1) Pre-processing is cheap: The cellular decomposition required by

ν⋆ is simple and computationally cheap. The cells are mapped to

PFSA states which are defined to have identical connectivity via

symbolic inter-state transitions.

2) Fundamentally different from search: ν⋆ optimizes the resultant

PFSA via a iterative sequence of combinatorial operations which

elementwise maximizes the language measure vector [1][2].

3) Computational efficiency: The time complexity of each iteration

step can be shown to be linear in problem size implying signif-

icant numerical advantage over search-based methods for high-

dimensional problems.

4) Global monotonicity: The solution iterations are globally mono-

tonic. The final waypoint sequence is generated essentially by

following the measure gradient which is maximized at the goal.

The measure gradient is reminiscent of potential field methods

[3]. However, ν⋆ automatically generates the measure gradient; no

potential function is necessary. Furthermore, the potential function
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based planners often get trapped in local minimum which can be

shown to be a mathematical impossibility for ν⋆.

The paper is organized in five sections including the present one. Sec-

tion 2 briefly explains the language-theoretic models considered in

this paper, reviews the language-measure-theoretic optimal control of

probabilistic finite state machines and presents the necessary details

of the reported ν⋆ algorithm. Section 3 presents the modifications

to the navigation model to incorporate the effects of dynamic un-

certainties within the framework of probabilistic automata. Pertinent

theoretical results are presented that capture the key characteristics

of the approach. The modified approach is validated in experiment

on a SEGWAY RMP 200 two-wheeled robot. Section 4 derives a

recursive formulation of ν⋆ under dynamic uncertainty that is shown

to be critically important for elimination of local maxima. A detailed

simulated maze solution is presented as an example. The paper is

summarized and concluded in Section 5 with recommendations for

future work.

2. LM-O

This section summarizes the signed real measure of regular lan-

guages; the details are reported in [4]. Let Gi ≡ 〈Q,Σ, δ,qi,Qm〉 be a

trim (i.e., accessible and co-accessible) finite-state automaton model

that represents the discrete-event dynamics of a physical plant, where

Q= {qk : k ∈ IQ} is the set of states and IQ ≡ {1,2, · · · ,n} is the index

set of states; the automaton starts with the initial state qi; the alphabet

of events is Σ = {σk : k ∈ IΣ}, having Σ
⋂
IQ = ∅ and IΣ ≡ {1,2, · · · , ℓ}

is the index set of events; δ : Q× Σ→ Q is the (possibly partial)

function of state transitions; and Qm ≡ {qm1
,qm2
, · · · ,qml

} ⊆ Q is

the set of marked (i.e., accepted) states with qmk
= q j for some

j ∈ IQ. Let Σ∗ be the Kleene closure of Σ, i.e., the set of all

finite-length strings made of the events belonging to Σ as well as

the empty string ǫ that is viewed as the identity of the monoid Σ∗

under the operation of string concatenation, i.e., ǫs = s = sǫ. The

state transition map δ is recursively extended to its reflexive and

transitive closure δ : Q×Σ∗ → Q by defining ∀q j ∈ Q, δ(q j, ǫ) = q j

and ∀q j ∈ Q,σ ∈ Σ, s ∈ Σ⋆, δ(qi,σs) = δ(δ(qi,σ), s).

Definition 2.1: The language L(qi) generated by a DFSA G ini-

tialized at the state qi ∈ Q is defined as: L(qi)= {s ∈ Σ
∗ | δ∗(qi, s) ∈ Q}

The language Lm(qi) marked by the DFSA G initialized at the state

qi ∈ Q is defined as: Lm(qi) = {s ∈ Σ
∗ | δ∗(qi, s) ∈ Qm}

Definition 2.2: For every q j ∈ Q, let L(qi,q j) denote the set of all

strings that, starting from the state qi, terminate at the state q j, i.e.,

Li, j = {s ∈ Σ
∗ | δ∗(qi, s) = q j ∈ Q}

The formal language measure is first defined for terminating

plants [5] with sub-stochastic event generation probabilities i.e. the

event generation probabilities at each state summing to strictly less

than unity.

Definition 2.3: The event generation probabilities are specified by

the function π̃ : Σ⋆ × Q→ [0, 1] such that ∀q j ∈ Q,∀σk ∈ Σ,∀s ∈ Σ⋆,

(1) π̃(σk,q j) , π̃ jk ∈ [0,1);
∑

k π̃ jk = 1− θ, with θ ∈ (0,1);
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(2) π̃(σ,q j) = 0 if δ(q j,σ) is undefined; π̃(ǫ,q j) = 1;

(3) π̃(σk s,q j) = π̃(σk,q j) π̃(s, δ(q j,σk)).

