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Abstract— Since 1996, the National Institutes of Health and
other organizations have recommended offering Highly Active
Antiretroviral Therapy (HAART) to all patients infected with
HIV. Although HAART provides a powerful strategy for HIV
treatment, it does not prevent completely the development of
multi-drug resistant strains, and drug resistance is the primary
reason for treatment failure. A better control of drug-resistance
risk is critical for the success of long-term antiviral therapy in
HIV patients. Recent research focuses on how to develop new
drugs, but little has been done to control resistance risk by using
an appropriate treatment regime. In this paper, we propose
a generalized multi-strain model of HIV evolution with viral
mutations. Based on this model, we suggest a drug switching
strategy to minimize resistance risk and preserve long-term
control of the HIV infection for the case in which the patient
only has one kind of drug-resistance virus. Though simulations,
this model can also be used for detecting and minimizing the
resistance risk for the patients who develops multiple drug-
regimen resistance.

I. INTRODUCTION

Highly Active Antiretroviral Therapy (HAART) uses a
combination of multiple antiretrovirals, chosen to interfere
with different stages of the HIV life cycle. This technique is
highly effective at reducing viral load and restoring immune
function, and its use has drastically reduced AIDS-related
deaths in the United States and other first-world nations.
However, it is not without its drawbacks. The treatment
must be continued for the life of the patient, as complete
viral eradication cannot be achieved under current therapies.
This is due to the existence of untouchable reservoirs. The
primary reservoir consists of resting, or latently-infected CD4
cells with a memory phenotype [1], [2], and is established at
the beginning of infection [3]. Other reservoir subtypes are
also known to exist. These long-lived reservoirs provide a
mechanism for virus persistence during antiretroviral therapy
even when active replication is suppressed by drugs.

The mutation rate between two different strains is related
to their genetic distance. The primary purpose of HAART
is to increase the genetic distance to the closest viral
variant through the use of multiple antiviral drugs, making
drug resistance theoretically unlikely to emerge. Although
a successful HAART regimen reduces the possibility of
the emergence of resistant strains of the virus, it does not
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completely block their emergence. In fact, drug resistance
affects up to 30 to 50% of all individuals being treated with
HAART [4]. The possible reasons may be either a preexisting
resistant strain or poor adherence to the treatment regimen
[5]. The impact of drug resistance to patient health is such
that the International AIDS Society-US Panel now suggests
resistance testing as part of the initial comprehensive patient
assessment [6] [7] [8].

The development of resistance to a particular therapy
necessitates a change in regimen, and the new therapy
must consist of drugs for which there is no cross-resistance
with the last failing therapy. As of 2007 at least 23 drugs
were available as therapy for treatment-naive patients [9].
However, the number of sequentially available combination
therapies is only 6-7 due to drug cross-resistances. The
biggest challenge for long term successful treatment is how
to prevent and/or accommodate the emergence of drug-
resistant strains without running out of treatment options [4].

In the case of a particular regimen failure, there has been
significant research on how to choose a new regimen or a
new form of antiviral combination, based on the probability
of cross resistance between the new regimen and the failing
regimen [10] [11] [12] [13]. Other research has focused on
the design of an optimal sequencing of therapy to avoid
resistance emergence [14]. However, little research has been
done on the effect of the timing of the therapy switch relative
to the possibility of resistance emerging to the new regimen.
Current recommendations either suggest switching regimens
as soon as resistant virus is detected, or waiting until a
particular disease marker (either viral load increase in some
level or CD4 T-Cell count decrease to some level) is reached
[13].

The research of Bonhoeffer and Ribeiro [5], [15] show the
likelihood of emergence of drug resistance to a regimen is
proportional to the amount of virus present at the start of
application of this regimen. Furthermore, the concentration
of virus is proportional to the number of infected cells
by HIV virus. Therefore, the goal of restraining the drug
resistance occurrence can be achieved by minimizing the
number of infected cells at the time of starting a new
therapy. In 2007, Luo and Zurakowski proposed that a
pattern of structured treatment interruptions using the failing
regimen preceding the introduction of the new regimen can
significantly decrease the risk of resistance emerging to the
new regimen [16][17].

