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Abstract— This paper presents the L1 adaptive output feed-
back controller for a class of uncertain nonlinear systems in
the presence of time and state dependent unknown nonlineari-
ties, and multiplicative unmodeled dynamics. The L1 adaptive
controller ensures uniformly bounded transient and asymptotic
tracking for system’s both signals, input and output, simultane-
ously. The performance bounds can be systematically improved
by increasing the adaptation rate.

I. INTRODUCTION

This paper considers a class of uncertain nonlinear sys-

tems, and develops an adaptive output feedback control

architecture that ensures uniformly bounded transient re-

sponse for system’s input and output signals simultaneously.

We notice that improvement of the transient performance

of adaptive controllers has been addressed from various

perspectives in numerous publications [1]–[11], to name a

few. This paper builds on previous work by the authors [12]–

[19], and extends the L1 adaptive output feedback control

architecture to a class of uncertain nonlinear systems in the

presence of time and state dependent unknown nonlinearities,

as well as multiplicative unmodeled dynamics. We prove

that subject to a set of mild assumptions, the system can

be transformed into an equivalent linear system with time-

varying unknown parameters and disturbances. For the latter,

we extend the output feedback controller initially proposed

in [12], which yields semiglobal performance results for

the original uncertain nonlinear system. The main benefit

of the L1 adaptive controller is its ability of fast adaptation

with guaranteed robustness, as proven in [14]–[16]. The L∞-

norm bounds for the error signals between the closed-loop

adaptive system and the closed-loop reference system can be

systematically reduced by increasing the adaptation gain.

The paper is organized as follows: Section II gives the

problem formulation. Section III presents the L1 adaptive

output feedback control architecture. Stability and perfor-

mance bounds are derived in Section IV. Section V presents

simulation results. Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider the following system dynamics:

ẋ(t) = Ax(t) + b (µu(t) + f(x(t), z(t), t)) , x(0) = x0 ,

z(t) = go (xz(t), t) ,

ẋz(t) = g (xz(t), x(t), t) , xz(0) = xz0 , (1)

µu(s) = F (s)u(s) , y(t) = c⊤x(t) ,
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where x(t) ∈ R
n is the system state vector, which is not

measured; u(t) ∈ R is the control signal; y(t) ∈ R is

the only measured output; b, c ∈ R
n are known constant

vectors; A is a known Hurwitz n × n matrix; z(t) and

xz(t) are the output and the state vector of unmodeled

dynamics; f , go, and g are unknown nonlinear functions;

F (s) is an unknown stable proper transfer function that

represents multiplicative unmodeled dynamics at the input of

the system; and H(s) = c⊤(sI−A)−1b is a stable minimum-

phase system with relative degree 1.

Assumption 1: There exists LF such that ‖F (s)‖L1
≤

LF , where ‖F (s)‖L1
is the L1-norm of the transfer function.

Assumption 2: [Stability of internal dynamics] The z-

dynamics are bounded-input-bounded-output (BIBO) stable,

i.e. there exist Lz1 > 0 and Lz2 > 0 such that

‖zt‖L∞
= Lz1 ‖xt‖L∞

+ Lz2 . (2)

Further, let X(t) , [ x⊤(t) z⊤(t) ]⊤.

Assumption 3: [Semiglobal Lipschitz condition] For any

δ > 0, there exist positive Kδ and B such that

|f(X1, t) − f(X2, t)| ≤ Kδ ‖X1(t) − X2(t)‖∞ , (3)

|f(0, t)| ≤ B , (4)

for all ‖Xi(t)‖∞ ≤ δ, i = 1, 2, uniformly in t.