The n× ℓ event cost matrix is defined as: Π̃|i j = π̃(qi,σ j)

Definition 2.4: The state transition probability π : Q × Q →

[0,1), of the DFSA Gi is defined as follows: ∀qi,q j ∈ Q,πi j =∑

σ∈Σ s.t. δ(qi ,σ)=q j

π̃(σ,qi) The n× n state transition probability matrix

is defined as Π| jk = π(qi,q j).

The set Qm of marked states is partitioned into Q+m and Q−m, i.e.,

Qm =Q+m∪Q−m and Q+m∩Q−m = ∅, where Q+m contains all good marked

states that we desire to reach, and Q−m contains all bad marked states

that we want to avoid, although it may not always be possible to

completely avoid the bad states while attempting to reach the good

states. To characterize this, each marked state is assigned a real

value based on the designer’s perception of its impact on the system

performance.

Definition 2.5: The characteristic function χ : Q → [−1,1] that

assigns a signed real weight to state-based sublanguages L(qi,q)

is defined as:

∀q ∈ Q, χ(q) ∈



[−1,0), q ∈ Q−m
{0}, q < Qm

(0,1], q ∈ Q+m

(1)

The state weighting vector, denoted by χ = [χ1 χ2 · · · χn]T , where

χ j ≡ χ(q j) ∀ j ∈ IQ, is called the χ-vector. The j-th element χ j of

χ-vector is the weight assigned to the corresponding terminal state

q j.

In general, the marked language Lm(qi) consists of both good and

bad event strings that, starting from the initial state qi, lead to Q+m
and Q−m respectively. Any event string belonging to the language

L0
= L(qi)− Lm(qi) leads to one of the non-marked states belonging

to Q−Qm and L0 does not contain any one of the good or bad

strings. Based on the equivalence classes defined in the Myhill-

Nerode Theorem, the regular languages L(qi) and Lm(qi) can be

expressed as: L(qi) =
⋃

qk∈Q Li,k and Lm(qi) =
⋃

qk∈Qm
Li,k = L+m∪ L−m

where the sublanguage Li,k ⊆Gi having the initial state qi is uniquely

labelled by the terminal state qk,k ∈ IQ and Li, j ∩ Li,k = ∅ ∀ j ,

k; and L+m ≡
⋃

qk∈Q
+
m

Li,k and L−m ≡
⋃

qk∈Q
−
m

Li,k are good and bad

sublanguages of Lm(qi), respectively. Then, L0
=
⋃

qk<Qm
Li,k and

L(qi) = L0 ∪L+m∪L−m.

A signed real measure µi : 2L(qi) → R ≡ (−∞,+∞) is constructed

on the σ-algebra 2L(qi ) for any i ∈ IQ; interested readers are referred

to [4] for the details of measure-theoretic definitions and results.

With the choice of this σ-algebra, every singleton set made of an

event string s ∈ L(qi) is a measurable set. By Hahn Decomposition

Theorem [6], each of these measurable sets qualifies itself to have

a numerical value based on the above state-based decomposition of

L(qi) into L0(null), L+(positive), and L−(negative) sublanguages.

Definition 2.6: Let ω ∈ L(qi,q j) ⊆ 2L(qi). The signed real mea-

sure µi of every singleton string set {ω} is defined as: µi({ω}) ≡

π̃(ω,qi)χ(q j). The signed real measure of a sublanguage Li, j ⊆ L(qi)

is defined as: µi, j ≡ µ
i(L(qi,q j)) =

(∑
ω∈L(qi ,q j) π̃[ω,qi]

)
χ j

Therefore, the signed real measure of the language of a DFSA Gi

initialized at qi ∈ Q, is defined as µi ≡ µ
i(L(qi)) =

∑
j∈IQ
µi(Li, j).

It is shown in [4] that the language measure can be expressed as

µi =
∑

j∈IQ
πi jµ j + χi. The language measure vector, denoted as µ

= [µ1 µ2 · · · µn]T , is called the µ-vector. In vector form, we have

µ = Πµ+χ whose solution is given by µ = (I−Π)−1χ The inverse

exists for terminating plant models [5] because Π is a contraction

operator [4] due to the strict inequality
∑

jΠi j < 1. The residual

θi = 1 −
∑

jΠi j is referred to as the termination probability for

state qi ∈ Q. We extend the analysis to non-terminating plants with

stochastic transition probability matrices (i.e. with θi = 0, ∀qi ∈Q) by

renormalizing the language measure [1] with respect to the uniform

termination probability of a limiting terminating model as described

next.

