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Abstract— This paper deals with model order reduction for
linear stable discrete-time systems while minimizing the ℓ∞-
gain of the error system. Our approach considers explicitly time
domain performance and not frequency domain performance
like most other approaches do. A convex programming problem
expressed in terms of linear matrix inequalities combined with
a line search algorithm is formulated to provide suboptimal
solutions to the model reduction problem. The proposed method
is compared to the well-known balanced truncation method
via simulation. It is shown that the proposed method results
in superior performance when time domain performance is of
importance.

I. INTRODUCTION

Model order reduction is an important and interesting

problem for several reasons. In many applications or when

doing simulations it is difficult to deal with a system of

high order. Therefore a lower order approximation of the

original system that preserves properties of the original

system is desirable. The properties that are preserved depend

on the model order reduction method that is used. Typically

system norms as e.g Hankel singular values, H∞- or H2-gain

are considered. In our approach the ℓ∞-gain of a system

is considered. A reduced model with lower pre-specified

order is searched for, which approximates the original model

according to a given minimum norm criterion. Such an

approximation problem is in general hard to solve due to

its non-convexity which comes from constraints of involved

variable (see [1], [2]).

Many authors have made efforts to transfer this non-

convex optimization problem into a convex one by intro-

ducing a small degree of suboptimality based on lower and

upper bounds on the norm of the reduction error, see e.g.

the seminal paper on Hankel norm approximation [3], the

survey paper on model order reduction techniques [4] and

references therein. Another method was presented by [1], [2]

and [5] where the authors propose an alternating projection

approach to handle rank constraints on optimization prob-

lems, the so called cone complementary linearization (CCL,

[6]). Approaches which formulate the model order reduction

problem in terms of linear matrix inequalities (LMIs, [7]) to

get classical bounds on H∞- and H2- norm of the reduction

error are presented in [8], [9] and [10].

All these approaches have in common that their main goal

is to preserve frequency domain properties of the original

system, as e.g. energy or bandwidth. However, in some

situations it is desired to preserve time domain properties

as e.g. maximum amplitude of a signal. To cover this case
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the ℓ∞-norm of the error between the original system and

the reduced order system is considered in our paper. The

ℓ∞-gain characterizes the worst case time domain amplitude

of a system output y = Hu normalized by the maximum

amplitude of the input u under the assumption of zero initial

conditions. Using this as a measure of error between the

original and the reduced order system implies to explicitly

consider time domain properties as minimization criterion.

The ℓ∞-gain of the reduction error system is then a value

of practical meaning as it corresponds to the worst case

amplitude of the error system. On the other hand this

approach is also of course very interesting in combination

with ℓ1-optimal controller design [11], [12]. To the best of

the authors knowledge our approach is the first that considers

time domain performance as a criterion for model reduction.

Therefore this new method supplements the existing model

order reduction techniques, which cannot deal explicitly with

time domain properties like amplitude or slope of a signal.

In our paper the ℓ∞-gain model reduction problem for

linear multivariable discrete-time systems is formulated in

terms of LMIs combined with a line search. LMIs are com-

putationally attractive because they can be solved efficiently

with existing solvers (see [13], [14]). Transforming the non-

convex problem into a convex one is possible by an a-

priori choice of a certain matrix variable, which is kept fixed

during the optimization. By an appropriate choice of this

matrix variable the degree of suboptimality is kept small

and the proposed method is a suitable alternative to the

classical balanced truncation method [15], when time domain

performance is of explicit interest.

The article is organized as follows: Next, the problem

statement is formulated. Then the model reduction algorithm

is developed in three steps. First, we will introduce the star-

norm which is an upper bound to the ℓ∞-gain of a system

and can be efficiently computed via LMIs combined with a

line search. Second, we will parameterize the original system

to obtain systems for which the error to the original system

is below a certain value. In the third step the parameter-

ized model is truncated and the reduced order system is

introduced. The paper concludes with an example which

compares reduced models derived by this method to models

derived by the well known balanced truncation approach.