Assumption 4: [Semiglobal uniform boundedness of par-

tial derivatives] For any δ > 0, there exist dfx
(δ) > 0,

and dft
(δ) > 0 such that for any ‖x(t)‖∞ ≤ δ, the partial

derivatives of f(X, t) are piece-wise continuous and bounded
∥

∥

∥

∥

∂f(X, t)

∂X

∥

∥

∥

∥

≤ dfx
(δ) ,

∣

∣

∣

∣

∂f(X, t)

∂t

∣

∣

∣

∣

≤ dft
(δ) . (5)

The control objective is to design an adaptive output

feedback controller to ensure that y(t) tracks the output

response of a desired system to a given bounded reference

signal r(t) both in transient and steady-state, while all other

signals remain bounded.

III. L1 ADAPTIVE CONTROLLER

A. Definitions

For every δ > 0, let Lδ , (δ̄/δ)Kδ̄, where Kδ̄ is

the Lipschitz constant defined in (3), while δ̄ is defined as

δ̄ , max {δ, Lz1δ + Lz2}. Let

Hx(s) = (sI − A)−1b =
AT

[

1 s · · · sn−1
]⊤

sn + an−1sn−1 + . . . + a0
(6)

H(s) = c⊤Hx(s) , Hn(s)/Hd(s) . (7)
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Also, let

Am =











0 1 · · · 0 0
...

...
...

...

0 0 · · · 0 1
−a0 −a1 · · · −an−2 −an−1











and bm = [0 · · · 0 1]⊤. Since Am is Hurwitz, for any Q >
0 there exists a P = P⊤ > 0 that solves the algebraic

Lyapunov equation A⊤
mP + PAm = − Q. Further, let

Hxm(s) = (sI−Am)−1bm =

[

1 s · · · sn−1
]⊤

sn + an−1sn−1 + . . . + a0
.

It follows from (6) that Hx(s) = AT Hxm(s). Letting cm =
Pbm, it follows from Kalman-Yakubovich-Popov lemma that

Hm(s) = c⊤m (sI − Am)−1 bm , Hp(s)/Hd(s)

is strictly positive real and has relative degree 1. Also, let

T (s) ,
Hp(s)
Hn(s) , which is a stable minimum-phase proper

transfer function, and notice that Hm(s) = H(s)T (s).
Let r0(t) and rm0(t) be the signals with corresponding

Laplace transforms (sI − A)−1x0 and (sI − Am)−1xm0

respectively, where xm0 is such that

c⊤mxm0 = c⊤x0 . (8)

The design of the L1 adaptive controller involves a strictly

proper transfer function D(s) and a gain k ∈ R
+, which

leads to a strictly proper stable system

C(s) = (kF (s)D(s)) / (1 + kF (s)D(s)) (9)

with DC gain C(0) = 1. Let

G(s) , Hxm(s) (1 − C(s)) , kg , −1/
(

c⊤mA−1
m bm

)

,

and define

Gm , max
F (s)

‖G(s)‖
L1

, Ca , max
F (s)

∥

∥

∥

∥

C(s)

F (s)

1

Hm(s)
c⊤m

∥

∥

∥

∥

L1

,

Cm , max
F (s)

‖C(s)‖
L1

, Cf , max
F (s)

‖C(s)/F (s)‖
L1

.

For the proofs of stability and performance bounds, the

choice of D(s) and k needs to ensure that there exists ρr > 0
such that

‖G(s)‖
L1

<
ρr − ‖kgC(s)Hxm(s)‖

L1

‖r‖
L∞

− ‖rm0‖L∞

L(ρr)ρr + ∆σm
(ρr)

(10)

where

L(ρr) ,
∥

∥T−1(s)
∥

∥

L1

‖T (s)AT ‖L1
Lρ (11)

ρ , ‖T (s)AT ‖L1

(

ρr + γx + ‖Hxm(s)‖
L1

∆σm2

+ ‖rm0‖L∞

)

+ ‖r0‖L∞
, (12)

and

∆σm
(ρr) ≥ ∆σm1

+ ∆σm2
+ L(ρr)

(

‖rm0‖L∞

+ ‖Hxm(s)‖
L1

∆σm2

)

(13)

∆σm1
≥

∥

∥T−1(s)
∥

∥

L1

(

Lρ ‖r0‖L∞
+ LρLz2 + B + ǫ

)

∆σm2
≥

∥

∥

(

c⊤r0 − c⊤mrm0

)

/Hm(s)
∥

∥

L∞

,

with ǫ > 0, and with γx being defined as

γx , Cm/ (1 − GmL(ρr)) γ0 + β (14)

for some arbitrarily small positive constants γ0 and β.