Let Π̃ and Π be the stochastic event generation and transition

probability matrices for a non-terminating plant Gi = 〈Q,Σ, δ,qi,Qm〉.

We consider the terminating plant Gi(θ) with the same DFSA

structure 〈Q,Σ, δ,qi,Qm〉 such that the event generation probability

matrix is given by (1− θ)Π̃ with θ ∈ (0,1) implying that the state

transition probability matrix is (1− θ)Π.

Definition 2.7: (Renormalized Measure:) The renormalized mea-
sure νi

θ
: 2L(qi (θ)) → [−1,1] for the θ-parametrized terminating plant

Gi(θ) is defined as:

∀ω ∈ L(qi(θ)), ν
i
θ({ω}) = θµ

i({ω}) (2)

The corresponding matrix form is given by νθ = θ µ = θ [I − (1−

θ)Π]−1χ with θ ∈ (0,1). We note that the vector representation allows

for the following notational simplification νi
θ
(L(qi(θ))) = νθ

∣∣∣
i

The

renormalized measure for the non-terminating plant Gi is defined

to be limθ→o+ ν
i
θ
.

A. Event-driven Supervision of PFSA

Plant models considered in this paper are deterministic finite state

automata (plant) with well-defined event occurrence probabilities. In

other words, the occurrence of events is probabilistic, but the state

at which the plant ends up, given a particular event has occurred,

is deterministic. Since no emphasis is placed on the initial state and

marked states are completely determined by χ, the models can be

completely specified by a sextuple as: G = (Q,Σ, δ,Π̃,χ,C )

Definition 2.8: (Control Philosophy) If qi −→
σ

qk, and the event σ

is disabled at state qi, then the supervisory action is to prevent the

plant from making a transition to the state qk, by forcing it to stay

at the original state qi. Thus disabling any transition σ at a given

state q results in deletion of the original transition and appearance

of the self-loop δ(q,σ) = q with the occurrence probability of σ from

the state q remaining unchanged in the supervised and unsupervised

plants. For a given plant, transitions that can be disabled in the sense

of Definition 2.8 are defined to be controllable transitions. The set of

controllable transitions in a plant is denoted C . Note controllability

is state-based.

B. The Optimal Supervision Problem: Formulation & Solution

A supervisor disables a subset of the set C of controllable

transitions and hence there is a bijection between the set of all

possible supervision policies and the power set 2C . That is, there

exists 2|C | possible supervisors and each supervisor is uniquely

identifiable with a subset of C and the language measure ν allows a

quantitative comparison of different policies.

Definition 2.9: For an unsupervised plant G = (Q,Σ, δ, Π̃,χ,C ), let

G† and G‡ be the supervised plants with sets of disabled transitions,

D† ⊆ C and D‡ ⊆ C , respectively, whose measures are ν† and ν‡.

Then, the supervisor that disables D† is defined to be superior to

the supervisor that disables D‡ if ν† ≧(Elementwise) ν
‡ and strictly

superior if ν† >(Elementwise) ν
‡.

Definition 2.10: (Optimal Supervision Problem) Given a (non-

terminating) plant G = (Q,Σ, δ, Π̃,χ,C ), the problem is to com-

pute a supervisor that disables a subset D⋆ ⊆ C , such that
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ν⋆ ≧(Elementwise) ν
† ∀D† ⊆ C where ν⋆ and ν† are the measure

vectors of the supervised plants G⋆ and G† under D⋆ and D†,

respectively.

Remark 2.1: The solution to the optimal supervision problem is

obtained in [2], [7] by designing an optimal policy for a terminating

plant [5] with a sub-stochastic transition probability matrix (1−θ)Π̃

with θ ∈ (0,1). To ensure that the computed optimal policy coincides

with the one for θ = 0, the suggested algorithm chooses a small

value for θ in each iteration step of the design algorithm. However,

choosing θ too small may cause numerical problems in convergence.

Algorithms reported in [2], [7] computes how small a θ is actually

required, i.e., computes the critical lower bound θ⋆, thus solving

the optimal supervision problem for a generic PFSA. It is further

shown that the solution obtained is optimal and unique and can be

computed by an effective algorithm.

