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Abstract— This paper investigates average consensus problem
in networks of continuous-time agents with delayed information
and jointly-connected topologies. A sufficient condition in terms
of linear matrix inequalities (LMIs) is given under which all
agents asymptotically reach average consensus, where the com-
munication structures vary over time and the corresponding
graphs may not be connected. Finally, simulation results are
provided to demonstrate the effectiveness of our theoretical
results.
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I. INTRODUCTION

Distributed coordinated control of multiple agents has

attracted a great deal of attention from many fields such as

biology, physics, robotics and control engineering [1]-[19].

One critical problem in distributed coordinated control of

multiple agents is to find control laws to make all agents

reach an agreement regarding a certain quantity of interest

that depends on the states of all agents. This problem is

usually called consensus problem.

One difficulty of consensus problems is how to investigate

the effects of communication topology among the agents.

This is important because the topologies heavily influence

the stability of the multi-agent systems, especially when the

communication topology is switching jointly-connected. In

the past decade, numerous studies have been conducted on

this problem [2]-[5]. For example, Jadbabaie et al. studied

the consensus problems in discrete-time multi-agent sys-

tems with jointly-connected topologies [2]. Moreau reported

a simple network model of agents interacting via time-

dependent communication links based on graph theory and

set-valued Lyapunov theory [3]. Ren et al. extended the

results of [2] and gave some more relaxable conditions [4].

Another difficulty is how to analyze the stability of the

multi-agent systems when the communication time-delays

are involved. In practical situation, the disturbance of time-

delays is usually unavoidable which might make the multi-
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agent system to oscillate or diverge, and therefore it is im-

portant to investigate its effects on the behavior of the multi-

agent system. Compared with conventional control systems,

to deal with delay-related problems in multi-agent systems

is much more difficult and complex, since the closed-loop

system matrices are usually singular. In order to solve such

problems, many researches have been also carried out [6]-

[9]. In [6], Olfati-Saber et al. investigated a systematical

framework of consensus problems in networks of agents with

a simple continuous-time integrator and gave a sufficient

and necessary condition for average consensus of the system

with time-delay and fixed topology. Bliman et al. focused

on the average consensus problem and extended the results

of [6] to the nonuniform time-delay case [7]. Moreover, Liu

et al. addressed an asynchronous discrete-time formulation

with fixed topology and derived conditions under which a

multi-agent system achieves cohesiveness in the presence of

sensing delays, sensing errors and sensing topology [9].

Recently, much attention has been paid to combining both

difficulties. The authors of [10]-[13] studied the networks of

agents where time-delays affect only the information that is

being transmitted and showed that arbitrary bounded time-

delays can safely be tolerated. Also, Sun et al. investigated

the average consensus problem and gave sufficient conditions

for state consensus of the system under the assumption that

each possible communication topology is connected [14].

In this paper, we investigate the average consensus prob-

lem in networks of continuous-time agents with delayed

information. The communication topologies considered here

are jointly-connected and coupled with time-delays, different

from [14], where each possible communication topology

is required to be connected. As commonly known, it is

much more hard to study the consensus problem on jointly-

connected topologies than on connected topologies, espe-

cially when time-delays are involved. The approach adopted

is to construct a common Lyapunov function whose deriva-

tive is negative semi-definite and use a contradiction method

to show that the Lypuanov function eventually converges to

zero. The obtained condition is given in terms of LMIs and

each LMI corresponds to a possible connected component of

the communication topology.

The following notations will be used throughout this paper.

R
m denotes the set of all m dimensional real column vectors;

Im denotes the m dimensional unit matrix; ⊗ denotes the

kronecker product; 1 represents [1,1, · · · ,1]T with compatible

dimensions (sometimes, we use 1n to denote 1 with dimen-

sion n); 0 denotes zero value or zero matrix with appropriate

dimensions; the symbol ∗ denotes the symmetric term of
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a symmetric matrix; ‖ · ‖ refers to the standard Euclidean

norm for vectors; C([a,b],Rn) represents the Banach space

of continuous functions mapping the interval [a,b] into R
n.

