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Abstract— This paper focuses on the development of de-
cision making criteria for autonomous vehicles where the
tasks to be performed are competing under limited vehicle
and sensory resources. More specifically, we are interested in
the search and characterization of multiple objects given a
limited number of autonomous sensor vehicles. In this case,
search and characterization are two competing demands
since an autonomous vehicle in the system can perform
either the search task or the characterization task, but
not both at the same time. This is a very critical decision
as choosing one option over the other may mean missing
other, more important objects not yet found, or missing the
opportunity to satisfactorily characterize a found critical
object. Building on previous deterministic-based work by
the authors, in this paper we develop Bayesian-based search
versus characterization decision making criteria that result
in guaranteed detection and characterization of all objects
in the domain.

I. INTRODUCTION

This paper focuses on the management of autonomous

sensor-equipped vehicles for the search and characteri-

zation of multiple objects, whose number is unknown

beforehand, over a given domain. In the case where such

objects are possibly in greater numbers than available

sensor vehicles, search and characterization are two com-

peting demands. This is because a sensor vehicle can

perform either the characterization task or the search task,

but not both at the same time (search requires mobility

and characterization constrains the motion of the vehicle

to that of the object). Hence, a sensor vehicle has to

decide on whether to continue searching or stop and

characterize once it finds an object. This decision may be

very critical in some applications as in search and rescue,

where, for example, finding and analyzing a nonhuman

object may come at the cost of delaying or altogether

missing a live human victim. Conversely, a vehicle may

come across a human victim and, at the cost of missing

it, and decides to continue the search task. Building on

the deterministic framework developed by the authors in

[1], in this work we develop Bayesian-based search and

characterization metrics and decision making algorithms

that guarantee that all objects in the domain will be found

and satisfactorily characterized.

We first review some of the related literature. Inspired

by work on particle filtering, in [2] the authors develop a

strategy to dynamically control the relative configuration

of sensor teams under a probabilistic framework. The goal

is to get optimal estimates for target tracking through

sensor fusion. In [3], the authors use the Beta distribution

to model the level of confidence of target existence for an

unmanned aerial vehicle (UAV) search task in an uncertain

environment. The Beta distribution defined for each cell

is a function of the prior probabilities which is updated

through Bayes’ theorem. In [4], the above uncertainty

measurements are extended by using the Modified Bayes

Factor, and prediction of future measurement is also taken

into account to calculate the possible uncertainty reduction

in UAV search operations. An alternate approach for

searching in uncertainty environment is called SLAM.

The paper [5] presents a paradox of combining mapping

and localization at the same time, whose solution requires

explicit representation of all the correlations between the

estimated vehicle position and known geometric features.

Coordinated search and tracking under probabilistic

framework has been studied mainly for optimal path plan-

ning in the literature. In [6], the authors investigate search-

and-tracking using recursive Bayesian filtering with fore-

known targets’ positions with noise. A vehicle will keep

searching until the target detection probability is above

some preset threshold. However, the target might be lost

and need to be found again due to measurement noises.

The results are extended in [7] for dynamic search spaces

based on forward reachable set analysis. In [8], the author

proposes a Bayesian-based multisensor-multitarget sensor

management scheme. The approximation strategy, based

on probability hypothesis densities, maximizes the square

of the expected number of targets. For the same objective,

in [9] the authors seek to maximize the probability of

finding a target with some foreknown location information

in the presence of uncertainty. Vehicles are constrained

to choose from a set of available controls and limited

communication channels during each time step. However,

there is no explicit decision making strategy for search

and tracking proposed in the above literature.

In this paper, we propose effective decision making

strategies for search and characterization under a prob-

abilistic framework. During the search process, an un-

certainty map is built based on the probability of object

presence over the search domain. The probability of object

presence over the domain is updated using Bayes’ theorem

given sensor measurements. A characterization uncertainty

function is also defined for each found object. The met-

rics for both search and characterization are based on

the corresponding uncertainty functions. A probabilistic

framework is desirable to be able to take into account

sensor errors, as well as allow for future incorporation of

other tasks such as object tracking, data association, data

fusion, sensor registration, and clutter resolution [10].