Definition 2.11: Following Remark 2.1, we note that algorithms

reported in [2], [7] compute a lower bound for the critical termina-

tion probability for each iteration of such that the disabling/enabling

decisions for the terminating plant coincide with the given non-

terminating model. We define θmin = mink θ
[k]
⋆ where θ

[k]
⋆ is the

termination probability computed in the kth iteration.

Definition 2.12: If G and G⋆ are the unsupervised and supervised

PFSA respectively then we denote the renormalized measure of

the terminating plant G⋆(θmin) as νi
#

: 2L(qi) → [−1,1] (See Defi-

nition 2.7). Hence, in vector notation we have: ν# = θmin[I − (1−

θmin)Π#]−1χ where Π# is the transition probability matrix of the

supervised plant G⋆, we note that ν# = ν
[K] where K is the total

number of iterations required for convergence.

C. Problem Formulation: A PFSA Model of Autonomous Naviga-

tion

Fig. 1. (a) shows the vehicle (marked "R") with the obstacle positions
shown as black squares. The green dot identifies the goal (b) shows the finite
state representation of the possible one-step moves from the current position.
(d) shows uncontrollable transitions "u" from states corresponding to blocked
grid locations to "q⊖"

We consider a 2D workspace for the mobile agents. This restriction

on workspace dimensionality serves to simplify the exposition and

can be easily relaxed. To set up the problem, the workspace is first

discretized into a finite grid and hence the approach developed in

this paper falls under the generic category of discrete planning.

The underlying theory does not require the grid to be regular;

however for the sake of clarity we shall present the formulation under

the assumption of a regular grid. The obstacles are represented as

blocked-off grid locations in the discretized workspace. We specify

a particular location as the fixed goal and consider the problem of

finding optimal and feasible paths from arbitrary initial grid locations

in the workspace. Figure 1(a) illustrates the basic problem setup.

We further assume that at any given time instant the robot occupies

one particular location (i.e. a particular square in Figure 1(a)). As

shown in Figure 1, the robot has eight possible moves from any

interior location. The boundaries are handled by removing the moves

that take the robot out of the workspace. The possible moves are

modeled as controllable transitions between grid locations since the

robot can "choose" to execute a particular move from the available

set. We note that the number of possible moves (8 in this case)

depends on the chosen fidelity of discretization of the robot motion

and also on the intrinsic vehicle dynamics. The complexity results

presented in this paper only assumes that the number of available

moves is significantly smaller compared to the number of grid

squares, i.e., the discretized position states. Specification of inter-

grid transitions in this manner allows us to generate a finite state

automaton (FSA) description of the navigation problem. Each square

in the discretized workspace is modeled as a FSA state with the

controllable transitions defining the corresponding state transition

map. The formal description of the model is as follows:

Let GN = (Q,Σ, δ, Π̃,χ) be a Probabilistic Finite State Automaton

(PFSA). The state set Q consists of states that correspond to grid

locations and one extra state denoted by q⊖. The necessity of this

special state q⊖ is explained in the sequel. The grid squares are

numbered in a pre-determined scheme such that each qi ∈ Q \ {q⊖}

denotes a specific square in the discretized workspace. The particular

numbering scheme chosen is irrelevant. In the absence of dynamic

uncertainties and state estimation errors, the alphabet contains one

uncontrollable event i.e. Σ = ΣC
⋃
{u} such that ΣC is the set of

controllable events corresponding to the possible moves of the robot.

The uncontrollable event u is defined from each of the blocked states

and leads to q⊖ which is a deadlock state. All other transitions

(i.e. moves) are removed from the blocked states. Thus, if a robot

moves into a blocked state, it uncontrollably transitions to the

deadlock state q⊖ which is physically interpreted to be a collision.

We further assume that the robot fails to recover from collisions

which is reflected by making q⊖ a deadlock state. We note that

q⊖ does not correspond to any physical grid location. The set of

blocked grid locations along with the obstacle state q⊖ is denoted

as QO j Q. Figure 1 illustrates the navigation automaton for

a nine state discretized workspace with two blocked squares. Note

that the only outgoing transition from the blocked states q1 and

q8 is u. Next we augment the navigation FSA by specifying event

generation probabilities defined by the map π̃ : Q×Σ→ [0,1] and the

characteristic state-weight vector specified as χ : Q→ [−1,1]. The

characteristic state-weight vector [2] assigns scalar weights to the

PFSA states to capture the desirability of ending up in each state.
Definition 2.13: The characteristic weights are specified for the

navigation automaton as follows:

χ(qi) =



−1 if qi ≡ q⊖
1 if qi is the goal

0 otherwise

(3)