II. PROBLEM DESCRIPTION

A. Graph Theory

Let G(V ,ε,A ) be an undirected graph of order n, where

V = {v1, · · · ,vn} is the set of nodes, ε ⊆ V ×V is the set

of edges, and A = [ai j] is a weighted adjacency matrix. The

node indexes belong to a finite index set I = {1,2, · · · ,n}.

An edge of G is denoted by ei j = (vi,v j). The adjacency

matrix is defined as aii = 0 and ai j = a ji ≥ 0. ai j > 0 if

and only if there is an edge between node vi and node v j.

The set of neighbors of node vi is denoted by Ni = {v j ∈
V : (vi,v j) ∈ ε}. The in-degree and out-degree of node vi

are defined respectively as din(vi) = ∑n
j=1 a ji and do(vi) =

∑n
j=1 ai j. Then, the Laplacian corresponding to the undirected

graph is defined as L = [li j], where lii = do(vi) and li j =
−ai j, i 6= j. A path is a sequence of ordered edges of the

form (vi1 ,vi2),(vi2 ,vi3), · · · , where vi j
∈ V . If there is a path

from every node to every other node, the graph is said to be

connected. The union of a collection of graphs Ḡ1, · · · , Ḡm,

with the same node set V , is defined as the graph Ḡ1−m

with the node set V and edge set equaling the union of the

edge sets of all of the graphs in the collection. Moreover,

this collection, Ḡ1, · · · , Ḡm is jointly-connected if its union

graph Ḡ1−m is connected.

Lemma 1: [20] If the graph G is connected, then its

Laplacian L satisfies:

1) Zero is a simple eigenvalue of L, and 1n is the

corresponding eigenvector, i.e., L1n = 0,

2) The rest n−1 eigenvalues are all positive and real.

B. Model

Suppose that the multi-agent system under consideration

consists of n agents. Each agent is regarded as a node in

an undirected graph, G. Each edge (v j,vi) ∈ ε(G(t)) or

(vi,v j) ∈ ε(G(t)) corresponds to an available information

channel between agent vi and agent v j at time t. Moreover,

each agent updates its current state based upon the informa-

tion received from its neighbors. And the set of the neighbors

of the ith agent at time t is denoted by Ni(t). The Laplacian

of the graph G(t) is denoted by Lσ .

Let xi be the state of the ith agent. Suppose that each agent

has the dynamics as follows:

ẋi(t) = ui(t),

with the initial condition xi(s) = xi(0), s ∈ (−∞,0], where

ui(t) is the control input (or protocol) at time t.

We say protocol ui asymptotically solves the consensus

problem, if and only if the states of agents satisfy

lim
t→+∞

[xi(t)− x j(t)] = 0,

for all i, j ∈ I . Furthermore, if

lim
t→+∞

xi(t) =
1

n
∑

j

x j(0),

we say protocol ui asymptotically solves the average-

consensus problem.

In this paper, we are interested in discussing the average-

consensus problem for networks of agents with switching

jointly-connected topologies and time-delays. To solve this

problem, we use the following linear consensus protocol,

ui(t) = ∑
v j∈Ni

ai j(t)(x j(t − τi j)− xi(t − τi j)), (1)

where τi j = τ ji, i.e., the delays in transmission between the

ith agent and the jth agent are identical.

Then, the network dynamics is summarized as

ẋ(t) = −
M

∑
m=1

Lσmx(t − τm) (2)

with the initial condition x(s) = x(0), s ∈ (−∞,0], where

Lσm is the coefficient matrix associated with the time-delay

τm,
M

∑
m=1

Lσm = Lσ , M ≤ n(n− 1)/2, τm ∈ {τi j, i, j ∈ I } for

m = 1, · · · ,M and σ(t) : [0,+∞) → P = {1, · · · ,N}(N ∈ Z
+

denotes the total number of all possible graphs) is a switching

signal that determines the communication topology G(t).
Note here that Lσm is a symmetric matrix, since the graph

G(t) is undirected and τi j = τ ji. Thus, 1T
n Lσm = 0, which

implies ∑i ẋi = 0. Consequently, β = 1
n ∑i xi(t) = 1

n ∑i xi(0)
is an invariant quantity, and x(t) can be decomposed into

x(t) = β1n +δ (t) with ∑i δi(t) = 0. Then, the system (2) is

equivalent to

δ̇ (t) = −
M

∑
m=1

Lσmδ (t − τm). (3)

It is clear that if the zero solution of system (3) is

asymptotically stable, then all agents will converge to the

common value 1
n ∑i xi(0).

