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L1 Adaptive Output Feedback Controller for Nonlinear Systems
in the Presence of Unmodeled Dynamics

Enric Xargay, Naira Hovakimyan, and Chengyu Cao

Abstract— This paper presents the £, adaptive output feed-
back controller for a class of uncertain nonlinear systems in
the presence of time and state dependent unknown nonlineari-
ties, and multiplicative unmodeled dynamics. The £; adaptive
controller ensures uniformly bounded transient and asymptotic
tracking for system’s both signals, input and output, simultane-
ously. The performance bounds can be systematically improved
by increasing the adaptation rate.

I. INTRODUCTION

This paper considers a class of uncertain nonlinear sys-
tems, and develops an adaptive output feedback control
architecture that ensures uniformly bounded transient re-
sponse for system’s input and output signals simultaneously.
We notice that improvement of the transient performance
of adaptive controllers has been addressed from various
perspectives in numerous publications [1]-[11], to name a
few. This paper builds on previous work by the authors [12]—
[19], and extends the £; adaptive output feedback control
architecture to a class of uncertain nonlinear systems in the
presence of time and state dependent unknown nonlinearities,
as well as multiplicative unmodeled dynamics. We prove
that subject to a set of mild assumptions, the system can
be transformed into an equivalent linear system with time-
varying unknown parameters and disturbances. For the latter,
we extend the output feedback controller initially proposed
n [12], which yields semiglobal performance results for
the original uncertain nonlinear system. The main benefit
of the £ adaptive controller is its ability of fast adaptation
with guaranteed robustness, as proven in [14]-[16]. The £.-
norm bounds for the error signals between the closed-loop
adaptive system and the closed-loop reference system can be
systematically reduced by increasing the adaptation gain.

The paper is organized as follows: Section II gives the
problem formulation. Section III presents the £; adaptive
output feedback control architecture. Stability and perfor-
mance bounds are derived in Section IV. Section V presents
simulation results. Section VI concludes the paper.

II. PROBLEM FORMULATION
Consider the following system dynamics:
B(t) = Ax(t) + b (pu(t) + f(2(2), 2(1), 1) , 2(0) =20,
2(t) = go (z=(1),1) ,
i (t) = g (z=(t), 2(t),t) ,  22(0) = z20, (M
pu(s) = F(s)u(s), — y(t) =
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where x(t) € R™ is the system state vector, which is not
measured; u(t) € R is the control signal; y(t) € R is
the only measured output; b,c € R™ are known constant
vectors; A is a known Hurwitz n X n matrix; z(t) and
x.(t) are the output and the state vector of unmodeled
dynamics; f, g,, and g are unknown nonlinear functions;
F(s) is an unknown stable proper transfer function that
represents multiplicative unmodeled dynamics at the input of
the system; and H (s) = ¢ ' (sI—A)~1b is a stable minimum-
phase system with relative degree 1.

Assumption 1: There exists Lp such that ||F(s)|z, <
L, where || F(s)]|z, is the £1-norm of the transfer function.

Assumption 2: [Stability of internal dynamics] The z-
dynamics are bounded-input-bounded-output (BIBO) stable,
i.e. there exist L,; > 0 and L,o > 0 such that

”ZtchC = L, ||It||£0o + L.o. 2)
Further, let X (t) = [ 2" (t) z"(t) ]T.

Assumption 3: [Semiglobal Lipschitz condition] For any
0 > 0, there exist positive K5 and B such that

|f(X1,t) = [(X2, )] < K[ Xa(t) — Xa()]l » 3
f0,0) < B, )

for all | X;(t)||s <6, i = 1,2, uniformly in ¢.

Assumption 4: [Semiglobal uniform boundedness of par-
tial derivatives] For any 6 > 0, there exist ds, (§) > 0,
and dy, () > 0 such that for any ||x(¢)||e < 9, the partial
derivatives of f(X,t) are piece-wise continuous and bounded

8f Xt H ‘8f(X,t)

5t < dys, (). (5)

The control objective is to design an adaptive output
feedback controller to ensure that y(t) tracks the output
response of a desired system to a given bounded reference
signal 7(t) both in transient and steady-state, while all other
signals remain bounded.

