
  

  

Abstract—This paper deals with the congestion control 
problem for queues in TCP/IP networks. In order to improve 
the congestion control performance for queues, based on the 
utility optimization source model proposed by Kelly, the linear 
and terminal sliding active queue management (AQM) 
algorithms are designed. Especially in the terminal sliding AQM 
algorithm, a special nonlinear terminal sliding surface is 
proposed in order to force queue length in router to reach the 
desired value in finite time. The upper bound of the time is also 
obtained. Simulation results demonstrate that the proposed 
sliding mode AQM controllers can obviously improve the 
performance of congestion control for queue length in routers. 

I. INTRODUCTION 
N explosive growth in the Internet has resulted in the 
traffic congestion characterized by packet losses and 

delays, which has severely prevented the development of the 
Internet. Active Queue Management (AQM), as a class of 
packet dropping/marking mechanism in the router queue, has 
been recently proposed in order to convey congestion 
notification early enough to the senders, so that the senders 
are able to reduce the transmission rates before the queue 
overflows and any sustained packet loss occurs [1]. There are 
three typical kinds of AQM algorithms: One is heuristic 
algorithms, such as RED (Random Early Detection) [2], 
BLUE [3]; One is the utility function optimal model based on 
economics, like REM (Random Exponential Marking) [4], 
AVQ (Adaptive Virtual Queue) [5]; The other one is based on 
the sourcing and queuing dynamic model, as PI [6] and VRC 
(Virtual Rate Control) [7]. The advantage of the latter two 
algorithms is that the design of controller is based on explicit 
model, so the stability analysis and parameters modulation 
can be given theoretically.  

This paper focus on the source algorithm which Kelly [8] 
proposed based on economic utility function through an 
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optimization framework. And the link algorithm uses the 
sliding mode control (SMC) method to design the AQM 
controller, which is a new and effective method to analyze the 
performance of congestion control for the Internet. It is well 
known that sliding mode control (SMC) is an effective 
method of robustness control, and sliding mode control 
systems possess strong robustness against parameter 
perturbations and external disturbances [9], which is very 
suitable for time varying network system. In recent years, 
many studies have been focus on the domain [10]-[12]. This 
paper proposes two sliding mode controllers, one is plain 
SMC denoted as PSMC-AQM, and gives out the global 
stability analysis based on Lyapunov stability theory. The 
other one is terminal SMC [13], [14] denoted as TSMC-AQM, 
the nonlinear terminal sliding surface guarantees the finite 
reaching time to the sliding surface from initial states and the 
finite reaching time to the equilibrium point. So the 
converging time is limited, and the speed of the sliding mode 
control system is enhanced. 

So in this paper we propose AQM algorithms based on 
Kelly’s scheme by using sliding mode control. The structure 
of the paper are as follows: in section II we analyze the 
Kelly’s method, in section III and IV, we design the linear 
and terminal sliding mode AQM controller respectively to 
study the convergence of the queue, the conclusion is given in 
the last section. 

II. KELLY’S SCHEME 
In this section we briefly describe the rate allocation 

problem in the Kelly’s optimization framework. The 
framework is composing of two parts, the users and the 
network. For the users, they hope maximize their interest, 
which is the utility minus bandwidth cost. And the network is 
constructed by a series of link with fixed capacity which is 
shared by the users. 

Consider a network with a set L of resources and a set I of 
users. Let lC  denote the finite capacity of resource l L∈ . 
Each user i I∈  has a fixed route ir , which is a set of 
resources traversed by user i’s packets. ( )ix t is the sending 
rate of source. We define a zero-one matrix A, where , 1i lA =  

if il r∈  and , 0i lA =  otherwise. When its rate is ix , user i 

receives utility ( )i iU x . We take the view that the utility 
functions of the users are used to select the desired rate 
allocation among the users. The utility ( )i iU x is an increasing, 
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strictly concave and continuously differentiable function of 
ix  over the range 0ix ≥ . Under this setting, the rate 

allocation problem of interest can be formulated as the 
following optimization problem [15]: 

0
( , , )  max ( )

                         s.t.  
i

i ix i I
T

SYSTEM U A C U x

A x C

≥
∈

≤

∑                     (1) 

where ( , )lC C l L= ∈ .The first constraint is the capacity 
constraint which states that the sum of the rates of all users 
utilizing resource should not exceed its capacity lC . 