Consider an infinite sequence of nonempty, bounded and

contiguous time-intervals [tr, tr+1), (r = 0,1, · · ·) with t0 = 0

and tr+1 − tr ≤ T1 for some constant T1 > 0. In each interval

[tr, tr+1) there is a sequence of subintervals:

[tr0
, tr1

), [tr1
, tr2

), · · · , [trmr−1
, trmr

) (4)

with tr0
= tr and trmr

= tr+1 satisfying tr j+1
− tr j

≥ T2,0 ≤
j ≤ mr −1 for some integer mr ≥ 0 and given constant T2 >
0 such that the communication topology described by G(t)
switches at tr j

and it does not change during each subinterval

[tr j
, tr j+1

). Evidently, there are at most m∗ = ⌊T1
T2
⌋ subintervals

in each interval [tr, tr+1), where ⌊T1
T2
⌋ denotes the maximum

integer no larger than
T1
T2

.

With the switching topologies defined above,

−
M

∑
m=1

Lσmδ (t − τm) is piecewise continuous in t for

any fixed δ (s) = φ(s) ∈ C([t − τmax, t],R
n), s ∈ [t − τmax, t],

where τmax is the largest time-delay. Thus, we need to work

with a weaker concept of solution, i.e.,

δ (t) = δ (0)−
∫ t

0

M

∑
m=1

Lσmδ (s− τm)ds. (5)
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Under the initial condition δ (s) = δ (0) (s ∈ (−∞,0]), this

function is piecewise differentiable and satisfies (3) almost

everywhere. It is absolutely continuous and provide a solu-

tion of (3) in the sense of Carathéodory according to [22]

and [23] (see p.55 of [22] and p.10 of [23]). The solution of

(3) will be discussed in this way.

III. MAIN RESULTS

In this section, we will analyze the stability for networks

of agents with time-delays and switching jointly-connected

topologies.

Before presenting the main result, we need first introduce

some lemmas.

Lemma 2: (Schur Complement) [24] For a given sym-

metric matrix S with the form S = [Si j], S11 ∈ R
r×r,S12 ∈

R
r×(n−r),S22 ∈ R

(n−r)×(n−r), then, S < 0 if and only if S11 <
0, S22 −S21S−1

11 S12 < 0 or S22 < 0, S11 −S12S−1
22 S21 < 0.

Lemma 3: [14] For any real differentiable vector function

x(t) ∈ R
n and any constant matrix 0 < W = W T ∈ R

n×n, we

have the following inequality

1/τ[x(t)− x(t − τ)]TW [x(t)− x(t − τ)]
≤ ∫ t

t−τ ẋT (s)Wẋ(s)ds, t ≥ 0,

where τ denotes the time-delay.

Lemma 4: [15] Write

Ψn =











n−1 −1 · · · −1

−1 n−1 · · · −1
...

...
. . .

...

−1 −1 · · · n−1











.

The following statements hold.

(1) The eigenvalues of Ψn are n with multiplicity n− 1

and 0 with multiplicity 1. The vectors 1T
n and 1n are the left

and the right eigenvectors of Ψn associated with the zero

eigenvalue, respectively.

(2) There exists an orthogonal matrix Un ∈R
n×n such that

UT
n ΨnUn =

[

nIn−1 0

0 0

]

and the last column is 1n√
n
.