Finally, let

ρu , ‖T (s)‖
L1

(ρvr
+ γv) , (15)

where ρvr
and γv are defined as

ρvr
,

∥

∥

∥

∥

C(s)

F (s)

∥

∥

∥

∥

L1

(

L(ρr)ρr + ∆σm
(ρr) + |kg| ‖r‖L∞

)

(16)

γv , CfL(ρr)γx + Caγ0 . (17)

B. System Transformation

In this section we demonstrate that the nonlinear system

with unmodeled dynamics in (1) can be transformed into a

linear system with unknown time-varying parameters and the

same multiplicative unmodeled dynamics at the input.

Lemma 1: For the system in (1), if

‖xt‖ ≤ ρ , ‖ut‖ ≤ ρu , (18)

then there exist differentiable θf (τ) and σf (τ) with bounded

derivatives over τ ∈ [0, t] such that

|θf (τ)| < θfb(ρr) ,
∣

∣

∣
θ̇f (τ)

∣

∣

∣
< dθ(ρr) , (19)

|σf (τ)| < ∆σf
(ρr) , |σ̇f (τ)| < dσf

(ρr) , (20)

f(x(τ), z(τ), τ) = θf (τ) ‖xτ‖L∞
+ σf (τ) ,(21)

where θfb and ∆σf
are given by

θfb(ρr) , Lρ , ∆σf
(ρr) , LρLz2 + B + ǫ .

Proof. The proof is similar to the proof of Lemma 2 in [18].

If (18) holds, Lemma 1 implies that the nonlinear system

in (1) can be rewritten over τ ∈ [0, t] as

ẋ(τ) = Ax(τ) + b
(

µu(τ) + θf (τ) ‖xτ‖L∞
+ σf (τ)

)

,

µu(s) = F (s)u(s) , y(τ) = c⊤x(τ) , x(0) = x0 , (22)

where θf (τ) and σf (τ) are unknown bounded time-varying

signals with bounded derivatives.

Let wξ(t) to be the output of the system Wξ driven by

the input ξ(t) and given by

Wξ :







wξ(s) = T−1(s)w1(s)
w1(t) = θf (t) ‖w2t‖L∞

w2(s) = T (s)AT ξ(s)
. (23)

It follows from (19) and the definition of L(ρr) in (11) that

‖wξt‖L∞
≤ L(ρr) ‖ξt‖L∞

.
Further, define

ρm , ρr + γx , ρv , ρvr
+ γv ,

where γx and γv were defined in (14) and (17) respectively.

Lemma 2: For the system in (1), if ‖xt‖ ≤ ρ and

‖ut‖ ≤ ρu, then there exists a bounded signal σm(τ) over

the interval τ ∈ [0, t], whose derivative is also bounded, such
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that the output y(τ) of the system in (1) is equal to the output

ym(τ) of the following system

ẋm(τ) = Amxm(τ) + bm (µv(τ) + wxm
(τ) + σm(τ)) ,

µv(s) = F (s)v(s) , xm(0) = xm0 , (24)

ym(τ) = c⊤mxm(τ) ,

where wxm
(τ) is the output of the system Wξ in (23) driven

by xm(τ), and v(s) = T−1(s)u(s) is the new (virtual)

control signal. Moreover, we have

|σm(τ)| ≤ ∆σm
(ρr) , |σ̇m(τ)| ≤ dσm

(ρr)

for all τ ∈ [0, t], where ∆σm
was defined in (13), and dσm

can be derived from the original bounds on θf (τ) and σf (τ) .

Proof. The proof is similar to the proof of Lemma 2 in [12].