The notation X < 0 (≤ 0) stands for X being negative

(semi-) definite; likewise for > (≥) and positive (semi-)

definiteness. For ease of notation of partitioned symmetric

matrices, the symbol (⋆) denotes generically its symmetric

blocks; I and 0 represent identity and zero matrices, respec-

tively. Matrices, if their dimensions are not explicitly stated,

are assumed to be compatible for algebraic operations. A
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state-space realization of a transfer matrix H(z) is written

as
[

A B
C D

]

:= C(zI − A)−1B + D = H(z).

II. PROBLEM STATEMENT

Let a linear discrete-time system be given by its in-

put/output transfer function representation

H(z) :=

[

A B
C D

]

, (1)

where matrices A ∈ R
n×n, B ∈ R

n×m, C ∈ R
r×n and

D ∈ R
r×m are known. It is assumed that this system is

stable as well as controllable and observable, i.e. the system

is given in minimal realization. Our goal is to determine a

reduced order model associated to (1), with transfer function

Hr(z) :=

[

Ar Br

Cr Dr

]

, (2)

with matrices Ar ∈ R
q×q , Br ∈ R

q×m, Cr ∈ R
r×q and

Dr ∈ R
r×m with 0 ≤ q < n. It is desired that the reduced

order model (2) approximates the original system (1) such

that

inf
Hr(z)∈H

‖H(z) − Hr(z)‖ℓ∞−ind (3)

holds, where H denotes the set of all stable Hr(z) with

minimal realization (2) and order q < n, the -ind stands

for induced norm. Problem (3) is a classical approximation

problem which has been considered by many authors (e.g.

[4], [3]). Although the objective function is convex, the

feasible set H is generally not convex due to the fact that

the search for the transfer functions Hr(z) is restricted to

functions of order q strictly smaller than n. In the next

section an approach is derived that overcomes this problem.

It will be shown that suboptimal solutions of (3) can be

obtained by solving a convex optimization problem based on

computationally attractive LMI techniques combined with a

line search. A further advantage of this approach is that the

reduced order model is explicitly calculated from the solution

of the optimization problem.

III. MAIN RESULTS

In this section the main result is introduced in three steps.

First, the star-norm is introduced as an upper bound to the

ℓ∞-gain of a system. Afterwards, based on the star-norm

a parameterization of the system is shown that yields all

systems Hr with order n = q and ‖H(z)−Hr(z)‖ℓ∞−ind <
γ. Third, this parameterized model is then truncated to get

the reduced order model.

A. Star-Norm Performance

The space ℓn
∞ is the Banach space of right-sided bounded

real vector sequences of dimension n, with the ℓ∞-norm

‖x‖ℓ∞ := sup
k

max
1≤i≤n

|xi(k)|.

Thus the ℓ∞-norm measures the maximum absolute value of

a vector sequence. An alternative norm on ℓn
∞ is the peak-

norm

‖x‖peak := sup
k

√

x(k)T x(k).

For x ∈ ℓn
∞ it holds ‖x‖ℓ∞ ≤ ‖x‖peak ≤ √

n‖x‖ℓ∞ [16].

The ℓ∞-induced norm (or ℓ∞-gain) of a map H : ℓn
∞ → ℓm

∞
is

‖H‖ℓ∞−ind := sup
0<‖w‖ℓ∞

<∞

‖Hw‖ℓ∞

‖w‖ℓ∞

and hence measures the worst-case amplification of persistent

inputs in terms of the maximally attained amplitude. It can be

shown that for linear discrete-time invariant systems the ℓ∞-

gain is equal to the ℓ1-norm of the system’s impulse response

[17]. However, in this paper we follow a different road. To

compute the ℓ∞-gain of system (1) we use the so called star-

norm performance which is an upper bound on the peak-

to-peak gain and the ℓ∞-induced norm. Moreover it holds

that 1√
m
‖H‖peak−ind ≤ ‖H‖ℓ∞−ind ≤ √

r‖H‖peak−ind for

dim(H) = m × r (see [18], Appendix A).