In this paper, we extend these results to a generalized
multi-strain infection model. This new model attempts to
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address the following issues critical to the design of a
successful optimal treatment:
1. How to represent the reservoirs’ effects in the mathemat-
ical model?
2. What is the frequency of mutations among different virus
strains?
3. What is the likelihood of emergence of drug resistance for
a new therapy?
We develop a generalized multi-strain model in section II-B,
which includes a description of the mutation process during
HIV evolution. In section III, simulation results using the
therapy switching strategy proposed by Luo and Zurakowski
[16][17] to minimize the risk of drug resistance occurrence
illustrate the model and its utility. Conclusions are drawn in
the last section.

II. MATH MODEL

A. Genetic distance and mutation rate:

Predicting the rate at which certain strains of the
virus give rise to new strains is a complicated problem
involving the notions of mutation rate and genetic distance.
Genetic distance is a measure of distance between two
genetic sequences, defined as the number of mutation
events necessary to change one sequence into the other.
Mutation rate is the probability of a given mutation event
occurring. There are a number of different kinds of mutation
events, including point mutation, deletion, translocation,
and inversion. Each of these has an associated mutation
rate, which may not be constant. Indeed, mutation rates
can be highly dependent on the particular base location
in the DNA or RNA sequence. In HIV evolution, this is
complicated by the fact that different viral strains may
infect the same host cell, yielding recombinant virus which
further increases the variability. However, it is generally
accepted that point mutations are the dominant mutation
type in HIV replication. The average point-mutation rate of
the HIV reverse transcriptase enzyme is 3×10−5 mutations
per base pair per replication cycle [18].

If we simplify the problem by assuming that all mutations
are point mutations, and that their probability is fixed, the
notion of genetic distance reduces to the classical Hamming
distance between the two sequences, and the probability of
one strain giving rise to another strain is (r)m, where r is
the mutation rate when the genetic distance is 1 and m is
the genetic distance between these two strains.

B. Competition model:

In this paper we introduce an ODE model of HIV
dynamics. This model depicts the interactions between a
wild-type virus population sensitive to all antiviral drug
regimens and any resistant mutant virus population only
sensitive to treatment with some, if any, antiviral drug
combinations. We model the generation of new strains
through mutation as well.

ẋ = λ −dx− ∑
0≤ j≤n

β jxy j( ∏
0≤i≤n

(1−ξ j,iui))

ẏ0 = β0(1− f0)( ∏
0≤i≤n

(1−ξ0,iui))xy0 + ∑
i6=0

(r)m0,iyi

+α0l0−a0y0
ẏ1 = β1(1− f1)( ∏

0≤i≤n
(1−ξ1,iui))xy1 + ∑

i6=1
(r)m1,iyi

+α1l1−a1y1
ẏ2 = β2(1− f2)( ∏

0≤i≤n
(1−ξ2,iui))xy2 + ∑

i6=2
(r)m2,iyi

+α2l2−a2y2
· · · · · ·
· · · · · ·
· · · · · ·

ẏn = βn(1− fn)( ∏
0≤i≤n

(1−ξn,iui))xyn + ∑
i6=n

(r)mn,iyi

+αnln−anyn
l̇0 = β0 f0( ∏

0≤i≤n
(1−ξ0,iui))xy0 + r0l0−α0l0

l̇1 = β1 f1( ∏
0≤i≤n

(1−ξ1,iui))xy1 + r1l1−α1l1

l̇2 = β2 f2( ∏
0≤i≤n

(1−ξ2,iui))xy2 + r2l2−α2l2

· · · · · ·
· · · · · ·
· · · · · ·

l̇n = βn fn( ∏
0≤i≤n

(1−ξn,iui))xyn + rnln−αnln

(1)

This model includes x representing CD4+ T cells that are
susceptible to infection, yi, CD4+ T cells infected by the ith

type of virus and li, the long-live reservoir of yi.

CD4+ T cells are generated from their source at rate λ

and disappear at rate d. The target cells are infected by jth

kind of virus at rate of βi and the therapy suppresses the
infection by the jth type of virus with efficacy ξi, jui , where
ξi, j is the effective fact of the ith type multidrug antiviral
regimen on the jth type of virus and ui is the drug efficacy
of the ith type multidrug antiviral regimen.