In the absence of dynamic constraints and state estimation uncertain-

ties, the robot can "choose" the particular controllable transition to

execute at any grid location. Hence we assume that the probability

of generation of controllable events is uniform over the set of moves

defined at any particular state.
Definition 2.14: Since there is no uncontrollable events defined at

any of the unblocked states and no controllable events defined at any
of the blocked states, we have the following consistent specification
of event generation probabilities: ∀qi ∈ Q,σ j ∈ Σ,

π̃(qi,σ j) =

{
1

No. of controllable events at qi
, if σ j ∈ ΣC

1, otherwise

The boundaries are handled by "surrounding" the workspace with

blocked position states shown as "boundary obstacles" in the upper

part of Figure 1(c).

2417



Definition 2.15: The navigation model id defined to have identical

connectivity as far as controllable transitions are concerned implying

that every controllable transition or move (i.e. every element of ΣC)

is defined from each of the unblocked states.

D. Problem Solution as a Decision-theoretic Optimization of PFSA

The above-described probabilistic finite state automaton (PFSA)
based navigation model allows us to compute optimally feasible path
plans via the language-measure-theoretic optimization algorithm [2]
described in Section 2. Keeping in line with nomenclature in the
path-planning literature, we refer to the language-measure-theoretic
algorithm as ν⋆ in the sequel. For the unsupervised model, the
robot is free to execute any one of the defined controllable events
from any given grid location (See Figure 1(b)). The optimization
algorithm selectively disables controllable transitions to ensure that
the formal measure vector of the navigation automaton is element-
wise maximized. Physically, this implies that the supervised robot
is constrained to choose among only the enabled moves at each
state such that the probability of collision is minimized with the
probability of reaching the goal simultaneously maximized. Although
ν⋆ is based on optimization of probabilistic finite state machines, it
is shown that an optimal and feasible path plan can be obtained
that is executable in a purely deterministic sense. Let GN be
the unsupervised navigation automaton and G⋆

N
be the optimally

supervised PFSA obtained by ν⋆. We note that νi
#

is the renormalized

measure of the terminating plant G⋆
N

(θmin) with substochastic event

generation probability matrix Π̃θmin = (1−θmin)Π̃. Denoting the event
generating function (See Definition 2.3) for G⋆

N
and G⋆

N
(θmin) as

π̃ : Q×Σ→ Q and π̃θmin : Q×Σ→ Q respectively:

π̃θmin (qi, ǫ) = 1 (4a)

∀qi ∈ Q,σ j ∈ Σ, π̃
θmin (qi,σ j) = (1− θmin)π̃(qi,σ j) (4b)

Notation 2.1: For notational simplicity, we use

νi#(L(qi)) = ν#(qi) = ν# |i

where ν# = θmin[I− (1− θmin)Π#]−1χ

Definition 2.16: (ν⋆-path:) A ν⋆-path ρ(qi,q j) from state qi ∈ Q
to state q j ∈ Q is defined to be an ordered set of PFSA states ρ =
{qr1
, · · · ,qrM

} with qrs
∈ Q, ∀s ∈ {1, · · · ,M},M ≤ C(Q) such that

qr1
= qi (5a)

qrM
= q j (5b)

∀i, j ∈ {1, · · · ,M}, qri
, qr j

(5c)

∀s ∈ {1, · · · ,M},∀t ≦ s, ν#(qrt
) ≦ ν#(qrs

) (5d)

We reproduce without proof the following key results pertaining to

ν⋆- planning as reported in [8].

Lemma 2.1: There exists an enabled sequence of transitions from

state qi ∈ Q \QO to q j ∈ Q \ {q⊖} in G⋆
N

if and only if there

exists a ν⋆-path ρ(qi,q j) in G⋆
N

.

Proposition 2.1: For the optimally supervised navigation automa-

ton G⋆
N

, we have

∀qi ∈ Q \QO , L(qi) j Σ
⋆
C

Corollary 2.1: (Obstacle Avoidance:) There exists no ν⋆-path

from any unblocked state to any blocked state in the optimally

supervised navigation automaton G⋆
N

.

Proposition 2.2: (Existence of ν⋆-paths:) There exists a ν⋆-path

ρ(qi,qG) from any state qi ∈ Q to the goal qG ∈ Q if and only if

ν#(qi) > 0.