ITT. £, ADAPTIVE CONTROLLER

A. Definitions

For every § > 0, let Ls = (§/6)Kj, where Kj is
the Lipschitz constant defined in (3), while ¢ is defined as
§ & max{d, L.16+ L.o}. Let

ey Ar[1 s e e )T
Hy(s)=(s—A) b= St ar sl bt ag (6)
H(s)=c " H,(s) £ Hy(s)/Hqa(s). (7)
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Also, let

0 1 0 0
A, = : : : :
0 0 e 0 1
—ap —a —Op—2 —0anp-1
and b, = [0 --- 0 1]T. Since A,, is Hurwitz, for any Q >

0 there exists a P = P > 0 that solves the algebraic
Lyapunov equation A P + PA,, = — Q. Further, let

-
[1 5 - S"‘l}

H = )
wm(s) s+ ap_18" 1+ ... +ag

It follows from (6) that H,(s) = ApH,m(s). Letting ¢, =
Pb,,, it follows from Kalman-Yakubovich-Popov lemma that

H(s) = e, (sT— Ap) “b 2 Hy(s)/Ha(s)

is strictly positive real and has relative degree 1. Also, let
T(s) & g:g, which is a stable minimum-phase proper
transfer function, and notice that H,,(s) = H(s)T'(s).

Let 7o(t) and 7,,0(t) be the signals with corresponding
Laplace transforms (sI — A)~'xg and (sI — A,,) " tzmo
respectively, where x,,,0 is such that

(sT—=Ap) Yoy =

)

The design of the £, adaptive controller involves a strictly
proper transfer function D(s) and a gain k € RT, which
leads to a strictly proper stable system

C;;{Emo == CT{EO .

C(s) = (kF(s)D(s)) /(1 +kF(s)D(s)) (9
with DC gain C(0) = 1. Let
G(s) & Hym(s) (1 —C(s)), s = =1/ ( TA,‘nlbm) ,
and define
£ max s L Cls) 1 e
Gim = F(s) 16z, Ca= Foo ’ F(s) Hu(s) ™|z,

Cm max [[C(s)llz, » Cr & max [|C(s)/F(s)l, -

For the proofs of stability and performance bounds, the
choice of D(s) and k needs to ensure that there exists p, > 0
such that

1GE)| pr — lkgC () Haom (8) |l ITll 2. — Irmoll
£ L(pr)pr + Aom(/’r)
(10)
where
Lipr) & | T7Hs)|, IT(s) Azl L (11)
p = ”T(S)AT”L1 (pr + Yz + HHﬂcm(S)”LI Ags
+ llrmollz. ) + lrollz, (12)
and
Bo(pr) = Ao + Agpe + L(o) (ol
a3, Ao ) a3
Doy = 770 S)Hcl (Lo llroll s, + LypLeo + B +¢)
Aa’mz = H(CTTO - C;ﬂ’mo) /IJTTI(S)HﬁOc )

with € > 0, and with v, being defined as

Yo & Cn/(1=GuL(p))w + 8 (14)
for some arbitrarily small positive constants vy and (3.
Finally, let
pu = Tz, (ov, +70) (15)

where p,,. and -y, are defined as

>

po, = L(pr)pr + Do, (pr) + kgl 17l ) (16)

Yo 2 CfL(prm + Cavo- (17)

B. System Transformation

In this section we demonstrate that the nonlinear system
with unmodeled dynamics in (1) can be transformed into a
linear system with unknown time-varying parameters and the
same multiplicative unmodeled dynamics at the input.

Lemma 1: For the system in (1), if

el < p, luel < pu,s (18)

then there exist differentiable 6 (7) and o (7) with bounded
derivatives over 7 € [0, ¢] such that

0¢(T)] < Opplpr),

o) < Day(pr).

f(x(7), 2(7),7)

where 0, and A,

Op(pr) = Lo, ADoy(pr) 2 LoLo+ B+e.
Proof. The proof is similar to the proof of Lemma 2 in [18].

05| < dotor), (9
65(0)] < doy(pr), 0)
= 05(7) llz-llo . +op(7),21)

are given by

If (18) holds, Lemma 1 implies that the nonlinear system
in (1) can be rewritten over 7 € [0, ¢] as

#(1) = Az(7) +b (pu (1) + 05 (7) |2 || o, +05(7))
py(s) = F(s)u(s), y(r)= ch(T) , x(0) =xz9, (22)

where 0¢(7) and of(7) are unknown bounded time-varying
signals with bounded derivatives.

Let we(t) to be the output of the system W, driven by
the input £(¢) and given by

we(s) = T (s)wi(s)
We wi(t) = 05(1) |[waell (23)
wa(s) = T(s)ArE(s)

It follows from (19) and the definition of L(p,) in (11) that

wetll . < L(pr) 1€ell 2.
Further, define

pmépr'i"%au pvépw"f"yva

where 7, and v, were defined in (14) and (17) respectively.