C. L1 Adaptive Output Feedback Controller

Since for any v(t) the output of the system in (24) is equiv-

alent to the output of the system in (1) with u(s) = T (s)v(s),
we will design an adaptive output feedback controller v(t)
for the system in (24) and, using T (s), we will implement it

for the system in (1). The elements of the L1 adaptive output

feedback control architecture are introduced below.

State predictor: We consider the following state predictor

˙̂x(t) = Amx̂(t) + bm (ω̂(t)v(t) + σ̂(t)) ,

ŷ(t) = c⊤mx̂(t) , x̂(0) = xm0 , (25)

where xm0 was introduced in (8), and the adaptive estimates

ω̂(t) and σ̂(t) are governed by the following adaptation laws.

Adaptive laws:

˙̂ω(t) = ΓcProj (ω̂(t),−ỹ(t)v(t)) , ω̂(0) = ω̂0 ,
˙̂σ(t) = ΓcProj (σ̂(t),−ỹ(t)) , σ̂(0) = σ̂0 ,

(26)

where ỹ(t) = ŷ(t) − y(t), Γc ∈ R
+ is the adaptation rate

subject to a computable lower bound, and Proj(·, ·) denotes

the projection operator [20].

Control law: The control law is generated through feed-

back of the following system

v(s) = − kχ(s) , χ(s) = D(s)r̄(s) , (27)

where r̄(t) = ω̂(t)v(t) + σ̂(t) − kgr(t) , while k and D(s)
were introduced before (9).

The complete L1 adaptive controller consists of (25)-(27),

subject to the L1-norm condition in (10).

IV. ANALYSIS OF L1 ADAPTIVE CONTROLLER

A. Closed-Loop Reference System

In this section, we characterize the closed-loop reference

system that the L1 adaptive controller tracks both in transient

and steady-state and prove its stability. Towards this end,

we consider the ideal non-adaptive version of the adaptive

controller and define the closed-loop reference system as

ẋref (t) = Amxref (t) + bm

(

µvref
(t) + wxref

(t) + σm(t)
)

,

µvref
(s) = F (s)vref (s) , xref (0) = xm0 ,

vref (s) = −kD(s)r̄ref (s) , yref (t) = c⊤mxref (t) , (28)

where wxref
(t) is the output of the system Wξ in (23) driven

by xref (t), and

r̄ref (t) = µvref
(t) + wxref

(t) + σm(t) − kgr(t) .

We note that the control law µvref
(t), which will be used in

the analysis of the performance bounds, is not implementable

since its definition involves F (s), θf (t), and σf (t), which

are unknown. This closed-loop reference system defines the

achievable control objective. The next lemma proves stability

of this system by the appropriate choice of k and D(s).
Lemma 3: For the closed-loop reference system in (28),

subject to the L1-norm condition in (10), if ‖xm0‖∞ < ρr,

and the bounds in (19) and (20) hold, then

‖xref ‖L∞
< ρr , ‖vref ‖L∞

< ρvr
, (29)

where ρr and ρvr
were defined in (10) and (16) respectively.

Proof. The proof is omitted due to space limitations.

B. Equivalent Linear Time-Varying System

In this section, we demonstrate that the linear time-varying

system with multiplicative unmodeled dynamics at the input

in (24) can be transformed into a new equivalent linear

system with time-varying parameters.

In order to streamline the subsequent analysis, we need to

introduce several notations. Define ωℓ and ωu be two nonzero

constants with the same sign, ωℓ < ωu. Also, let

∆σ(ρr) ≥ L(ρr)ρm + ∆σm
(ρr) + ∆σω

(ρr)(30)

∆σω
(ρr) ≥ ‖F (s) − (ωℓ + ωu) /2‖

L1
ρv , (31)

and define ρv̇ as

ρv̇ , ‖ksD(s)‖
L1

(

ρv max{|ωℓ|, |ωu|}

+ ∆σ(ρr) + |kg| ‖r‖L∞

)

. (32)

It can be checked easily that sD(s) is a stable and proper

transfer function, and hence ‖ksD(s)‖
L1

is finite.