Corollary 2.2: (Absence of Local Maxima:) If there exists a ν⋆-

path from qi ∈ Q to q j ∈ Q and a ν⋆-path from qi to qG then there

exists a ν⋆-path from q j to qG , i.e.,

∀qi,q j ∈ Q

(
∃ρ1(qi,qG)

∧
∃ρ2(qi,q j)⇒∃ρ(q j,qG)

)

3. T  C P L & P R

A. Robustness to Map Uncertainty

Majority of reported path planning algorithms consider minimiza-

tion of the computed feasible path length as the sole optimization

objective. Mobile robotic platforms however suffer from varying

degrees of dynamic and parametric uncertainties, implying that path

length minimization is of lesser practical importance to computing

plans that are robust under sensor noise, imperfect actuation and

possibly accumulating odometry errors. Even with sophisticated

signal processing techniques such errors cannot be eliminated. The

ν⋆ algorithm addresses this issue by an optimal trade-off between

path lengths and availability of feasible alternate routes in the event

of unforeseen dynamic uncertainties. If ω is the shortest path to goal

from state qk, then the shortest path from state qi (with qi
σ2
−−→ qk)

is given by σ2ω. However, a larger number of feasible paths may

be available from state q j (with qi
σ1
−−→ q j) which may result in the

optimal ν⋆ plan to be σ1ω1. Mathematically, each feasible path

from state q j has a positive measure which may sum to be greater

than the measure of the single path ω from state qk. The condition

ν#(q j) > ν#(qk) would then imply that the next state from qi would

be computed to be q j and not qk. Physically it can be interpreted

that the mobile gent is better off going to q j since the goal remains

reachable even if one or more paths become unavailable. The key

results [8] are as follows:

Lemma 3.1: For the optimally supervised navigation automaton

G⋆
N

, we have ∀qi ∈ Q \QO ,

∀ω ∈ L(qi), ν
i
#({ω}) = θmin

(
1− θmin

C(ΣC)

)|ω|
χ(δ#(qi,ω))

Proposition 3.1: For qi ∈ Q \QO, let qi
σ1
−−→ q j → ·· · → qG

be the shortest path to the goal. If there exists qk ∈ Q\QO with

qi
σ2
−−→ qk for some σ2 ∈ΣC such that ν#(qk)> ν#(q j), then the number

of distinct paths to goal from state qk is at least C(ΣC)+1.

The lower bound computed in Proposition 3.1 is not tight and if

the alternate paths are longer or if there are multiple ’shortest’ paths

then the number of alternate routes required is significantly higher.

Detailed examples can be easily presented to illustrate situation where

ν⋆ opts for a longer but more robust plan.

B. Robustness to Dynamic Uncertainty

In this paper, we modify the PFSA-based navigation model to

explicitly reflect dynamic uncertainties in plan execution.
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Fig. 2. (a) shows the enabled moves in the optimally supervised PFSA with
no dynamic uncertainty, (b) illustrates the case with dynamic uncertainty,
so that the robot can still uncontrollably (and hence unwillingly) make
the disabled transitions, albeit with a small probability, i.e., probability of
transitions e′

2
,e′

3
,e′

4
etc. is small.
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Definition 3.1: The modified navigation automaton

= (Q,Σ, δ, Π̃,χ, ) is defined similar to the formulation in Section 2-C

with the additional parameter ∈ [0,1] quantifying the expected

dynamic uncertainty in terms of transition uncontrollability as

follows: Each event σ ∈ Σ is assumed to be decomposable as

σ = {σcontrollable,σuncontrollable} (6)

with the transition probabilities distributing as

∀qi ∈ Q, Π̃(qi,σcontrollable) = Π̃(qi,σ) (7)

∀qi ∈ Q, Π̃(qi,σuncontrollable) = (1−)Π̃(qi,σ) (8)

The effect of dynamic uncertainty is illustrated in Figure 2. Note,

while in absence of uncertainty, one can disable transitions perfectly,

in the modified model, such disabling is only partial. The model

incorporates physical movement errors and sensing noise in an amor-

tized fashion. For example, it can be expected, that the probability

of erroneously moving right when the robot is asked to go left,

would be smaller than, maybe, moving forward. Thus, in reality,

the factor should be different for each event σ ∈ Σ; and would also

vary with the current continuous dynamic state of the overall system.

However, one can estimate a constant factor for the specific robotic

platform under consideration, by averaging over the observed errors

from sufficiently long experimental runs. As a specific example, the

uncertainty parameter for a two-wheeled robot such as the SEGWAY

RMP 200 will be significantly higher compared to a more stable four

wheeled SEGWAY RMP 400.