Lemma 2: For the system in (1), if |lz¢]] < p and
|lut]] < pu, then there exists a bounded signal o, (7) over
the interval 7 € [0, ¢], whose derivative is also bounded, such
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that the output y(7) of the system in (1) is equal to the output
ym (7) of the following system

T (T) = A @i (T) + by, (o (T) + W, (T) + o (7))
ty(s) = F(s)v(s), xm(0) = 2mo, (24)
Ym(T) = Cr—;xm (7),

where w,,, (7) is the output of the system Wk in (23) driven
by Z(7), and v(s) = T (s)u(s) is the new (virtual)
control signal. Moreover, we have

lom(T)] < Aq,. (pr), |6m(T)] < do,, (pr)

for all 7 € [0,t], where A,, was defined in (13), and d,,,
can be derived from the original bounds on ;(7) and o ¢(7) .
Proof. The proof is similar to the proof of Lemma 2 in [12].

C. L1 Adaptive Output Feedback Controller

Since for any v(t) the output of the system in (24) is equiv-
alent to the output of the system in (1) with u(s) = T'(s)v(s),
we will design an adaptive output feedback controller v(t)
for the system in (24) and, using 7'(s), we will implement it
for the system in (1). The elements of the £, adaptive output
feedback control architecture are introduced below.

State predictor: We consider the following state predictor

BO) = Amd() + b (D(0)0(0) +6(1)) |
§t) = cna(t). #(0)=mo.

where x,,0 was introduced in (8), and the adaptive estimates
w(t) and 6 (t) are governed by the following adaptation laws.
Adaptive laws:

(t) = TeProj (@(1), =§(t)u(t)) , &(0) =&
o(t) = TcProj(a(t), —y(t)) , o(0) = &

where §(t) = 4(t) — y(t), T. € R is the adaptation rate
subject to a computable lower bound, and Proj(-, ) denotes
the projection operator [20].

Control law: The control law is generated through feed-
back of the following system

u(s) = —kx(s),  x(s) = D(s)r(s), (@27

where 7(t) = @(t)v(t) + 6(t) — kgr(t), while k and D(s)
were introduced before (9).

The complete £ adaptive controller consists of (25)-(27),
subject to the £1-norm condition in (10).

(25)

05

IV. ANALYSIS OF £1; ADAPTIVE CONTROLLER
A. Closed-Loop Reference System

In this section, we characterize the closed-loop reference
system that the £, adaptive controller tracks both in transient
and steady-state and prove its stability. Towards this end,
we consider the ideal non-adaptive version of the adaptive
controller and define the closed-loop reference system as

Eref(t) = Am@ref (t) + b (Mvmf (t) + Waep (t) + Um(t)) )
fhv,; (8) = F(8)Uref(8),  ref(0) = mo

Uref(s) = _kD(S)fref(S) s Yrep(t) = C;zxref (t), (28)

where wy, . (t) is the output of the system W in (23) driven
by s (t), and

Tref (1) = o,y (1) + Wa, (1) + om(t) — kgr(t).

We note that the control law i, (t), which will be used in
the analysis of the performance bounds, is not implementable
since its definition involves F'(s), 0¢(t), and o¢(t), which
are unknown. This closed-loop reference system defines the
achievable control objective. The next lemma proves stability
of this system by the appropriate choice of k and D(s).

Lemma 3: For the closed-loop reference system in (28),
subject to the £1-norm condition in (10), if ||Zm0llcc < pr
and the bounds in (19) and (20) hold, then

Hzﬂ"engco < pr, HUW}"”LDO < P (29)

where p, and p,,. were defined in (10) and (16) respectively.
Proof. The proof is omitted due to space limitations.

B. Equivalent Linear Time-Varying System

In this section, we demonstrate that the linear time-varying
system with multiplicative unmodeled dynamics at the input
in (24) can be transformed into a new equivalent linear
system with time-varying parameters.

In order to streamline the subsequent analysis, we need to
introduce several notations. Define w, and w,, be two nonzero
constants with the same sign, wy < w,,. Also, let

Ao(pr) > L(Pr)pm + Aom(Pr) + A%(PT)(?’O)
Do, (pr) = |IF(s) — (we + wu) /2H51 Po (31)
and define p; as
pi 2 |lksD(s) g, (pomax{lor, ou}
+ Dlpr) + lhl Il ) - (32)

It can be checked easily that sD(s) is a stable and proper
transfer function, and hence [|ksD(s)||., is finite.