Lemma 4: For the system in (24), if

‖xmt‖ ≤ ρm , ‖vt‖ ≤ ρv , (33)

then there exist ω and σω(τ) over τ ∈ [0, t] such that for

any 0 ≤ τ ≤ t, we have

ωℓ < ω < ωu , |σω(τ)| ≤ ∆σω
(ρr) ,

µv(τ) = ωv(τ) + σω(τ) , (34)

and the system in (1) can be rewritten over τ ∈ [0, t] as

ẋm(τ) = Amxm(τ) + bm (ωv(τ) + σ(τ)) ,

ym(τ) = c⊤mxm(τ) , xm(0) = xm0 , (35)

where σ(τ) = wxm
(τ) + σm(τ) + σω(τ). If, in addition

to (33), we have ‖v̇t‖L∞
≤ ρv̇, then σω(τ) is differentiable

and for any 0 ≤ τ ≤ t

|σ̇ω(τ)| ≤ dσω
(ρr) ,

∥

∥

∥

∥

F (s) −
ωℓ + ωu

2

∥

∥

∥

∥

L1

ρv̇ . (36)

Proof. The proof is similar to the proof of Lemma 2 in [13].
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C. Transient and Steady-State Performance

We introduce the following notations

β01(ρr) , 4∆σ(ρr)L(ρr)
(

dθ(ρr)/Lρ + ‖Am‖
L1

+L(ρr) ‖bm‖
L1

)

β02(ρr) , 4∆σ(ρr)
(

L(ρr) ‖bm‖
L1

(LF ρv + ∆σm
(ρr))

+dσm
(ρr) + dσ̄(ρr)

)

β1(ρr) , β01(ρr)‖C(s)‖
L1

/
(

1 − ‖G(s)‖
L1

L(ρr)
)

β2(ρr) , β01(ρr)ρr + β02(ρr)

θm(ρr) ≥ 4∆2
σ(ρr) + (ωu − ωℓ)

2

+
λmax(P )

λmax(Q)
(β1(ρr)γ0 + β2(ρr)) .

Let the adaptive gain Γc be lower bounded bounded as

Γc >
θm(ρr)

λmin(P )γ2
0

, (37)

and the projection of ω̂(t) and σ̂(t) be confined to the bounds

ωℓ ≤ ω̂(t) ≤ ωu , |σ̂(t)| ≤ ∆σ(ρr) . (38)

Lemma 5: Given the system in (24) and the L1 adaptive

controller defined via (25), (26) and (27) subject to (10), (37)

and (38), if

‖xmt‖ ≤ ρm , ‖vt‖ ≤ ρv , ‖v̇t‖ ≤ ρv̇ , (39)

then

‖x̃t‖L∞
< γ0 , (40)

where γ0 was introduced in (14).

Proof. The proof is omitted due to space limitations.

Theorem 1: Given the system in (24) and the L1 adaptive

controller defined via (25), (26), and (27) subject to (10),

(37) and (38), if ‖xm0‖∞ < ρr, then

‖xm‖
L∞

< ρm , ‖v‖
L∞

< ρv , (41)

‖x̃‖
L∞

≤ γ0, (42)

‖xm − xref ‖L∞
≤ γx, (43)

‖ym − yref ‖L∞
≤

∥

∥c⊤m
∥

∥

L1

γx, (44)

‖v − vref ‖L∞
≤ γv , (45)

where γx and γv were defined in (14) and (17) respectively.

Proof. The proof is given in the Appendix.