Remark 3.1: The state transition matrix Π for decomposes as

Π= Π+ (1−)Π, where Π corresponds to controllable transitions and

the residual to the uncontrollable transitions arising from dynamic

uncertainties.

For small models, the modified model can be optimized via the

measure-theoretic technique in a straightforward manner, using the

ν⋆-algorithm reported in [8]. However, due to the presence of

uncontrollable transitions, some of the results obtained in [8] need

to be modified. Furthermore, large problem sizes give rise to critical

issues due to partial controllability of transitions in presence of

dynamic uncertainty, which would be addressed in the next section.

Proposition 3.2: (Weaker Version of Proposition 2.2) There exists

a ν⋆-path ρ(qi,qG) from any state qi ∈ Q to the goal qG ∈ Q if

ν#(qi) > 0.

Proof: We note that ν#(qi) > 0 implies that there necessarily

exists at least one string ω of positive measure initiating from

qi and hence there exists at least one string that terminates on

qG. The proof then follows from the definition of ν⋆-paths (See

Definition 2.16). r

Proposition 3.3: Let |1,|2 be two navigation automata differing

only in the value of the uncertainty parameter, with |1 > |2. If for some

qi ∈ Q, ν1
#
(qi)> 0 and ν2

#
(qi)> 0, then the shortest ν⋆-path from qi to

qG in |2 is at least as long as the corresponding shortest ν⋆-path

from qi to qG in |1.

Proof: We use induction on the length of the shortest ν⋆-path

from qi to qG in |2, which we denote as ℓ1. First we note that the

result is trivially true if ℓ1 = 0 or ℓ1 = 1. As our induction hypothesis,

we assume that the result is true fro ℓ1 = k. Then, for ℓ1 = k + 1,

we note that if qi,qr1
, · · · ,qrk

is the shortest ν⋆-path in |2, then the

shortest ν⋆-path from qi to qr(k−1) cannot be longer than k (as per

our induction hypothesis). The proof is then completed by noting

that qrk
is actually qG , and hence the path from qr(k−1) to qrk

is a

single hop in |1 r

Remark 3.2: Proposition 3.3 implies that higher dynamic uncer-

tainty leads to longer ν⋆-paths in general.

Unfortunately, the critical result pertaining to absence of local

maxima (Corollary 2.2) is no longer valid and we will discuss how

to remedy this in the sequel. However, we have the following result:

Proposition 3.4: The solution of the modified planning problem

solves the following optimization problem: Maximize p1 − p2 under

the model constraints, where p1 and p2 are the stationary probabil-

ities of reaching the goal and hitting an obstacle respectively.

Proof: We recall that the language-measure-theoretic opti-

mization of PFSA accomplishes the maximization of ℘Tχ where

℘ is the stationary probability vector on the automaton states [2].

Since χ(qG) = 1 and χ(qO) = −1 and all other states have

zero characteristic, it follows that p1 − p2 gets maximized in the

optimization. r

Remark 3.3: We note that under the modified model, ν#(qi) < 0

needs to be interpreted somewhat differently. In absence of any

dynamic uncertainty, ν#(qi) < 0 implies that no path to goal exists.

However, due to weakening of Proposition 2.1 (See Proposition 3.2),

and in the light of Proposition 3.4, ν#(qi) < 0 implies that the

probability of reaching goal is smaller to that of hitting an obstacle

from the state qi.

C. Experimental Validation with SEGWAY RMP

The proposed modification is validated on a SEGWAY RMP 200

which is a two-wheeled robot with significant dynamic uncertainty.

In particular, the inverted-pendulum dynamics prevents the platform

from halting instantaneously. The experimental runs were conducted

at the Networked Robotics & Systems Laboratory (NRSL), Pennstate,

with the workspace discretized into a 53×29 grid. Each grid location

is about 4 sq. ft. allowing the SEGWAY to fit complete inside

each such discretized positional state which justifies the simplified

circular robot modeling. The runs are illustrated in Figure 4. The

robots were run at three different average speeds; leading to three

different values of the uncertainty parameter . In the top plate,

= 0.98 with average robot speed v = 0.3m/sec. The middle plate

illustrates the case with = 0.9, v = 0.5m/sec and for the bottom plate

the values are = 0.85, v = 1m/sec. The plates on the lefthand side

illustrate the measure gradients; the ones on the right illustrate the

executed plan. The results show that the approach presented in this

paper successfully integrates amortized dynamics with autonomous

planning.