The paper is organized as follows. In Section II, Bernoulli

distributions are first introduced to model search and
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characterization sensor models. We then derive expres-

sions for the posterior probabilities of target present over

the entire domain, and probabilities of classification for

found object based on Bayes’ theorem. Uncertainty search

and characterization functions using information entropy,

along with associated metrics are defined. In Section III,

we develop a decision making strategy for search and

characterization. In section IV, a set of simulation results

are provided to show the effectiveness of the proposed

decision-making strategy. The paper is concluded with a

summary of current and future work in Section V.

II. PROBLEM FORMULATION

A. Setup and Sensor Model

There are two basic objectives in a search and character-

ization operation. The first objective is to find each object

and fix its position in space. The second objective is to

observe each found object and collect the desired amount

of information that is sufficient for its characterization.

This paper focuses on the classification of static objects

and future research will focus on mobile objects. Charac-

teristics of interest for immobile objects may be geometric

shape, and/or nature of electromagnetic emissions.

Let D ⊂ R
2 be a domain in which objects to be found

and characterized are located. Let q̃ be an arbitrary point

in D. Let No > 1 be the number of objects, however, both

No and the positions of the objects in D are unknown

beforehand. We will assume that there exists a single

autonomous sensor-equipped vehicle (denoted by V) that

performs the search and characterization tasks. Future

research will focus on a team of sensor-equipped vehicles.

The current scenario is an extreme cases in which the

resources available are at a minimum (a single sensor

vehicle as opposed to multiple cooperating ones). At any

time t, the vehicle can either perform the search task or

the characterization task, but not capable of both at the

same time. Initially, the vehicle starts in the search mode.

Assume that we are given some search versus char-

acterization decision making strategy. Since the number

of objects is potentially very large, with a poor choice

of decision making strategy, the vehicle may end up

excessively characterizing one single object while there

may still exist unfound, and more important, objects in

the domain. In this paper, we investigate policies that

guarantee that every static object within the domain will

be found and each found object will be characterized

by the autonomous vehicle until a minimum satisfactory

classification performance is achieved.

Let the position of the static object Oj , j ∈
{1, 2, . . . , No}, be pj , which is unknown beforehand. The

vehicle V satisfies the following simple first order discrete-

time equation of motion

q(t + 1) = q(t) + u(t),
where q ∈ D ⊂ R

2 represents the position of V , and

u ∈ U ⊂ R
2 is the control input, U is the set of allowable

controls.

In this work, for both the search and characterization

processes, we use a sensor model with Bernoulli distribu-

tion, which gives binary outputs, however, with different

observation contents: object “present” or “not present” for

search, and property “G” or “B” for characterization. This

is a simplified but reasonable sensor model because it

abstracts away the complexities in sensor noise, image

processing algorithm errors, etc.

In the search process, let Vs = {vs
1, v

s
2} be the set of two

possible sensor outputs, where vs
1 corresponds to object

detected, and vs
2 corresponds to no object detected. Let

Ss = {ss
1, s

s
2} be the set of two possible state types, where

ss
1 corresponds to object present, and ss

2 corresponds to

object not present. The actual observation Vs is taken

according to the probability parameter β of a Bernoulli

distribution. Since there are two states in all, two Bernoulli

distributions are used and the following matrix (which

is called the emission probability matrix in the Hidden

Markov Model (HMM) literature [11]) for search task is

given by

B =

[

p
vs
1

ss
1

= β1,s p
vs
2

ss
1

= 1 − β1,s

p
vs
1

ss
2

= β2,s p
vs
2

ss
2

= 1 − β2,s

]

(1)

where p
vs

i

ss
j
, i, j = 1, 2, describes the probability of

measuring vs
i given state ss

j . For the sake of simplicity,

we can assume that the sensor probabilities of making

a correct measurement are the same. That is, we have

p
vs
1

ss
1

= p
vs
2

ss
2

= βs. The value of βs is assumed to depend

on the range between the sensor and the observed point.