Thus, the tracking error between y(t) and yref (t), as well

as between v(t) and vref (t), is uniformly bounded by a

constant inverse proportional to Γc. This implies that both in

transient and steady-state one can achieve arbitrarily close

tracking performance for both signals simultaneously by

increasing Γc. To understand how these bounds can be used

for ensuring transient response with desired specifications,

we consider the ideal control signal for the system in (24)

µvid
= kgr(t) − wxid

(t) − σm(t) , (46)

which leads to the desired system response

ẋid (t) = Amxid (t) + bmkgr(t), yid (t) = c⊤mxid (t) (47)

by canceling the uncertainties exactly. In the closed-loop

reference system (28), µvid
(t) is further low-pass filtered

by C(s) to have guaranteed low-frequency range. Thus, the

closed-loop reference system in (28) has a different response

as compared to (47) achieved with (46). Similar to [15], the

response of yref (t) can be made as close as possible to (47)

by reducing ‖G(s)‖L1
arbitrarily. For constant F (s) = F ,

we can make ‖G(s)‖L1
arbitrarily small. However, for the

general case of unknown F (s), the design of k and D(s)
which satisfy (10), is an open problem, and depends on the

available knowledge of F (s).

V. SIMULATIONS

As an illustrative example, consider the system in (1) with

A =

[

−2 −1
−1 −2

]

, b =

[

2
1

]

, c =

[

1
0

]

,

where the input multiplicative unmodeled dynamics are

F (s) = (−s + 40)/(s + 30), and f(x(t), z(t), t) =
x⊤(t)x(t)+z2(t), while z(t) is the output of the unmodeled

dynamics

z(s) =
−s + 1

s2 + 3s + 2
zu(s) , zu(t) =

[

1 1
]

x(t) .(48)

The control objective is to design a control u(t) to achieve

tracking of bounded reference input r(t) by y(t), where

‖r‖L∞
≤ 1.

In the implementation of the L1 controller, we set

Am =

[

0 1
−3 −4

]

, bm =

[

0
1

]

,

and Q = I, which leads to

P =

[

1.1667 0.1667
0.1667 0.1667

]

, cm =

[

0.1667
0.1667

]

.

Also, we set D(s) = 1
s

, k = 15, and Γc = 50, 000. It

follows that kg = 18, T (s) = 0.1667(s + 1)/(2s + 3), and

the compact sets can be conservatively chosen according to

the following bounds ωu = 8, ωℓ = 0.5, and ∆σ = 35.

The simulation results of the L1 adaptive controller for a

unit step reference command are shown in Figs 1a-1b. We

see that y(t) converges to r(t) asymptotically. In Figs 2a-2b,

we consider the performance of the L1 adaptive controller

for a unit step input in the presence of the following input

to the unmodeled dynamics in (48)

zu(t) =
[

cos(t) 1
]

x(t) . (49)

Figures 3a-3b show the response of the closed-loop system

to a time-varying reference command r(t) = sin(0.3t) in

the presence of the same input of the unmodeled dynamics

as in (49). Finally, Figs 4a-4b consider higher frequencies

in the input of the unmodeled dynamics, like zu(t) =
[ cos(5t) 1 ]x(t)+ sin(5t). We observe that the fast adap-

tation ability of L1 adaptive controller guarantees uniform

transient performance to different reference inputs, indepen-

dent of the unmodeled dynamics, without any retuning.
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ŷ(t)
yid(t)
y(t)

(a) Output response

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

time [s]

u
(t

)

(b) Control action

Fig. 1: Performance of the L1 adaptive controller for a unit

step reference command and zu(t) = [1 1]x(t).
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Fig. 2: Performance of the L1 adaptive controller for a unit

step reference command and zu(t) = [cos(t) 1]x(t).
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Fig. 3: Performance of the L1 adaptive controller for r(t) =
sin(0.3t) and zu(t) = [cos(t) 1]x(t).
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Fig. 4: Performance of the L1 adaptive controller for r(t) =
sin(0.3t) and zu(t) = [cos(5t) 1]x(t) + sin(5t).

VI. CONCLUSION

An L1 adaptive output feedback control architecture is

presented that has guaranteed transient response in addition

to stable tracking for a class of uncertain nonlinear systems

in the presence of time and state dependent unknown nonlin-

earities, as well as linear multiplicative unmodeled dynamics.