Each user i adjusts its rate according to the following 
differential equation. 

( ) ( ) ( )
i

i i i i l i
l r i I

d x t k x t p x t
dt

ω
∈ ∈

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑           (2) 

where ik and iω are positive constants, ik is the gain 
parameter iω shows the users’ willingness to pay per unit time. 

( )lp ⋅  is an increasing function of the aggregate rate of the 
users going through it, and it can also be seen as the packet 
loss function that similar to ECN possibility function [16]. 

The simplified dynamic model is 
( ) ( ( ) ( ))r t k r t p tω= −&                          (3) 

where ( )r t is the user’s sending rate at time t, ( )p t is the 
marker probability of ECN,  and k ω are the corresponding 
parameters. 
  Assume the network model is single user and single link. 
The dynamic buffer length at bottleneck is that 

( ) ( )q t r t C= −&                               (4) 
where ( )q t is the instantaneous queue length in buffer, C is 
link capacity. 
  Let 1( ) ( ) dx t q t q= − , 2 ( ) ( )x t r t C= − , (3) and (4) can be 
described in a state space form:  

1 2( ) ( )x t x t=&                           (5) 
( )2 2( ) ( ( ) ) ( )x t k x t C p tω= − +&              (6) 

where dq is the reference queue length. 
  Our control objective is that through design of the marker 
probability ( )p t with 0 ( ) 1p t≤ ≤ , regulate the queue length 
at a desired value and obtain higher link utilization, low 
packet loss rate and small queue fluctuations. 

III. DESIGN OF PLAIN SLIDING MODE CONTROL ALGORITHM 
According to the system model (5) and (6) in last section, a 

control theory-based approach shown in figure 1 is used to 
establish the AQM algorithm. The queue length ( )q t is the 
state variable and the marker probability ( )p t is the control 
variable. Through a feedback dynamic to regulate ( )p t and let 
the queue length at congested routers trace the reference 
value dq . Then the system can maintain high link utilization 
and low delay. 

AQM Sender Queue

Controller
dq ( )p t ( )q t

_

Control Object

 
Fig. 1 TCP/AQM control system block diagram 

There are usually two steps in the procedure of a sliding 
mode controller design. One is the sliding surface design and 
in this step you should design a sliding surface on which the 
states of the system can keep stabilization. The other is the 
sliding controller with which the system can converge to the 
sliding surface in finite time and keep sliding along it. 

A.  Sliding Surface Design 
First choose a sliding surface as conventional  

1 2( ) ( ) ( )S t cx t x t= +                     (7) 
The objective of sliding mode control is to make the state 

slide to origin along the sliding surface in a finite time. That 
means the error of queue length is zero, and the sending rate 
and link capacity are totally matching. 

When arrive at the sliding surface, ( ) 0S t = , so  

1 2( ) ( ) 0cx t x t+ =                           (8) 
Substituting (8) into (5), we can obtain the sliding mode 
dynamics as follows 

1 1( ) ( )x t cx t= −&                           (9) 
0( )

1 1 0( ) ( ) c t tx t x t e− −=                   (10) 
where 0t  means the initial time. So the system motion on the 
sliding surface (7) can converge to the origin point in finite 
time if 0c > . 