Without loss of generality, here we assume a simple

model for βs that is a fourth order polynomial function of

s = ‖q(t) − q̃‖ within the sensor range rs and bn = 0.5
otherwise,

βs(s) =

{

M
r4

s

(

s2 − r2
s

)2
+ bn if s ≤ rs

bn if s > rs

, (2)

where M + bn gives the peak value of βs if q̃ being

observed is located at the sensor vehicle’s location, which

indicates that the probability of sensing correctly is highest

exactly where the sensor is. The parameter rs is the range

of the search sensor. The sensing capability decreases with

range and becomes 0.5 outside of the limited sensory

range W , implying that the sensor returns an equally likely

observation of “present” or “not present” regardless of the

truth of whether there is an object at that location or not.

Figure 1 shows the βs function over a square domain of

size 4 × 4. Note that βs is a function of s, and s is a

function of the vehicle’s position q(t) and the location q̃

of interest.

For the characterization process, we also define binary

observation outputs for each found object: vc
1 and vc

2

that correspond to state types sc
1 (property “G”), and sc

2

(property “B”), respectively. The observation process is

assumed to be Bernoulli and is assumed, for simplicity,

to obey the same functional form as the detection model

above:

βc(s) =

{

Mc

r4
c

(

s2 − r2
c

)2
+ bn if s ≤ rc

bn if s > rc

, (3)
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Fig. 1. Correct sensing probability function βs with q = 0, M = 0.4
and rs = 2.

where Mc + bn and rc are the peak sensory capacity

and limited sensory range for the characterization process.

When an object of interest is within the sensor’s effective

characterization radius r̃c < rc, this object is said to

be found, and the vehicle has to decide whether to

characterize it or continue searching.

Remarks:

1) If we have more than two possible classification

properties, the binary-type Bernoulli sensor model is

no longer appropriate. In this case, one can model

the sensor observation using a multinomial random

variable that can take one of K discrete values and

expand the emission matrix to dimension K × K .

2) A key feature of the proposed approach is that the

sensor may have a limited range. Previous work on

cooperative coverage control usually assumes that the

sensors have an infinite range [12]. This assumption

is not made here. Outside the sensor domain W , the

sensor is ineffective (with βs = 0.5). This is very

important in applications where D is large-scale (i.e.,

too large to be covered by a single set of static sensor

agents). •

B. Bayesian Updates for Search and Characterization

For both search and characterization processes, we em-

ploy Bayes’ theorem to update the probability of object

presence at q̃, or of a found object k having the property

“G”. Let us first consider the object detection Bayesian

update equation.

Given an observation, Bayes’ theorem gives, for each q̃,

the posterior probability ps(Ss,t+1 = ss
1|v

s
j ; q̃), 1 ≤ j ≤ 2

after the observations have been taken at time step t:
ps(Ss,t+1 = ss

1|v
s
j ; q̃) = α1ps(v

s
j |Ss,t = ss

1; q̃)

·ps(Ss,t = ss
1; q̃) (4)

where ps(Ss,t+1 = ss
1|v

s
j ; q̃) is the posterior probability

of object being state type ss
1 given that observation vs

j has

just been taken at time step t, ps(v
s
j |Ss,t = ss

1; q̃) is the

probability of the particular observation vs
j being taken

given that the object state type at time step t is ss
1, which

is given by the emission matrix (1) and the βs function

(2), ps(Ss,t = ss
1; q̃) is the prior probability of type ss

1

being correct at t, and α1 serves as a normalizing function

that ensures that the posterior probabilities ps(Ss,t+1 =
ss

i |v
s
j ; q̃) sum to one over the state type set Ss = {ss

1, s
s
2}.