The control signal and the system response approximate the

same signals of a closed-loop reference system, which can

be designed to achieve desired specifications.
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APPENDIX

Proof of Theorem 1. We prove this Theorem by contradiction.
Assume that (41) is not true. Then, since ‖xm0‖∞ < ρr by
assumption, v(0) = 0, and xm(t) and v(t) are continuous and
differentiable, there exists a time τ ≥ 0 such that

‖xm(τ )‖∞ = ρm , or (50)

‖v(τ )‖∞ = ρv , (51)

while

‖xmτ‖L∞
≤ ρm , ‖vτ‖L∞

≤ ρv , (52)

which implies that

‖xτ‖L∞
≤ ρ , ‖uτ‖L∞

≤ ρu . (53)

Hence, Lemmas 1 and 2 hold over t ∈ [0, τ ], and the original
nonlinear system in (1) can be rewritten as the linear system with
unknown time-varying parameters in (24) for any 0 ≤ t ≤ τ .

Moreover, since θf (t) and σf (t) are bounded as in (19) and (20)
for any 0 ≤ t ≤ τ , it follows from Lemma 3 that the closed-loop
reference system is BIBO stable and also that

‖xref τ‖L∞
≤ ρr (54)

‖vref τ‖L∞
≤ ρvr . (55)

Since the projection operator ensures that for any t ≥ 0 |σ̂(t)| ≤
∆σ and |ω̂(t)| ≤ max{|ωℓ|, |ωu|}, it follows from (52) that

‖r̄τ‖L∞
≤ ρv max{|ωℓ|, |ωu|} + ∆σ(ρr) + |kg | ‖r‖L∞

.(56)

The control law in (27) implies v(s) = −kD(s)r̄(s), and hence
sv(s) = −skD(s)r̄(s) . Using (56) and the definition of ρv̇ in (32),
it follows that

‖v̇τ‖L∞
≤ ρv̇ , (57)

and Lemma 4 implies that, for any t ∈ [0, τ ], the system in (24)
can be rewritten as the linear system in (35) and the upper bound
in (36) holds. Hence, if we choose Γc according to (37), Lemma 5
implies that

‖x̃τ‖L∞
≤ γ0 . (58)

Next, we define ηm(t) = wxm(t) + σm(t) and r̃(t) =
ω̃(t)v(t) + σ̃, where ω̃(t) = ω̂(t) − ω and σ̃(t) = σ̂(t) −
ηm(t) − σω(t). Then, it follows from (27) that χ(s) =
D(s) (ωv(s) + r̃(s) + ηm(s) + σω(s) − kgr(s)) . Consequently

χ(s) =
D(s)

1 + ωkD(s)
(ηm(s) + σω(s) − kgr(s) + r̃(s)) (59)

v(s) = −
kD(s)

1 + ωkD(s)
(ηm(s) + σω(s) − kgr(s) + r̃(s)) ,(60)

and hence one can write that

v(s) + kD(s) (ωv(s) + σω(s)) =

−kD(s) (ηm(s) − kgr(s) + r̃(s)) , (61)

which along with (34) implies that

v(s) + kD(s)µv(s) = −kD(s) (ηm(s) − kgr(s) + r̃(s)) .(62)

Since µv(s) = F (s)v(s), it follows from (62) and the definition of
C(s) in (9) that

v(s) = −
kD(s)

1 + kD(s)F (s)
(ηm(s) − kgr(s) + r̃(s)) (63)

µv(s) = C(s) (ηm(s) − kgr(s) + r̃(s)) , (64)

and the system in (35) consequently takes the form

xm(s) = G(s)ηm(s) − Hxm(s)C(s)r̃(s)

+Hxm(s)C(s)kgr(s) + rm0(s) . (65)

It follows from the definition of the reference system in (28) that

xref (s) = G(s)ηref (s) + Hxm(s)C(s)kgr(s) + rm0(s) ,(66)

where ηref (t) = wxref
(t) + σm(t).