B. Sliding Mode Controller Design 
Let ( ) 0S t = , we can get the equivalent control law 

2

2

( ( ) )( )  =  
( ) ( ) ( )eq

cx k c r t Cp t
k x C kr t r t

ω ω+ −
= +

+
         (11) 

Apparently, this controller can make the system (5) (6) stable, 
but it can not satisfy the physical meaning of the marker 
probability 0 1eqp≤ ≤ . However (11) is helpful for us to 
design a more reasonable AQM controller  

( )( ) ( ( ))
( ) ( )

c r t Cp t sign S t
k r t r t

α ωβ
⎛ ⎞−

= + +⎜ ⎟
⎝ ⎠

      (12) 

Theorem 1: If the control law (12) is used for system (5) 
and (6), the reaching condition is satisfied if 1, 0α β≥ > . 

Proof: When ( ) 0S t > , 
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( )( ) ( ( ) ) ( )
( ) ( )

       ( ( ) ) ( ) ( )

       (1 ) ( ) ( )
        (1 ) ( ) ( )
        ( )[(1 ) ]

c r t CS t c r t C k r t
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c r t C c r t C kr t

c r t C kr t
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r t c k

ω αω β

α β

α β
α β

α β
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= − + − + +⎢ ⎥⎜ ⎟
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= − − − −

≤ − − −

< − −
= − −

&

 

So if ( ) 0S t > , choose 1, 0α β≥ > and the reaching 

condition ( ) ( ) 0S t S t <& is satisfied. 
When ( ) 0S t < , 

( )( ) ( ( ) ) ( )
( ) ( )

       ( ( ) ) ( ) ( )

       ( 1) ( ) ( )
       ( 1) ( ) ( )
       ( )[( 1) ]

c r t CS t c r t C k r t
r t k r t

c r t C c r t C kr t

c r t C kr t
cr t kr t

r t c k

ω αω β

α β

α β
α β

α β

⎡ ⎤⎛ ⎞−
= − + − − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
= − + − +

≥ − − +

> − +
= − +

&

 

So if ( ) 0S t < , choose 1, 0α β≥ > and the reaching 

condition ( ) ( ) 0S t S t <& is satisfied too. 
Theorem 2: The sliding mode dynamics (9) can converge 

to origin point after the time  
1 2

max
min

(0) (0)cx x
t

k rβ
+

=                     (13) 

where minr  is the lowest sending rate. 
Proof: Choose a Lyapunov function candidate for (7) as 

follows: 
21( , ) ( )

2
V x t S t= ,                        (14) 

then the time derivative of V (t) along system (5) and (6) is 

( )2 2

2 2

2 2

2

  ( ( ) ( ))

  ( ( ))

  ( ( ) )

  (( 1) ( ))

V SS
S cx k x C p t

Scx S c x k r t

S c x k r t c x S

S c x k r t

ω

α β

α β

α β

=

= + − +

= − +

≤ − + +

≤ − − +

&&

           (15) 

From theorem 1 we can get 1, 0α β≥ > , so 

min( )V S k r t S k rβ β< − < −&               (16) 
By (14), we have 

2S V=                         (17) 
Substituting (17) into (16), we can obtain the following 
inequality 

min2 ( )V V k rβ< −& ,                     (18) 
then  

2
min( , ) (0)
2

k r
V x t V

β⎛ ⎞
< − +⎜ ⎟

⎝ ⎠
.              (19) 

So we can get 
1 2

max
min min

(0) (0)(0) cx xV
t

k r k rβ β
+

< = .             (20) 

C. Simulation Results 
In this section we validate the effectiveness and performan- 

ce of the controller proposed in this paper by simulations. We 
consider the dumbbell network topology with a single 
bottleneck link in figure 2. 

S1

S2

SN

D1

D2

DN

Router 1 Router 2

(Congestion
   node)

TCP sources

... ...

TCP sinks

10Mbps

10Mbps 10Mbps

 
Fig. 2 Simulation network topology 

Choose the parameters of network as follows: the 
maximum buffer of each router is 500 packets 
and 1250packets/sC = . The desired queue length dq  is 200 
packets. The initial queue length is 400 packets. The 
PSMC-AQM controller parameters are 1,α = 10ω = , 

0.05,  β = 15,  12. k c= = To reduce the chattering problem, 
a saturation function is used. The RED algorithm is also 
simulated under the same network condition for the purpose 
of comparison. In addition, we use the parameters minimum 
80packets and maximum 320packets.  