(3) Let Ξ ∈ R
n×n be the Laplacian of any undirected

graph, then UT
n ΞUn =

[

ŪT
n ΞŪn 0

0 0

]

=

[

Ξ̄ 0

0 0

]

, where Ξ̄ ∈
R

(n−1)×(n−1) and Ūn denotes the first n−1 columns of Un.

Suppose that the (time-invariant) communication graph

G(t) on subinterval [tr j
, tr j+1

) has lσ ≥ 1 connected com-

ponents with the corresponding sets of nodes denoted by

ϕ1
r j
,ϕ2

r j
, · · · , ϕ lσ

r j
. Then there exists a permutation matrix

Eσ ∈ R
n×n such that

L̃σ , ET
σ Lσ Eσ = diag{L1

σ ,L2
σ , · · · ,Llσ

σ },

and

δ T (t)Eσ = [δ 1
σ

T
,δ 2

σ
T
, · · · ,δ lσ

σ
T
], (6)

where each block matrix Li
σ ∈R

di
σ×di

σ is also a Laplacian of

the corresponding connected component with di
σ denoting

the number of nodes in ϕ i
r j

. Then in each subinterval

[tr j
, tr j+1

) system (3) can be decomposed into the following

lσ subsystems:

δ̇ i
σ (t) = −

M

∑
m=1

Li
σmδ i

σ (t − τm), i = 1,2, · · · , lσ , (7)

where δ i
σ (t) =

[

δ i
σ1

T
(t) · · · δ i

σdi
σ

T
(t)

]T

∈ R
di

σ and Li
σ =

M

∑
m=1

Li
σm. Noting that (Li

σm)T = Li
σm, it is easy to see

that 1T δ̇ i
σ (t) = 0, t ∈ [tr j

, tr j+1
). Hence, 1

di
σ

di
σ

∑
k=1

δ i
σk(t) is an

invariant quantity in subinterval [tr j
, tr j+1

). Denote φ i
r j

=

1

di
σ

di
σ

∑
k=1

δ i
σk(tr j

). Then δ i
σ (t) can be decomposed into δ i

σ (t) =

(δ i
σ (t)−φ i

r j
1)+φ i

r j
1, where 1T (δ i

σ (t)−φ i
r j

1) = 0.

Consider the following (M +2)di
σ ×(M +2)di

σ symmetric

matrix

Φi
σ (t) =























−2γLi
σ γLi

σ1 γLi
σ2 · · · γLi

σM −Li
σ

∗ − 1
τ1

I 0 · · · 0 Li
σ1

∗ ∗ − 1
τ2

I
. . .

... Li
σ2

∗ ∗ ∗ . . . 0
...

∗ ∗ ∗ ∗ − 1
τM

I Li
σM

∗ ∗ ∗ ∗ ∗ − 1

∑M
m=1 τm

I























.

It is clear that Φi
σ (t)[1T

di
σ
,0T

(M+1)di
σ
]T = 0. Let H i

σ =

diag{Udi
σ
, I(M+1)di

σ
} and H̄ i

σ = diag{Ūdi
σ
, I(M+1)di

σ
} with Udi

σ

and Ūdi
σ

as defined in Lemma 4. Then by Lemma 4, it is

easy to see that H i
σ

T
Φi

σ H i
σ has the following form:





Θ11 0 Θ12

∗ 0 0

∗ ∗ Θ22



 .

Hence, Φi
σ ≤ 0 and rank(Φi

σ ) = (M + 2)di
σ − 1 hold if and

only if H̄ i
σ

T
Φi

σ H̄ i
σ < 0 which is a LMI and can be easily

solved by using available numerical software.

On the other hand, by Lemma 2, Φi
σ (t) ≤ 0 with

rank(Φi
σ (t)) = (M +2)di

σ −1 if and only if Ξi
σ (t) ≤ 0 with

rank(Ξi
σ (t)) = (M + 1)di

σ − 1 where Ξi
σ (t) =

[

Ξ11 Ξ12

∗ Ξ22

]

with

Ξ11 =−2γLi
σ +

M

∑
m=1

τm(Li
σ )2,

Ξ12 =

[

γLi
σ1 −

M

∑
m=1

τmLi
σ Li

σ1 · · · γLi
σM −

M

∑
m=1

τmLi
σ Li

σM

]

,

Ξ22 =















M

∑
m=1

τm(Li
σ1)

2 −1/τ1I · · ·
M

∑
m=1

τmLi
σ1Li

σM

...
. . .