For brevity, we let ps(q̃, t + 1) denote ps(Ss,t+1 =
ss
1|v

s
j ; q̃) and ps(q̃, t) denote ps(Ss,t = ss

1; q̃). It can be

shown that the object presence probability update equation

at q̃ is given by

ps(q̃, t + 1) = y
βsps(q̃, t)

2βsps(q̃, t) − βs − ps(q̃, t) + 1
+

(1 − y)
(1 − βs)ps(q̃, t)

−2βsps(q̃, t) + βs + ps(q̃, t)
, (5)

where y is defined as follows

y =

{

1 if V = vs
1

0 if V = vs
2

. (6)

The probability of object not present is 1 − ps(q̃, t + 1).
For the characterization process, we use a similar update

equation as (5) to express the posterior probability of a

found object k at location q̃k having property “G”:

pc(q̃k, t + 1) = y
βcpc(q̃k, t)

2βcpc(q̃k, t) − βc − pc(q̃k, t) + 1
+

(1 − y)
(1 − βc)pc(q̃k, t)

−2βcpc(q̃k, t) + βc + pc(q̃k, t)
, (7)

where q̃k is the position of object k. The probability of

having property “B” is 1 − pc(q̃k, t + 1). Recall that βc

is a function of q(t) and q̃.

Remark about extension to multiple sensor vehi-

cles. When we have multiple autonomous vehicles, each

Berboulli type sensor will give its own observation for

a certain location q̃. Hence, there are 2m combinations

for the observation set V if we have m sensors in

all. We will need to solve for the explicit expressions

for αl, l ∈ {1, 2, · · · , 2m} and obtain the corresponding

update equations of the posterior probability ps(q̃, t+1, l)
similar to Equation (5). •

C. Uncertainty Map

For the search process, we use an information-based ap-

proach to construct the uncertainty map for every q̃ within

the search domain. The information entropy function of

a probability distribution is used to evaluate uncertainty.

The uncertainty map will be used to guide the vehicle in

the search domain. Let the probability of the occurrence

of an event be p, then the information is measured as

I(p) = logb(1/p) ≥ 0, (8)

where b is the base (we use b = e in in this paper). In

our case, there are 2 distinct state values for the discrete

probabilities. Therefore, the probability distribution P is

given by P = {ps, 1−ps}. We define the weighted average

of information I(p) as the information entropy distribution

for discrete probability distribution P at q̃ at each time

step t:
Hs(P, q̃, t) = −ps(q̃, t) ln ps(q̃, t)

−(1 − ps(q̃, t)) ln(1 − ps(q̃, t)). (9)

When ps(q̃, t) = 1 or 0, there is no uncertainty about

object existence or lack thereof and, therefore, Hs = 0,

which is the desired uncertainty level. Maximum uncer-

tainty Hs,max = 0.6931 is when ps(q̃, t) = 0.5. The

initial “uncertainty” distribution is assumed to be Hs,max

reflecting the fact that at the outset of the search mission

there is poor certainty levels (in other words, a uniform

distribution for object existence). The greater the value of

Hs, the bigger the uncertainty is. Figure (2) shows the
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Fig. 2. Information entropy function Hs for the search process.

information entropy function (9) as a function of ps(q̃, t).
The information entropy distribution at time step t over

the domain forms an uncertainty map at that time instant.

For the characterization process, we define a similar

entropy function Hc(Pc, q̃k, t), with Pc = {pc, 1 − pc},

for every found object k (located at q̃k) to evaluate

classification uncertainty.

Hc(Pc, q̃k, t) = −pc(q̃k, t) ln pc(q̃k, t)

−(1 − pc(q̃k, t)) ln(1 − pc(q̃k, t)). (10)

There are as many scalar Hc’s as there are found objects

k up to time t. The initial value for Hc for every found

object k can also be set as Hc = Hc,max = 0.6931. If the

vehicle finds target k and decides to characterize it, Hc

will decrease as the characterization probability increases

according to the Bayesian update equations derived above.

When a vehicle has collected enough information based

on the available resources at that time step, it leaves the

object and Hc remains constant until the vehicle comes

back to characterize it when possible. This is repeated until

the desired Hd (to be discussed below) characterization

certainty is achieved.