The PSMC-AQM controller considers not only the queue 
length but also the matching condition of the assemble rate 
and the link capacity, so it reflects the network condition 
better than RED.  

 
Fig. 3 Average queue length using RED 

     
Fig. 4 Average queue length using PSMC 
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IV. DESIGN OF TERMINAL SLIDING MODE CONTROL 
ALGORITHM 

Last section introduces sliding mode control into the 
optimization based internet congestion control model, and 
designs a linear sliding surface, and then validates the 
effectiveness of the algorithm in simulation. But the sliding 
mode along the sliding surface is asymptotically stable, that 
means the converging time could be quite long. For 
speediness is so important for a router algorithm, a special 
nonlinear sliding surface named terminal sliding surface is 
proposed in this section. The terminal sliding surface 
guarantees the finite reaching time to the sliding surface from 
initial states and the finite reaching time to the origin point. 
So the converging time is limited, and the speed of the sliding 
mode control system is enhanced, further the congestion 
control performance is improved. 

A. Design of Terminal Sliding Surface 
We design a nonlinear terminal sliding surface as follows: 

/
1 1 2 2 3 1( ) ( ) ( ) ( ( ))q pS t d x t d x t d x t= + +             (21) 

where 1d > 0, 2d  > 0, 3d  > 0, p and q are odd positive 
integers and they satisfy q < p < 2q. The sliding surface S(t) 
corresponds to a combination of the queue length error, the 
error between incoming traffic rate and link capacity.  

When the system state trajectories are on the terminal 
sliding surface, S(t) satisfies S(t) = 0. So we can obtain the 
following equality 

1 /
2 2 1 1 3 1( ) [ ( ) ( ( )) ]q px t d d x t d x t−= − + .         (22) 

Substituting (22) into (5), we can obtain the sliding mode 
dynamics as follows 

1 1 /
1 2 1 1 2 3 1( ) ( ) ( ( ))q px t d d x t d d x t− −= − −&          (23) 

In order to prove that (23) can converge to the equilibrium 
point in finite time, we introduce a lemma as follows 

Lemma 1 [13]: Assume that a continuous, positive definite 
function V (t) satisfies the following differential inequality 

       ( ) ( )V t V tηα≤ −& ， 0t∀ ≥ ， (0) 0V ≥         (24) 
where 0α > , 0 1η< < are constants. Then V (t) satisfies the 
following inequality 

1 1( ) (0) (1 )V t V tη η α η− −≤ − − , 0 rt t≤ ≤        (25) 
and 

( ) 0V t = , rt t∀ ≥                     (26) 
with rt  given by 

1 (0)
(1 )r

Vt
η

α η

−

=
−

                        (27) 

Theorem 3: The sliding mode dynamics (23) can converge 
to the equilibrium point after the time rt  and rt  satisfies 

2(1 )
1

1

(0)
2 (1 )r

x
t

η

η α η

−

−=
−

                     (28) 

where 1(0)x is the initial value of 1( )x t  and 1
2 32 d dηα −= ，

/ 1
2

q pη +
= . 

Proof: Choose a Lyapunov function candidate for the 
system (23) as follows 

T
1 1

1( ) ( ) ( )
2

V t x t x t=                      (29) 

then the time derivative of V (t) along (23) is 
T

1 1
T 1 1 /

1 2 1 1 2 3 1

2 / 11 1
2 1 1 2 3 1

/ 11
2 3 1

( ) ( ) ( )

( )[ ( ) ( ( )) ]

( ) ( )

( )

q p

q p

q p

V t x t x t

x t d d x t d d x t

d d x t d d x t

d d x t

− −

+− −

+−

=

= − −

= − −

≤ −

& &

  (30) 

By (29), we have 

1( ) 2 ( )x t V t=                         (31) 
Substituting (31) into (30), we can obtain the following 
inequality 

( ) ( )V t V tηα≤ −&                         (32) 

where 1
2 32 d dηα −= , / 1

2
q pη +

= . 
According to lemma 1, we know that the sliding mode 

dynamics (23) can converge to the equilibrium point after the 
time rt  and rt  satisfies the following equality 

2(1 )1
1

1

(0)(0)
(1 ) 2 (1 )r

xVt
ηη

ηα η α η

−−

−= =
− −

               (33) 

So the system motion on the terminal sliding surface (21) 
can converge to the equilibrium point in finite time. 