Theorem 1 ([19]): Consider system (1) with initial con-

ditions x(0) = 0. The following statements are equivalent:

• There exist γ > 0, µ > 0, 0 < λ < 1 and X = X ′

satisfying





λX 0 A′X
⋆ µI B′X
⋆ ⋆ X



 > 0 (4a)







(1 − λ)X 0 C′

⋆
(

γ2

m
− µ

)

I D′

⋆ ⋆ I






> 0. (4b)

• ‖H(z)‖ℓ∞−ind < γ, and

• ‖y‖peak < γ√
m

for ‖u‖peak ≤ 1, and moreover

‖H(z)‖peak−ind < γ√
m

,

• A has all its eigenvalues in the open unit disk.

Remark 1: γ is just an upper bound on the system’s ℓ∞-

induced norm. The smallest achievable γ is called star-norm

‖H‖⋆ of H .

Since the ℓ∞-gain is a measure for maximum amplitude of

a signal, this allows to consider time domain performance

criteria explicitly. In the following the inequalities (4) will

be used to compute a reduced order system Hr(z) that is the

solution to the minimization problem

inf
Hr(z)

γ subject to ‖H(z)− Hr(z)‖ℓ∞−ind < γ. (5)

It is also possible to consider a pre-specified γ and search

for a reduced order system, i.e. find a Hr(z) such that

‖H(z) − Hr(z)‖ℓ∞−ind < γ

holds. In this case Hr(z) is a suboptimal solution to (5).
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B. Parameterization of the Model

With the star-norm performance above introduced, as a

first result we can formulate the following lemma. It gives

the set of all asymptotically stable transfer functions of order

n = q such that the error is bounded from above by an ℓ∞-

norm level γ > 0.

Lemma 1: For γ > 0, µ > 0 and 0 < λ < 1, all matrices

F, M, L, and K of compatible dimensions satisfying the

linear matrix inequalities

X > Z > 0, (6a)












λZ λZ 0 A′Z A′X − M ′

⋆ λX 0 A′Z A′X
⋆ ⋆ µI B′Z B′X − L′

⋆ ⋆ ⋆ Z Z
⋆ ⋆ ⋆ ⋆ X













> 0, (6b)











(1 − λ)Z (1 − λ)Z 0 C′ − F ′

⋆ (1 − λ)X 0 C′

⋆ ⋆
(

γ2

m
− µ

)

I D′ − K ′

⋆ ⋆ ⋆ I











> 0.

(6c)

produce asymptotically stable transfer functions with order

n = q of the form

Hr(z) :=

[

(X − Z)−1M (X − Z)−1L
F K

]

, (7)

that satisfy ‖H(z) − Hr(z)‖ℓ∞−ind < γ.

Proof: The proof is similar to the proofs in [10] and

[9]. The transfer function of the approximation error is given

by

E(z) :=H(z) − Hr(z)

=

[

A B
C D

]

=





A 0 B
0 Ar Br

C −Cr D − Dr



 .

‖E(z)‖ℓ∞−ind < γ is satisfied following Theorem 1 if there

exists a symmetric and positive matrix X , γ > 0, µ > 0 and

0 < λ < 1 such that




λX 0 A′X
⋆ µI B′X
⋆ ⋆ X



 > 0, (8a)







(1 − λ)X 0 C′

⋆
(

γ2

m
− µ

)

I D′

⋆ ⋆ I






> 0. (8b)

This is a bilinear matrix inequality due to the multiplication

between the system matrices A, B, C, D (including the

unknowns Ar, Br, Cr and Dr) and the decision variable

X . In the following steps, a linearizing change of variables

is introduced to transform the BMI into an LMI combined

with a line search. Using the partitions

X =

[

X U
U ′ X2

]

X−1 =

[

Y V
V ′ Y2

]

T =

[

Y I
V ′ 0

]

,

and multiplying (8a) to the right by diag(T , I, T ) and to the

left by its transpose, multiplying the result from both sides

by the symmetric matrix diag(Y −1, I, I, Y −1, I), we obtain

the inequality (6b), where Z = Y −1, M = −UArV
′Z and

L = −UBr.