The infected CD4+ cells yi are created by the infection
from target cells x, the mutation from any other virus at
rate (r)mi, j and the activation from long-live reservoirs at
rate αi. And then, they die with a rate of ai.

The long-live reservoirs li are produced by a fraction fi of
the infected CD4+ cells yi. Their net regeneration rate is ri
and they are activated into yi at rate of αi.

C. Model simplification:

To simplify the problem and from the simulation results
of [16][17], the influence of long-live reservoirs on the each
kind of infected CD4+ cells yi is replaced by a constant
λi. The reason is that compared with the changing of virus
infection, the fluctuation of reservoirs is much slower and
smaller. The validity of this reduction has been verified
through simulation [16][17]. Therefore, the original math
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model is reduced as follows:

ẋ = λ −dx− ∑
0≤ j≤n

β jxy j( ∏
0≤i≤n

(1−ξ j,iui))

ẏ0 = β0( ∏
0≤i≤n

(1−ξ0,iui))xy0

+∑
i6=0

(r)m0,iyi +λ0−a0y0

ẏ1 = β1( ∏
0≤i≤n

(1−ξ1,iui))xy1

+∑
i6=1

(r)m1,iyi +λ1−a1y1

ẏ2 = β2( ∏
0≤i≤n

(1−ξ2,iui))xy2

+∑
i6=2

(r)m2,iyi +λ2−a2y2

· · · · · ·
· · · · · ·
· · · · · ·

ẏn = βn( ∏
0≤i≤n

(1−ξn,iui))xyn

+∑
i6=n

(r)mn,iyi +λn−anyn

(2)

Table I shows the definition of each symbol in the simplified
model.

TABLE I
THE DEFINITION OF EACH SYMBOL IN MODEL 2

Symbol Definition
x CD4+ T cells that are susceptible to infection

(target cells)
y0 The CD4+ T cells infected by wide-type virus
yi The CD4+ T cells infected by the ith type

of drug-resistant virus
d The Natural death rate of target cells
λ The generation rate of target cells
β0 The infection rates of wild-type virus
βi The infection rates of the ith type

of drug-resistant virus
ξi, j The effective fact of the ithtype

multidrug antiviral regimen on the jth type of virus
ui The drug efficacy of the ith type multidrug

antiviral regimen
a0 The death rates of cells infected by wild-type virus
ai The death rates of cells infected by the ith type

of drug-resistant virus
r Unit mutation probability

mi, j The genetic distance between the ith type
of virus and the jth type of virus

λ0 The generation rate of wild-type virus
from long-lived reservoirs

λi The generation rate of the ith type
of drug-resistant virus from

long-lived reservoirs

D. Switching Strategy

Normally, at the beginning of antiretroviral treatment, the
amount of HIV in patients’ body goes down dramatically.
The reason for this is most of the virus is wild-type, broadly
sensitive to antiretroviral treatment. When treatment begins,
viruses with certain mutations have a survival advantage. The
drug cannot stop these kinds of viruses from reproducing.

Drug-resistant virus will become the dominant strain over
time. It has been shown that for any sufficiently potent an-
tiviral therapy, the number of mutation events occurring after
the start of anti-viral therapy is insignificant compared to the
genetic diversity present at the start of anti-viral therapy. The
reason is that the therapy reduces the chance of mutation by
lowering the virus reproduction rate. Therefore, the risk of
resistance emerging to a new regimen is proportional to the
amount of virus present at the start of application of this
regimen [5], [15].

Fig. 1. Dynamics of infected cells by using our drug-switch strategy

Our objective is to find a drug-switching schedule that
yields the minimum total amount of infected cells for starting
a new regimen, reducing the risk of resistance emerging. We
use the simplest model to explain how this strategy works(3).

ẋ = λ −dx−βw(1−u1)(1−u2)xyw
−βr(1−u2)xyr

ẏw = βw(1−u1)(1−u2)xyw−awyw +λw
ẏr = βr(1−u2)xyr −aryr +λr

(3)

where yw are those cells infected by wide-type virus
and yr are the cells infected by resistant virus. u1 and u2
represent the drug efficacies. When the first drug combination
is failing, the system approaches a new steady state (see
Fig.1). Notice that wild-type virus outcompetes resistant
virus in the absence of suppressive therapy. Therefore, if the
patient is taken off the drugs, the wild-type virus will grow
exponentially and the resistant virus will decay exponentially.
Our strategy is to reintroduce the failing drugs at a time
which results in the smallest number of all infected cells
(both wild-type and resistant) as shown in Fig.1. A new
regimen started at this time minimizes the risk of resistance
emergence because the total viral load is minimized.