Lemma 4: For the system in (24), if

[€mell - < ol < po, (33)

Pm

then there exist w and o, (7) over 7 € [0,t] such that for
any 0 < 7 <t, we have

low(T)] < Ao (pr),
po(T) = wu(r) + ou(r),

Wy < W < Wy,

(34)

and the system in (1) can be rewritten over 7 € [0, ] as
Em(T) = A (7) + by, (wo(7) + 0 (7))
Ym(7) = Cptm(T), 2m(0) = Tmo, (35)

where o(7) = wy, (7) + om(7) + 0,(7). If, in addition
to (33), we have ||0¢]| 2., < po, then o, (7) is differentiable
and forany 0 <7 <¢

Wp + Wy,

|dw(7)| < dow(PT) £

F(s) ps . (36)
Ly

Proof. The proof is similar to the proof of Lemma 2 in [13].
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C. Transient and Steady-State Performance

We introduce the following notations

Gor(pr) 2 480 (p)L(oe) (da(pr) /Ly + | Aml,
+L(p0) [, )

Boa(or) 2 480 (p) (L(pe) bl , (Lops + Do (p1))
+da,, (pr) + da(pr))

Bilpr) 2 Bon(p)lIC)llz,/ (1= 1G ()] g, Lipr)

ﬁQ(Pr) é ﬁOl(pr)pr + ﬁOQ (pr)

Om(pr) > 4A§(pr) + (wu — wé)z
; jz—g; (Br(pr)ro + Balor)

Let the adaptive gain I'. be lower bounded bounded as
em(pr)

and the projection of &(t) and &(t) be confined to the bounds
o) < Aclpr).

Lemma 5: Given the system in (24) and the £; adaptive
controller defined via (25), (26) and (27) subject to (10), (37)
and (38), if

we < w(t) < wy, (38)

[Emell < pms vl < pos Mol < pi, (39)

then

1Zell.. < 70, (40)

where o was introduced in (14).

Proof. The proof is omitted due to space limitations.
Theorem 1: Given the system in (24) and the £; adaptive

controller defined via (25), (26), and (27) subject to (10),

(37) and (38), if ||zmol ., < pr. then

[zmllz. < pm, ol < P, (4D
Zllz. < 70, 42)

l|m — xref”goo < Ve (43)
[Ym = yresllz. < llemllz, e (44)
v — Uref”goo < Yo (45)

where 7, and v, were defined in (14) and (17) respectively.
Proof. The proof is given in the Appendix.

Thus, the tracking error between y(t) and y,.s(t), as well
as between v(t) and wvyef(t), is uniformly bounded by a
constant inverse proportional to I'.. This implies that both in
transient and steady-state one can achieve arbitrarily close
tracking performance for both signals simultaneously by
increasing I'.. To understand how these bounds can be used
for ensuring transient response with desired specifications,

we consider the ideal control signal for the system in (24)
kgr(t) — we,,(t) — om(t),

/'L’Uui (46)

which leads to the desired system response
Eia(t) = Ammia(t) + bmkgr(t), via(t) = chzia(t) (47)

by canceling the uncertainties exactly. In the closed-loop
reference system (28), fu,,,(t) is further low-pass filtered
by C(s) to have guaranteed low-frequency range. Thus, the
closed-loop reference system in (28) has a different response
as compared to (47) achieved with (46). Similar to [15], the
response of y,.r(t) can be made as close as possible to (47)
by reducing ||G(s)]|z, arbitrarily. For constant F'(s) = F,
we can make ||G(s)||z, arbitrarily small. However, for the
general case of unknown F'(s), the design of k and D(s)
which satisfy (10), is an open problem, and depends on the
available knowledge of F'(s).

V. SIMULATIONS
As an illustrative example, consider the system in (1) with

-2 -1 2 1
=A== L]
where the input multiplicative unmodeled dynamics are
F(s) = (—-s4+40)/(s+30), and f(z(t),z(t),t) =
o (t)z(t) +2%(t), while z(t) is the output of the unmodeled
dynamics
—s+1

z(s) = mzu(s), zy(t) = [ 11 } x(t) .(48)

The control objective is to design a control u(t) to achieve
tracking of bounded reference input r(t) by y(t¢), where

7]l e <1
In the implementation of the £, controller, we set
0 1 0

and Q = I, which leads to

p _ [ 11667 0.1667
= 101667 0.1667 | ° 0.1667

Also, we set D(s) = %, k = 15, and ', = 50,000. It
follows that k, = 18, T'(s) = 0.1667(s+ 1)/(2s + 3), and
the compact sets can be conservatively chosen according to
the following bounds w,, = 8, wy = 0.5, and A, = 35.