B. Design of Terminal Sliding Mode Controller 
In the subsection, we design a robust terminal sliding mode 

controller to satisfy the reaching condition. We consider the 
following control structure of the form 

( ) ( ) ( )eq Np t p t p t= +                   (34) 
Theorem 4: If the control law is used for system (5) and (6) 

as follows 
/ 1

1 2 3 1 2 2

2 2
/ 1

3 11

2 2

( / )
( )   

( )

( ( ) )
( ) ( ) ( )

q p

eq

q p

d x q p d x x d k
p t

d k x C

qd xd r t C
d kr t pd kr t r t

ω

ω

−

−

+ +
=

+

−
= + +

        (35) 

2

2 2

( ) sgn( ( ))
( )

( )
v

N
k S t S S t

p t
d k x C

ε+
=

+
              (36) 

then the controller can satisfy the reaching condition  
2( ) sgn( ( )) ( )S t S S t kS tε= − −& .            (37) 

Proof : Recall (21), the time derivative of S(t) along the 
trajectory of (5) and (6) under the control (34) is given as 

/ 1
1 1 2 2 3 1 1

1 2 2 2
/ 1

3 1 2

( ) ( ) ( ) ( / )( ( )) ( )
 ( ) ( ( ( ) )) ( ))

       ( / )( ( )) ( )

q p

q p

S t d x t d x t d q p x t x t
d x t d k x t C p t

d q p x t x t

ω

−

−

= + +

= + − +

+

& & & &

  (38) 

Substitute (34) into (38), we can get 
2( ) ( ) sgn( ( ))vS t k S t S S tε= − −& . 

So the controller (34) can satisfy the reaching condition 
(37). That is to say, the controller can force system state 
trajectories toward the terminal sliding surface in finite time 
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and maintain them on the sliding surface after then. 
Meanwhile, the reaching rate is fast and chattering is low. 

C. Simulation Results 
In this section the effectiveness and performance of the 

controller (TSMC) is validated by simulations. Common 
sliding mode controller (SMVS, Sliding Mode Variable 
Structure) is also simulated for the purpose of comparison 
with suggested parameter values 0.96α = , 0.96β = − , 

2w = given in [17]. We consider the same dumbbell network 
topology with a single bottleneck link as figure 2. 

   
Fig. 5 The comparison with variable N 

     
Fig. 6 The comparison with variable C 

The network parameters are chosen the same as part C of 
section III. And the parameters of TSMC-AQM controller are 
chosen 1 1d = , 2 1d = , 3 1000d = , 3q = , 5p = , 5k = , 0.1ε = . 
From theorem 3 we can calculate 0.5506rt = s. 

As figure 5 and figure 6 show that the two controllers are 
insensitive to different TCP loads and link capacity, but 
TSMC has shorter regulating time and better steady 
performance than SMVS controller. 

V. CONCLUSION 
In this paper, effective AQM algorithms are proposed. We 

combine the Kelly’s optimization scheme and the sliding 
mode control algorithm to analyze the convergence of the 
queue. We design two sliding mode algorithms: the linear and 

the terminal ones. The simulation results show that both of 
the algorithms can converge to the equilibrium point in finite 
time. Obviously, the terminal sliding mode control can obtain 
faster transients and less oscillatory responses under dynamic 
network conditions, which translates into higher link 
utilization, low packet loss rate and small queue fluctuations. 
And the proposed terminal controller has better stability and 
robustness than common sliding mode controller, which 
would be meaningful for the congestion control of Internet. 
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