III. SIMULATION

This section consists of two subsections. The first subsec-
tion illustrates how to find the optimal treatment schedule
for a patient who has a single previously failed regimen. In
the second subsection, several cases illustrate minimizing the
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resistance risk for patients who have failed one or more drug
regimens.

A. One Previously Failed Regimen:

Initially, we use a simple model. This model is an ordinary
differential equation describing the interactions between a
wild-type virus population sensitive to treatment with both
the original antiviral regimen u1 and a new antiviral regimen
u2, and a resistant mutant virus population, sensitive only
to treatment with the new antiviral regiman u2. It takes the
form:

ẋ = λ −dx−βw(1−u1)(1−u2)xyw
−βr(1−u2)xyr

ẏw = βw(1−u1)(1−u2)xyw + ryr −awyw +λw
ẏr = βr(1−u2)xyr + ryw−aryr +λr

(4)

The values of u1, u2, are applied 0 or 1 during the simulation.
We do not apply the both regimens at the same time
because of the excessive toxicity. We show how to find
the optimal treatment schedule for this patient based on the
switch strategy stated above. In the following figures, T1
represents the time for waiting before the failing therapy is
reintroduced; T2 represents the time to get the minimum
resistance risk after the failing therapy is reintroduced; M
point means the moment for getting the minimum resistance
risk.

Case I: Resistant strain has the same properties with wild-
type strain except the infection rates (βw = 0.01, βr = 0.005)
and the death rate (aw = 0.1, ar = 0.3). Parameter values:
λ = 1, λw = 0.01, λr = 0.01, d = 0.01, βw = 0.01, βr = 0.005,
aw = 0.1, ar = 0.3. The simulation results are shown in Fig.2
and Fig.3.

Fig. 2. (A) Minimum Risk vs. T1; (B) The dynamics of total amount
of infected cells by reintroducing the failing therapy

Fig.2(A) gives us the following important information:
for this case, we can control the minimum resistance risk
by manipulating how long we wait before reintroducing the
failing therapy (T1). In this case, because the death rate of the
cells infected by resistant virus is larger than that of the cells
infected by wild-type virus, after the patient takes off the
therapy, the increasing rate of the cells infected by wild-type

Fig. 3. (A) The dynamics of infected cells under our strategy; (B) The
schedule of therapy 1; (C) The schedule of therapy 2;

virus and the decay rate of the cells infected by resistant virus
are almost in the same level. The minimum total amount of
infected cells occurs before the system reaches its steady
state.

Fig.2(B) illustrates that after we reintroduce the failing
therapy, there is a minimum value for the total amount of
infected cells, which means if new therapy is introduced at
this moment, we minimize the risk for resistance emerging to
the new therapy. We can manipulate the size of this this min-
imum according to how long we wait before reintroducing
our failing therapy.

B. Multiple Previously Failed Regimens:

In the case of patients who have failed one or more
drug regimens previously, the need to preserve the remaining
regimens becomes all the more important. Interestingly, the
previously failed regimens provide us additional control
inputs which can be used to achieve our goal of reduced
risk of failure for the new regimen at a lower systemic cost
than in the case where we have only one failing regimen
to use. Consider a variation of the following model, which
includes three viral strains:

ẋ = λ −dx−β0(1−u0)(1−u1)(1−u2)xy0
−β1(1−u1)(1−u2)xy1−β2(1−u2)xy2

ẏ0 = β0(1−u0)(1−u1)(1−u2)xy0 +(r)m0,1y1
+(r)m0,2y2 +λ0−a0y0

ẏ1 = β1(1−u1)(1−u2)xy1 +(r)m1,0y0
+(r)m1,2y2 +λ1−a1y1

ẏ2 = β2(1−u2)xy2 +(r)m2,0y0
+(r)m2,1y1 +λ2−a2y2

(5)

In this model, a wild-type virus population is sensitive to all
regimens: u0, u1 and u3; the first resistant mutant is sensitive
to regimens: u2 and u3; the second resistant mutant is only
sensitive to regimen 3. Similarly in section III-A, because of
the excessive toxicity, we only apply one regimen at the one
time. The values of other parameters will be given. In the
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following two cases, we emphasize how to use the multiple
resistant-strain model to minimize the risk of drug resistance.