Multiplying (8b) to the right by diag(T , I, I) and to

the left by its transpose, multiplying the result from both

sides by the symmetric matrix diag(Y −1, I, I, I), we obtain

the inequality (6c), where F = CrV
′Z and K = Dr.

Additionally, by multiplying matrix T ′XT from both sides

by diag(Y −1, I) and applying the Schur complement it can

be concluded that T > 0 holds if X > Z > 0. Since the

square matrices U ∈ R
n×n and V ∈ R

n×n can always be

assumed nonsingular, we obtain the state-space realization

Hr(z) :=

[

−U−1M(V ′Z)−1 −U−1L
F (V Z ′)−1 K

]

,

which reduces to (7) from the choice of V such that V ′Z = I
and the determination of U from X + UV ′Z = Z . The

matrices U and V can be fixed with no loss of generality.

They only change the state-space realization of the system

but not its transfer function Hr(z). This concludes the proof

of the proposed lemma.

To simplify the results of Lemma 1 significantly we will

eliminate variables L, M , F and K . The idea is to determine

these matrix variables in terms of X and Z without intro-

ducing conservatism concerning the feasibility of Hr(z).
Theorem 2: For each γ > 0, µ > 0, 0 < λ < 1, all

symmetric matrices satisfying the matrix inequalities,

X > Z > 0, (9a)
[

µI − B′ZB B′ZA
⋆ λZ − A′ZA

]

> 0, (9b)

A′XA − λX < 0, (9c)

γ2

m
> µ, C′C − (1 − λ)X < 0, (9d)

produce asymptotically stable transfer functions with order

n = q of the form

Hr(z) =

[

λAΘ(X − Z) B + AΘA′ZB
CX−1(X − Z) D

]

(10)

with Θ = (λX − A′ZA)−1 that satisfy ‖H(z) −
Hr(z)‖ℓ∞−ind < γ.

Proof: The proof follows along the lines of [10]. First,

we will consider inequality (6b). The Schur complement is

performed twice. First with respect to matrix Z in the fourth

row and column and second with respect to the resulting

matrix λX − A′ZA placed in the third row and column.

The result is a new three by three block matrix whose out-

diagonal elements give the unknowns

M = λ(X − Z)A(λX − A′ZA)−1(X − Z),

L = (X − Z)B + (X − Z)A(λX − A′ZA)−1A′ZB.

Second inequality (6c) is considered. The Schur complement

is performed on matrix (1 − λ)X on the second row and
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column. The result is a three by three block matrix whose

out-diagonals give the unknowns

F = CX−1(X − Z),

K = D.

Inserting L, M , F , and K as obtained above in equation (7)

leads to equation (10) which only depends on the unknowns

X and Z . This concludes the proof of Theorem 2.

If the matrix inequalities (9) are feasible then also inequal-

ities (6b). Inequalities (9) are no LMIs due to the products

between λ and X and λ and Z . Still the global minimum

of γ2 is found by combining the minimization of γ2(λ)
for a fixed λ with a line-search over 0 < λ < 1. By

Theorem 2 a parameterization for all Hr(z) that satisfy

‖H(z)−Hr(z)‖peak−ind < γ is found. From this parameter-

ization the reduced order model is derived in the following

section.