D. Search and Characterization Metrics

In this section we develop metrics to be used for the

search versus characterization decision making process.

In the event of object detection and a decision not to

proceed with the search process, but, instead, stopping to

characterize the found object, the associated cost is defined

as

J (t) =

∫

D
Hs(P, q̃, t)dq̃

Hs,maxAD

. (11)

The cost J is proportional to the total integral of the

search uncertainty over D. We divide the integral by

the area of the domain AD multiplied by Hs,max in

order to normalize J (t). According to this definition,

we have 0 ≤ J (t) ≤ 1. Initially, J (0) = 1, since

Hs(P, q̃, 0) = Hs,max for all q̃ ∈ D. If for some ts we

have Hs(P, q̃, ts) = 0 for all q̃ ∈ D, then J (ts) = 0 and

the entire domain has been satisfactorily covered and we

know with 100% certainty that there are no objects yet to

be found.

For the characterization process, let N̄o(t) be the number

of objects found by the autonomous sensor vehicle up

to time t. For each found object j ∈ {1, 2, · · · , N̄o(t)},

define the characterization metric Hd(q̃j , t) to be

Hd(q̃j , t) = ǫcJ (t), (12)

where ǫc is a preset upper bound on the desired uncertainty

level for characterization. Hd depends on how uncertain

the vehicle is of the presence of more undetected objects

in D through J (t). Initially, J (0) = 1 and the vehicle

will attempt to characterize it until the classification uncer-

tainty is smaller than ǫc. On the other hand, if J (ts) = 0
for some time ts > 0, the vehicle can spend as much time

characterizing the object because the vehicle has achieved

100% certainty that it has found all critical and noncritical

objects in the domain. If the vehicle finds an object Oj

(i.e., within the effective characterization radius r̃c) and

decides to characterize it, the vehicle will continue char-

acterizing until achieving the characterization condition

Hc(Pc, q̃j , t) < Hd(q̃j , t). (13)

The vehicle V then stops characterizing the found object

and switches to searching again. The vehicle can resume

characterizing an object that has been detected and com-

pletely or partially characterized in the past if it finds it

again during the search process. When this occurs, the

value of Hd will be smaller than the last time the objected

has been detected.

III. SEARCH VERSUS CHARACTERIZATION

DECISION-MAKING

We will consider a search/characterization decision mak-

ing strategy that guarantees finding all objects in D (i.e.,

achieve J = 0) and characterizing each object with an

upper bound on the characterization uncertainty of ǫc.

Let us first consider a search strategy. The goal in the

search strategy is to attain an uncertainty level such that

the search cost J (t) ≤ ǫ for all q̃ within D and all t ≥ ts
for some ts > 0.

Let the control u(t) be restricted to a set U . For example,

U could be the set of all controls u(t) ∈ R
2 such that

‖u(t)‖ < umax, where umax is the maximum allowable

control speed. Based on this constraint on the control, we

define QW(t) as the set of points in W reachable from

the current location of the vehicle at time t:
QW(t) = {q̃ ∈ W : q̃ − q(t) ∈ U}. (14)

For the search process, we use a control law that drives

the vehicle to some point q̃ ∈ QW(t) that has the highest

uncertainty, and switch to a perturbation control law when

the vehicle is trapped in a region where no such point

exists. Let us first consider the following condition, whose

utility will become obvious shortly.

Condition C1. Hs(P, q̃, t) ≤ ǫ, ∀q̃ ∈ QW(t), where ǫ
is a preset threshold of some small value.

Consider the following control law

u
∗(t) =

{

ū(t) if C1 does not hold
¯̄u(t) if C1 holds

(15)

where ū(t) is the nominal control law, and ¯̄u(t) is the

perturbation control law.