The simulation results of the £; adaptive controller for a
unit step reference command are shown in Figs la-1b. We
see that y(t) converges to r(t) asymptotically. In Figs 2a-2b,
we consider the performance of the £q adaptive controller
for a unit step input in the presence of the following input
to the unmodeled dynamics in (48)

zu(t) = [ cos(t) 1 ]a(t). (49)

Figures 3a-3b show the response of the closed-loop system
to a time-varying reference command 7(t) = sin(0.3t) in
the presence of the same input of the unmodeled dynamics
as in (49). Finally, Figs 4a-4b consider higher frequencies
in the input of the unmodeled dynamics, like z,(t) =
[ cos(5t) 1 Ja(t)+sin(5t). We observe that the fast adap-
tation ability of £, adaptive controller guarantees uniform
transient performance to different reference inputs, indepen-
dent of the unmodeled dynamics, without any retuning.

[ 0.1667 ]
Cm = .
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0 2 4 6 2 4 6 8
time [s] time [s]

(a) Output response (b) Control action

3

Fig. 1: Performance of the £, adaptive controller for a unit

step reference command and z,(t) = [1 1]z(t).

ult)
s o o o
o N £ & &
ult)
4 =
° & - o

=

0 2 4 6 2 4 6 8
time [s] time [s]

(a) Output response (b) Control action

5

Fig. 2: Performance of the £; adaptive controller for a unit

step reference command and z,(t) = [cos(t) 1]z(t).

y(t)

0 10 20 30 40 50 60 0 10 20 30 40 50

time [s] time [s]

(a) Output response (b) Control action

Fig. 3: Performance of the £; adaptive controller for r(t) =

sin(0.3t) and z,(t) = [cos(t) 1]x(t).

6

y(t)

ult)
Lol LoLoL
= 2, 92 9 9o o o
b L e e RS o N

0 10 20 30 40 50 60 0 10 20 30 40 50

time |5

(a) Output response (b) Control action

Fig. 4: Performance of the £, adaptive controller for r(t) =

sin(0.3t) and z,(t) = [cos(5t) 1]z(t) + sin(5¢).

6

0

0

VI. CONCLUSION

An £, adaptive output feedback control architecture is
presented that has guaranteed transient response in addition
to stable tracking for a class of uncertain nonlinear systems
in the presence of time and state dependent unknown nonlin-
earities, as well as linear multiplicative unmodeled dynamics.
The control signal and the system response approximate the
same signals of a closed-loop reference system, which can
be designed to achieve desired specifications.
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APPENDIX

Proof of Theorem 1. We prove this Theorem by contradiction.
Assume that (41) is not true. Then, since ||Zmollec < pr by
assumption, v(0) = 0, and z,,(t) and v(t) are continuous and
differentiable, there exists a time 7 > 0 such that

lZm (7)o pm, oOr (50)
vl = oo, (51)
while
lZmell,, < pm, vl < pos (52)
which implies that
lzrll.. < p, lurll,. < pu- (53)

Hence, Lemmas 1 and 2 hold over ¢ € [0, 7], and the original
nonlinear system in (1) can be rewritten as the linear system with
unknown time-varying parameters in (24) for any 0 <t < 7.

Moreover, since 0 (t) and o (t) are bounded as in (19) and (20)
for any 0 < t < 7, it follows from Lemma 3 that the closed-loop
reference system is BIBO stable and also that

(54)
(55)

< pr

lzrerell, <
< oy

[orer=ll .,

Since the projection operator ensures that for any ¢t > 0 |5 (¢)| <
A, and |@(t)] < max{|we|, |wul}, it follows from (52) that

77l 2o, < pomaxflwel, [wul} + Aclpr) + Kol lI7l -, -(56)

The control law in (27) implies v(s) = —kD(s)7(s), and hence
sv(s) = —skD(s)7(s) . Using (56) and the definition of p; in (32),
it follows that

and Lemma 4 implies that, for any ¢ € [0, 7], the system in (24)
can be rewritten as the linear system in (35) and the upper bound
in (36) holds. Hence, if we choose I'. according to (37), Lemma 5
implies that