Let e(t) = xm(t) − xref (t). Then, using (65) and (66), we get

e(s) = G(s)ηe(s) − Hxm(s)C(s)r̃(s) , e(0) = 0 , (67)

where ηe(s) is defined as

ηe(s) = wxm(s) − wxref
(s) = T−1(s)w1e(s) , (68)

with w1e(t) being the signal

w1e(t) = θf (t)(‖w2xmτ‖L∞
− ‖w2xref τ‖L∞

) , (69)

and w2xm(t) and w2xref
(t) are the signals with Laplace transforma-

tion w2xm(s) = T (s)AT xm(s) and w2xref
(s) = T (s)AT xref (s)

respectively. Since we have

‖w2xmτ‖L∞
− ‖w2xref τ‖L∞

≤ ‖(w2xm − w2xref
)τ‖L∞

−‖(w2xm − w2xref
)τ‖L∞

≤ ‖w2xmτ‖L∞
− ‖w2xref τ‖L∞

,

then ‖ηeτ‖L∞
≤

∥

∥T−1(s)
∥

∥

L1

Lρ

∥

∥

∥

(

w2xm − w2xref

)

τ

∥

∥

∥

L∞

≤
∥

∥T−1(s)
∥

∥

L1

‖T (s)AT‖L1
Lρ ‖eτ‖L∞

.
It follows from the definition of state predictor (25) and the

system in (35) that over t ∈ [0, τ ] the error dynamics can be written

as ˙̃x(t) = Amx̃(t) + bmr̃(t) , x̃(0) = 0 , which leads to

x̃(s) = Hxm(s)r̃(s) . (70)

Hence, it follows from (67) and definition of L(ρr) in (11)
that ‖eτ‖L∞

≤ ‖G(s)‖L1
L(ρr) ‖eτ‖L∞

+‖C(s)‖L1
‖(x̃τ )‖L∞

,

which leads to ‖eτ‖L∞
≤

‖C(s)‖L1

1 − ‖G(s)‖L1
L(ρr)

‖x̃τ‖L∞
. The

condition in (10) ensures that ‖G(s)‖L1
L(ρr) < 1, and hence

it follows from (58) that ‖eτ‖L∞
≤

‖C(s)‖
L1

1−‖G(s)‖
L1

L(ρr)
γ0 , which

along with the definition of γx in (14) leads to

‖eτ‖L∞
≤ γx − β < γx . (71)

We notice that from (54) and (71), we can conclude

‖xmτ‖L∞
≤ ρr + γx − β = ρm − β < ρm . (72)

On the other hand, it follows from (27) and (28) that

v(s) − vref (s) = −
C(s)

F (s)
ηe(s) −

C(s)

F (s)
r̃(s) , (73)

and equation (70) implies that (73) can re written as v(s) −
vref (s) = −C(s)

F (s)
ηe(s) −

C(s)
F (s)

1
c⊤mHxm(s)

c⊤mx̃(s) . Since the choice

of k and D(s) guarantees that C(s) is stable and strictly

proper, the system
C(s)
F (s)

1
c⊤mHxm(s)

is stable and (at least) proper,

which implies that its L1-norm exists and is bounded. Thus,
we have

∥

∥(v − vref )τ

∥

∥

L∞

≤ ‖C(s)/F (s)‖L1
L(ρr) ‖eτ‖L∞

+
∥

∥

∥

C(s)
F (s)

1
c⊤mHxm(s)

c⊤m

∥

∥

∥

L1

‖x̃τ‖L∞
, and (58) and (71) along with the

definition of γv in (17) lead to
∥

∥(v − vref )τ

∥

∥

L∞

< γv . (74)

We notice that from (55) and (74), we can conclude

‖vτ‖L∞
< ρvr + γv = ρv . (75)

Finally, we note that the upper bounds in (72) and (75) con-
tradict the equalities in (50) and (51), which proves (41). The
results in (42)-(45) follow directly from the bounds in (41), (57),
(58), (71), and (74), and from the fact that ym(t) − yref (t) =
c⊤m (xm(t) − xref (t)).
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