Let q̃⋆ be the point that has the highest uncertainty within

QW(t), that is,

q̃⋆(t + 1) = argmax
q̃∈QW(t)Hs(P, q̃, t). (16)

The nominal control law is then set to be

ū(t) = q̃⋆(t + 1) − q(t) ∈ U . (17)

This choice for the nominal control law is inspired by the

nominal control law in [13].
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Note that according to Equation (16), q̃⋆(t + 1) might

be a set of points holding the same maximum uncertainty

value. Rules to pick the “best” point are immaterial as far

as this work is concerned and in this paper we assume

there is only one such point for the sake of simplicity.

When the uncertainty Hs of all the points q̃ ∈ QW(t)
is less than ǫ, Condition C1 holds, and no such q⋆(t +1)
exists. This means that the vehicle gets trapped in a region

where Hs ≤ ǫ if restricted to applying only the nominal

control law ū. Note that this does not imply that the entire

domain D has been fully searched yet (hence, the need

for the perturbation control law which will be discussed

shortly). The reasons we restrict our choice of q̃⋆ to W
(as opposed to D) in the definition of QW(t) (causing ū

to become a local controller) are as follows:

1) Using W instead of D limits the computations in-

volved in finding q̃⋆ to a smaller space and, hence, is

more computationally efficient. This is especially true

in the case of large scale domains, where much of

the domain D is unreachable from where the vehicle

is because of the restriction on the control u ∈ U .

2) Although in this paper we assume that the vehicle

has full knowledge of the domain D and the search

uncertainty function Hs(P, q̃, t) for all q̃ ∈ D, D
may not be known in real time. In this case, all

the information the vehicle could obtain is within its

limited sensory domain W .

Note that the application of the local controller is consis-

tent with our previous work [14]–[17].

If Condition C1 holds, then the perturbation controller
¯̄u(t) is used:

¯̄u(t) = −¯̄k(q(t) − q̃
∗)

where 0 < ¯̄k ≤ 1 is the controller gain, and q̃
∗ ∈

QD(t) := {q̃ ∈ D : q̃ − q(t) ∈ U} such that

Hs(P, q̃∗, t) > ǫ. The controller is used to drive the

vehicle out of the region with low uncertainty ǫ to some

q̃
∗ ∈ QD(t) such that Hs(P, q̃∗, t) > ǫ, if such a point

exists.

There are only two scenarios that can arise. The first is

when the set U allows for motions from any point in D to

any other point, and we have QD(t) = D, ∀t > 0. If this

condition is held for all t and if at some time tf there is

no point q̃
∗ ∈ QD(tf ) = D such that Hs(P, q̃∗, tf ) > ǫ

then we say that the mission is complete as every point in

the domain has been searched with a satisfactory certainty

level (below ǫ). In the second scenario, the set U may

be such that QD(t) ⊂ D (but Q 6= D) for some t. In

other words, there are locations in D that the vehicle can

not reach given the constraints on the control velocity ¯̄u.

Under this scenario, the mission may never be completed.

For the purpose of this paper, we will assume that U is

such that QD(t) = D for all time t.
Since there may be many such points q̃

∗, a choice of

only one such q̃
∗ needs to be made. There are several

ways such a choice can be made. We provide one such

choice that is efficient energy-wise than other possibilities.

Let

Dǫ(t) := {q̃ ∈ QD(t) : Hs(P, q̃, t) > ǫ} ,
which is an open set of all q̃ for which Hs(P, q̃, t) is larger

than a preset value ǫ. Let Dǫ(t) be the closure of Dǫ(t).
Let Dǫ,V(t) be the set of points in Dǫ(t) that minimize

the distance between the position vector of vehicle V , q,

and the set Dǫ(t):
Dǫ,V(t)

=
{

q̃
∗ ∈ Dǫ(t) : q̃∗ = argmin

q̃∈Dǫ(t)
‖q̃ − q(t)‖

}

.