Case I: Parameter values: β0 = 0.01, β1 = 0.01, β2 = 0.01,
λ = 1, λ0 = 0.01, λ1 = 0.01, λ2 = 0.01, d = 0.01, a0 = 0.1,
a1 = 0.1, a2 = 0.3. Treatment strategy: there are 3 available
regimens and their drug efficacies are represented by
u0, u1, and u2 respectively. When regimen 1 is found
to be failing, the patient is taken off all drugs (at time
a) and some time later reintroducing regimen 1(at time
b). Still later, regimen 2 is begun (at time c). When
regimen 2 starts to fail, regimen 3 is applied (at time
d). The optimization goal is to determine the switching
times to minimize the risk of resistance emergence at
point T by minimizing the total viral load. The simulation
results are shown in Fig.4 and Fig.5 illustrates the dynamics.

Fig. 4. The relationship between each virus load and treatment time

Fig. 5. (A) The relationship between resistance emergence risk and
treatment time; (B) The schedule of therapy 1, therapy 2 and therapy
3

Case II: Parameter values: All values are the same as
those in case I; Treatment strategy: All schemes are the same
as that in case I except that we use regimen 2 to replace
regimen 1 as the failing therapy which is reintroduced. The
sequencing of this treatment is: at time a, switch regimen
1 to regimen 2; at time b, take off regimen 2; at time c,
reintroduce regimen 2; at time d, apply regimen 3. The
simulation results for case II are shown in Fig.6 and Fig.7.

Fig. 6. The relationship between each virus load and treatment time

Fig. 7. (A) The relationship between resistance emergence risk and
treatment time; (B) The schedule of therapy 1, therapy 2 and therapy
3

For patients who have failed one or more drug regimens
previously, our goal is to minimize the likelihood of resis-
tance emergence at the time of applying the last regimen
(Here is regimen 3). Therefore, observe from Fig.5 and Fig.7
that for the patient in case I and case II, the first treatment
switching strategy is more advantageous than the second
strategy because the value of v (the resistance emergence
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risk) in Fig.5 is smaller than that of v′ Fig.7. In the same
manner, it is not difficult to know for this patient, the first
treatment strategy can create a better moment for introducing
the last available regimen. Therefore, from the simulation
results, we find that this model not only can be used to find
a good schedule for a fixed treatment, but also can be used
to evaluate the performance of different therapy-switching
strategies.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, we propose a generalized mathematical
model to describe HIV dynamics, which include some
items to represent the mutation among different virus strain.
Combining this model with our treatment switching strategy,
we not only can find the best time for reintroducing the
failing therapy to obtain the minimum resistance risk for a
particular treatment scheme, but also are able to find the
best treatment plan from all available treatment schemes
for a patient based on the resistance risk. Furthermore, the
previously failed regimens provide another manipulation
variable which can be used for optimizing the likelihood of
resistance emergence.

This paper introduces an arbitrary scaling of the number of
resistant strains and allows strain-strain mutation events. We
have also shown that the notion of resistance management
introduced in previous papers scales well to increasing num-
bers of previously failed treatments; indeed, the achievable
performance benefits from this situation. Also, we have
shown that the notion is robust to genetic drift between
species, and that it is possible to consider this drift while
choosing optimal therapy switching schedules.

B. Future Works

In order to implement the treatment approach described
in this paper, we will need to be able to better anticipate
the evolutionary effects of our drug choices. Therefore, in
the future, we will develop predictive stochastic models of
HIV genetic distribution. We will also using data from two
studies provided by our collaborator, Dr. Martinez-Picado,
to identify reasonable parameter ranges and distributions for
our mathematical models of HIV quasispecies competition.
Implementation issues also involve robustness to model
uncertainty, event detection, and minimum sampling. We are
exploring solutions to these problems as well.
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