C. Model Reduction

Solving the inequalities of Theorem 2 always has Hr(z) =
H(z) as a solution which is not helpful. To avoid this, we

restrict the solution space. This is motivated by the following

observation: For Z → 0, Hr(z) approaches H(z) yielding γ
arbitrarily close to zero as expected. For Z → X , Ar and Cr

go to zero and consequently the zero order approximation

Hr = D is obtained. The associated minimum cost γ
becomes ‖C(zI − A)B‖ℓ∞ . In conclusion equation (10)

generates not only nth order transfer functions but also

0 ≤ q ≤ n order transfer functions in the limit case as

Z approaches X .

To use this observation for model reduction, we fix the

relation between X and Z in the following similar to [10].

Consider that the difference X − Z can be written as

X = Z +
[

W J
]

[

Σ 0
0 O(ǫ)

] [

W ′

J ′

]

, (11)

where S :=
[

W J
]

∈ R
n×n is a non-singular matrix

partitioned accordingly, Σ ∈ R
q×q is a positive definite

matrix and O(ǫ) is an arbitrarily small (of order ǫ > 0)

positive definite matrix. Since the term (X −Z) is included

in Ar and Cr, making ǫ → 0, n − q poles of the transfer

function are unobservable poles placed at the origin. Deleting

these poles leads to the reduced order transfer function

Hr(z) =

[

λW ′AΘWΣ W ′(B + AΘA′ZB)
CX−1WΣ D

]

, (12)

with Θ = (λX − A′ZA)−1 as defined before.

The equality constraint (11) is nonlinear with respect to the

involved matrices W and Σ. It becomes linear for a fixed W ,

which we want to determine a-priori. Then we can consider

a convex optimization problem which can be solved in terms

of LMIs combined with a line search over λ. In principle,

W could be chosen arbitrarily. Different choices of W lead

to reduced models of different quality with respect to the

considered minimization criterion. Since we want to place

n−q poles at the origin, we introduce P as the observability

gramian and Q as the controllability gramian. Assume S as

the decomposition of P , then we obtain

P = S′S

Λ := SQS′ =

[

ΛW 0
0 ΛJ

]

= diag(σ2
i )

where Λ consists of the squared Hankel singular values σ2
i in

a decreasing ordering. We now choose W as the q columns

of S corresponding to the q largest diagonal element. This

is motivated by the idea of moving poorly observable poles

of the original model to the origin, while keeping the well

observable ones. Using Theorem 2 and the considerations

above, we can formulate the following algorithm to derive a

reduced order model of order q.

Algorithm 1: For a given system H(z) with order n a

reduced order system Hr(z) with order 0 ≤ q ≤ n so that

the ℓ∞-norm of the error system ‖H(z)−Hr(z)‖ℓ∞−ind is

minimized can be found by

inf
X,Z>0,Σ>0,
µ>0,0<λ<1

γ subject to

X = Z + WΣW ′, (13a)

X > Z > 0, (13b)
[

µI − B′ZB B′ZA
⋆ λZ − A′ZA

]

> 0,

(13c)

A′XA − λX < 0, (13d)

γ2

m
> µ, C′C − (1 − λ)X < 0. (13e)

The reduced order system Hr(z) is given by equation (12).

Remark 2: This algorithm is computationally very attrac-

tive since it can be solved via LMIs combined with a line

search.

IV. EXAMPLES AND COMPARISON

In this section we show simulations of the method in-

troduced in this paper. Transfer functions with dimensions

m = 1, r = 1 and 2 ≤ n ≤ 20 were generated randomly.

Matrix A has been multiplied by a scalar in order to obtain

a new matrix with all eigenvalues placed in a circle with

radius 5/6 around the origin to avoid numerical problems.