Other choices of the set Dǫ,V(t) may also be considered,

but this choice is efficient since the perturbation maneuver

seeks the minimum distance for redeployment. Similar

as the choice of q̃⋆(t + 1) in Equation (16), the set

Dǫ,V(t) may contain more than a single point and we

will simply assume that there will exist at most one such

point. If Dǫ(t) is empty, this means that the distribution

Hs(P, q̃, t) < ǫ everywhere over the domain and the

search mission is complete.

Once the vehicle finds an object and decides to charac-

terize it, it switches to a characterization task and will not

carry out any searching until Hc(Pc, q̃j , t) < Hd(q̃j , t).
After achieving at least the desired upper bound of char-

acterization uncertainty ǫc, the vehicle will switch back

to become a search vehicle and leave its characterization

position to find new objects.

Under the assumption that U is such that QD(t) = D for

all time t, the search and characterization control policy

given by equations (15) and (13) will guarantee that J
converges asymptotically to zero, which is equivalent to

guaranteeing that all vehicles be found. The maximum

value of characterization uncertainty acceptable is given

by ǫc.

IV. SIMULATION RESULTS

In this section we provide a numerical simulation, which

illustrates the performance of the decision making strat-

egy. We assume the domain D is square in shape with

size 32× 32 units length. There are 5 targets with objects

1, 3 and 5 have property “B”, and objects 2 and 4 have

Property “G”, with a randomly selected initial deployment.

We set rs = rc = 8 and r̃c = 6 as shown by the

magenta and green circle in Figure 3.The parameter M =
Mc of the sensor is set as 0.4, which gives the highest

value for βs as 0.9, i.e., there is 90% chance that the

sensor is sensing correctly at the location of the vehicle

and gradually to 0.5 according to the model discussed

above (Equation (2), (3)). Let the desired upper bound

for classification uncertainty ǫc be 0.01. Here we use the

control law in equation (15) with control gain ¯̄k = 0.025.

The set U is chosen to be D, so that QW(t) is given by

the intersection of U and W , i.e., W and QD(t) = D
which guarantees the full coverage of the entire domain.

Figure 3 shows the evolution of Hs. From Figure 3(b),

we can conclude that at most Hs = 1 × 10−4 has been

achieved everywhere within D. Figure 4(a) shows the

evolution of J (t) under the control strategy and can be

1968
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Fig. 3. Uncertainty map (dark red for highest uncertainty and dark blue
for lowest uncertainty) and the vehicle motion at t = 200 and 700 (with
initial uncertainty Hs = Hmax at t = 0): (a) Uncertainty at t = 200
and (b) Uncertainty at t = 700.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

J
(
t
)

(a)

0

10

20

30

0

10

20

30

0

0.2

0.4

0.6

0.8

1

 

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xy

p
(
q̃

,
t
)

(b)

Fig. 4. (a) Evolution of the search cost J (t), (b) Posterior probabilities
for every q̃ within D at 700.

seen to converge to zero.

All the objects have been found with the probabilities of

object present as 1 and zero search uncertainty. Those

cells that do not contain an object end up with zero

search probability and uncertainty. Figure 4(b) shows the

detection of all objects at time step 700.

For all the 5 found objects, objects 2, 4 have been

characterized with probability of having Property “G” as

1 and zero classification uncertainty. Objects 1, 3, 5 have

been characterized with probability of having property

“G” as 0 and zero classification uncertainty. Figure 5

shows the estimated characterization of the properties of

object 1 (which has property “B”) and of object 2 (which

has property “G”).

V. CONCLUSION

Based on a probabilistic framework, a decision-making

and control strategy was developed to guarantee the de-

tection of all objects in a domain and the characterization

of each object until a preset small value of classification

uncertainty is achieved. Numerical simulations demon-

strated the operation of the strategies. Future research

will focus on locating and characterizing dynamic objects.

The question of unknown environment geometries (i.e.,

unknown D) will also be addressed. Most importantly,

optimizing the control and decision making laws with

respect to some cost function will be investigated as

the current result provides some solution to the decision

making problem, albeit with guaranteed performance (i.e.,

guaranteed detection and characterization of all objects)

under appropriate assumptions.
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