IZ-ll..., < 70- (58)

Next, we define nm(t) = wa,, (t) + om(t) and 7(t) =
o(t)v(t) + o, where @(t) = &(t) — w and 6(t) = 6(t) —
Nm(t) — ow(t). Then, it follows from (27) that x(s) =
D(s) (wv(s) + 7(s) + nm(s) + 0w (s) — kgr(s)) . Consequently
X(6) = Ty (1) 00 (6) = or () +7(2))  (59)
o) = T (1 (6) F 7ul) = hyr(s) + 7(5) (60

and hence one can write that

v(s) + kD(s) (wo(s) +0u(s)) =

—kD(s) (nm(s) = kgr(s) +7(s)) ,  (61)
which along with (34) implies that
v(s) + kD(s)po(s) = —kD(s) (1m(s) — kgr(s) +7(s)) (62)

Since v (s) = F(s)v(s), it follows from (62) and the definition of
C(s) in (9) that

_ kD(s) -
v(s) = 1T ED(S)F () (Nm(8) = kgr(s) +7(s)) (63)
po(s) = C(s) (Nm(s) — kgr(s) +7(s)) , (64)

and the system in (35) consequently takes the form

G(8)nm(s) = Hom(s)C(s)7(s)

+Haum (5)C(8)kgr(s) + rmo(s) . (65)

It follows from the definition of the reference system in (28) that
Zref(s) = G(8)res (s) + Ham(s)C(8)kgr(s) + Tmo(s) ,(66)

= Uy () + )

Tm(s) =

where 7yer(t)

Let e(t) Zref (t). Then, using (65) and (66), we get
e(s) = G(s)ne(s) = Ham(s)C(s)7(s), e(0) =0, (67)
where 7. (s) is defined as
e(s) = Wap(s) — we,(s) = T (s)wiels), (68)
with wi.(t) being the signal
wie(t) = OO (lwzemrllee = wee,yrllee) s  (69)

and wag,, () and was,, ; (t) are the signals with Laplace transforma-
tion waq,, (s) = T(s)Arxm(s) and Waz, (s) = T(s)Arxyer(s)
respectively. Since we have

w2zl 2oe = W2, rll oS (W2ny — Wouyy )7 ll 2o

— w2z — o, )r o<

(), LPH (w2er, = wa,,,)
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It follows from the deﬁmtlon of state predictor (25) and the

system in (35) that over ¢ € [0, 7] the error dynamics can be written

as T(t) = AmZ(t) + bm7(t),z(0) =0, which leads to

Z(s) = Ham(s)F(s). (70)

Hence, it follows from (67) and definition of L(p,) in (11)

that [le-[| . < [[G(s)ll., L(pr) ||T\T|‘(£°§|\+||C(8)||Cl 1@z »

C(s

which leads to |le;], < £1 [|Z+]] . The

Lo T 1= |G(s)l, Lpr) 7T

condition in (10) ensures that ||G(s )H£1L(Pr2 < 1, and hence

IC ()l .

it follows from (58) that [le-[|, < W%, which

along with the definition of 7, in (14) leads to

w2zl £oo — NlW2r,pprll 2 oe 5

<

then ”’7€THLDO HT

T Lo

lerll,.., < 7% — 8 < Y- (71)
We notice that from (54) and (71), we can conclude
[#mell,. < pr+va—B = pmn—B < pm. (72)
On the other hand, it follows from (27) and (28) that
C(s) C(s) -
— Ure = - e - ) 7
0(s) = s (s) F®) — FgTE, (3
and equation (70) implies that (73) can re written as v(s) —
Vref (8) = 2537]6( ) — 128 mc;i(s) Since the choice

of k and D(s) guarantees that C(s) is stable and strictly
proper, the system %Tlm(&) is stable and (at least) proper,
which implies that its Li-norm exists and is bounded. Thus,
we have ﬁ(v—vvef )l S NCE)/FS)g, Lor) el +

H ggz T Hzm(s cmH lZ- - »and(58)and (71) along with the

definition of ~, in (173 lead to

[0 =vrer)ell,. < Y- (74)
We notice that from (55) and (74), we can conclude
”1)7'”400 < Pu, F Y = Pu. (75)

Finally, we note that the upper bounds in (72) and (75) con-
tradict the equalities in (50) and (51), which proves (41). The
results in (42)-(45) follow directly from the bounds in (41), (57),
(58), (71), and (74), and from the fact that ym(t) — yref(t) =

Cm (m (1) = Trer (1))
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