For each model of dimension n a reduced order model Hℓ∞

has been calculated for all q = 1, 2, . . . , (n − 1).
We also generated reduced order models by the very

well-known balanced truncation method. For each transfer

function of order q the original system H(z) has been

transformed into a balanced realization and truncated to

obtain the reduced order model HBT (z). Then the following

normalized indexes have been calculated

eBT :=
‖H(z)− HBT (z)‖ℓ∞−ind

‖H(z)‖ℓ∞−ind

eℓ∞ :=
‖H(z)− Hℓ∞(z)‖ℓ∞−ind

‖H(z)‖ℓ∞−ind

.
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Fig. 1. Comparison of ℓ∞-gain model reduction with balanced truncation.

In Figure 1 eℓ∞ over eBT is plotted. It can be seen that

for the same number of reduced states a reduced order

model computed by the proposed method has a smaller

ℓ∞-gain than a model reduced by balanced truncation in

almost every case. This shows that the proposed method is a

promising alternative to classical balanced truncation when

time domain properties are of interest for the reduced order

model, although balanced truncation is computationally less

demanding than the proposed method.

Another interesting question is the ℓ2-performance of

the proposed method. In Figure 2 the ℓ2 performance of

the proposed method compared with balanced truncation is

shown for the above randomly generated systems. Again the

following normalized indexes have been calculated

eBT,ℓ2 :=
‖H(z) − HBT (z)‖ℓ2−ind

‖H(z)‖ℓ2−ind

eℓ∞,ℓ2 :=
‖H(z) − Hℓ∞(z)‖ℓ2−ind

‖H(z)‖ℓ2−ind

.

It can be seen, that the reduced order models have good ℓ2

performance in addition to the minimized ℓ∞ performance.

This is a useful property which makes the method even more

attractive.

In both plots are a lot of dots close to zero. This comes

from the cases where only one or two states are truncated.

Then both methods perform equally well with only a very

small error between the reduced order system and the original

system.

For completeness we have also considered the forth-order

system used in [20] and [21]

H(z) =













−1.1 1 0 0 1
0.01 0 1 0 0
0.275 0 0 1 0
0.06 0 0 0 0
1 0 0 0 0













, (14)
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Fig. 2. Comparison of ℓ2 performance of ℓ∞-gain model reduction with
balanced truncation.

TABLE I

ℓ∞-GAIN OF REDUCED ORDER SYSTEMS FOR SYSTEM (14).

q BT Algorithm 1 γ
1 2.8700 1.9701 2.3411
2 0.8279 0.2613 0.4300
3 0.0281 0.0162 0.3174

with ℓ∞-gain ‖H(z)‖ℓ∞−ind = 9.5238.

Table I shows the ℓ∞-gain of the reduced order system

computed with balanced truncation and Theorem 1 as well

as the upper bound for the star-norm performance γ as it

results from optimization problem (13). As the number of

reduced states grows (i.e. q small) the proposed algorithm

achieves much better results than the balanced truncation.

For a growing number of reduced states not only the ℓ∞-

gain of the error systems is much smaller but already γ the

upper bound on the star-norm, as can be seen in Table I.

This shows that if a larger number of states will be reduced

the proposed method is very suitable.

V. CONCLUSION

In this paper a computationally attractive method for

model order reduction for stable linear multivariable discrete-

time systems in an ℓ∞-gain framework was presented. This

novel approach minimizes the ℓ∞-gain of the error system.

Thus it considers time domain performance as minimization

criteria for the norm of the error system. Since existing

approaches mainly consider frequency domain properties

like energy of bandwidth of a system, this new approach

supplements existing model order reduction techniques that

cannot deal with time domain performance.

An upper bound on the ℓ∞-gain namely the star-norm per-

formance was used so that the problem could be formulated

in terms of LMIs combined with a line search. Via simulation

it has been shown that the proposed method performs equally

or better than the classical balanced truncation method in

the ℓ∞ case. A useful additional property is the good ℓ2-
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performance of the reduced order systems. Thus, in the case

when time domain properties are of interest, the proposed

approach is a promising alternative to the balanced truncation

method. Further research is necessary to reduce suboptimal-

ity of the presented approach by choosing the degrees of

freedom in the problem formulation in an optimal way.
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