4. R D FM E

Weakening of Proposition 2.1 (See Proposition 3.2) has the crucial

consequence that Corollary 2.2 is no longer valid. Local maximacan

occur under the modified model. This is a serious problem for

autonomous planning and must be remedied. Local Maxima elation

is notoriously difficult for potential based planning approaches. The

problem becomes critically important when applied to solution of

mazes; larger the number of obstables, higher is the chance of ending

up in a local maxima. However, ν⋆ can be modified with ease into a

recursive scheme that eliminates local maxima occurring in models

with non-zero dynamic uncertainty. The correctness of the proposed

is established in the next proposition.

Proposition 4.1: 1. The planning loop terminates in finite number

of steps.

2. The execution loop is free from local maxima.

Proof: Statement 1 immediately follows from the finiteness of

the state set Q and the fact that Hk,H j are mutually disjoint for k , j.
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Fig. 3. (a)Illustration for Statement 2 of Proposition 4.1 (b)Simulated
maze solution under dynamic uncertainties in plan execution. The broken
line corresponds to the plan considering dynamic uncertainty; while the solid
line is the one without. The color coding on the broken line switches when
the plan moves from Hi to Hi−1.

For Statement 2, we argue by the method of induction. First, we

note that if the initial state qi is in H1, then ν#(qi) > 0 w.r.t. the

plan saved in M1, implying that there is a ν⋆-path to the goal. For

our induction hypothesis, we assume the result is true if qi is in Hk.

Next, let qi ∈ Hk+1. Let Mk = ν#. Then, since Mk+1 was obtained

by solving the planning problem after setting every state in Hk as

goal, we conclude that there exists a ν⋆-path to some state q j ∈ Hk,

which in turn implies the existence of a succession of nustar-paths

to the goal by our induction hypothesis. This completes the proof.

Figure 3(a) illustrates the sequential execution. r

Remark 4.1: The recursive version of the ν⋆ can be interpreted as

accomplishing the following: Simultaneously minimize the probabil-

ity of hitting any obstacle and maximize the probability of reaching

the goal, under the constraint that the robot executes the planned

local moves only with ×100% probability at any instant.

 

 

5 10 15 20 25

5

10

15

20

25

30

35

40

45

50

900

910

920

930

940

950

960

970

980

990

(a)

 

 

5 10 15 20 25

5

10

15

20

25

30

35

40

45

50
780

790

800

810

820

830

840

850

(b)

 

 

5 10 15 20 25

5

10

15

20

25

30

35

40

45

50
680

690

700

710

720

730

740

(c)

 

 

5 10 15 20 25

5

10

15

20

25

30

35

40

45

50

(d)

 

 

5 10 15 20 25

5

10

15

20

25

30

35

40

45

50

(e)

 

 

5 10 15 20 25

5

10

15

20

25

30

35

40

45

50 GOAL

(f)

Fig. 4. Experimental Validation at NRSL, Pennstate: Navigable area
shrinks as uncertainty parameter is increased from top to bottom with
consequent change in the plan

A. Simulation Example

Recursive ν⋆ is validated with a detailed simulation example as

illustrated in Figures 3(b). The crucial problem that the recursive

procedure addresses is clear from plate (a). Note that the number of

states with positive measure is very small; implying that from the

remaining states, the robot is more probable to hit a obstacle than

reach the goal. The final plan is constructed by piecing together the

plans obtained within H1 to H6. The result is shown in Figure 3(b).

The dotted lines are the plans computed under dynamic uncertainty;

the solid lines are plans that assume perfect execution. Note the plans

that assume uncertainty are significantly longer; but go around narrow

spaces, whereas, the solid lines goes through them. The color coding

on the dotted lines illustrate the different planning zones H1 to H6.

5. S & F R

A novel path planning algorithm ν⋆ is introduced that models the

autonomous navigation as an optimization problem for probabilistic

finite state machines and applies the rigorous theory of language-

measure-theoretic optimal control to compute ν-optimal plan to the

specified goal, with automated trade-off between path length and

robustness of the plan under dynamic uncertainty. Future work will

extend the language-measure theoretic planning algorithm to address

the following problems:

1) Multi-robot coordinated planning: Future work will address

multi-robot scenarios, with each robot treating the remaining

group as moving obstacles.

2) Hierarchical implementation to handle very large workspaces:

Large workspaces can be solved more efficiently if planning is

done when needed rather than solving the whole problem at once.

3) Handling partially observable dynamic events: Physical errors

and onboard sensor failures may need to be modeled as unobserv-

able transitions and will be addressed in future publications.
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