...
M

∑
m=1

τmLi
σMLi

σ1 · · ·
M

∑
m=1

τm(Li
σM)2 −1/τMI















.

Clearly, Ξi
σ (t)[1T

di
σ
,0T

Mdi
σ
]T = 0. Denote y1 = [δ i

σ (t)T ,zT
1 ]T ∈

R
(M+1)di

σ and y2 = [(δ i
σ (t)−φ i

r j
1)T ,zT

1 ]T ∈ R
(M+1)di

σ , where

z1 ∈R
Mdi

σ . Then if rank(Ξi
σ ) = (M+1)di

σ −1 and Ξi
σ (t)≤ 0,
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then y2 is orthogonal to the null space of Ξi
σ , spanned by

the vector [1T
di

σ
,0T

Mdi
σ
]T . Therefore we have

yT
1 Ξi

σ y1 = yT
2 Ξi

σ y2 ≤ λΞi
σ
‖y2‖2 ≤ λΞi

σ
‖δ i

σ (t)−φ i
r j

1‖2, (8)

where λΞi
σ

< 0 denotes the largest nonzero eigenvalue of Ξi
σ .

Theorem 1: Consider a network of agents with time-

delays and switching topologies where the collection of

graphs in each interval [tr, tr+1) is jointly-connected. For

each subinterval [tr j
, tr j+1

), if there exists a common constant

γ > 0 such that

H̄ i
σ

T
Φi

σ H̄ i
σ < 0, (9)

the protocol (1) solves the average consensus problem.

Proof: To prove this theorem, we take two steps. First,

we construct a common Lyapunov function V (t) and prove

V̇ (t) ≤ 0 under condition (9). Then we verify the asymp-

totical convergence of the multi-agent system to a common

value by contradiction.

Step 1) Define a common Lyapunov function for system

(3) as follows

V (t) = γδ T (t)δ (t)+
M

∑
m=1

∫ 0
−τm

∫ t
t+θ δ̇ T (s)δ̇ (s)dsdθ , (γ > 0).

From (6), V (t) can be rewritten as

V (t)= γ
lσ

∑
i=1

δ i
σ

T
(t)δ i

σ (t)+
lσ

∑
i=1

M

∑
m=1

∫ 0

−τm

∫ t

t+θ
δ̇ i

σ
T
(s)δ̇ i

σ (s)dsdθ .

Calculating V̇ along the trajectories of (7), we get

V̇ (t)=
lσ

∑
i=1

[−2γδ i
σ

T
(t)

M

∑
m=1

Li
σmδ i

σ (t − τm)

+
M

∑
m=1

τmδ̇ i
σ

T
(t)δ̇ i

σ (t)−
M

∑
m=1

∫ t
t−τm

δ̇ i
σ

T
(s)δ̇ i

σ (s)ds]

=
lσ

∑
i=1

[−2γδ i
σ

T
(t)

M

∑
m=1

Li
σmδ i

σ (t − τm)

+(
M

∑
m=1

τm)(
M

∑
m=1

Li
σmδ i

σ (t − τm))T (
M

∑
m=1

Li
σmδ i

σ (t − τm))

−
M

∑
m=1

∫ t
t−τm

δ̇ i
σ

T
(s)δ̇ i

σ (s)ds]

Let ζ i
σm(t) = δ i

σ (t)−δ i
σ (t − τm). Then, by Lemma 3, we

have

V̇ (t)

≤
lσ

∑
i=1

{−2γδ i
σ

T
(t)

M

∑
m=1

Li
σmδ i

σ (t)+2γδ i
σ

T
(t)

M

∑
m=1

Li
σmζ i

σm(t)

+(
M

∑
m=1

τm)
M

∑
m=1

[Li
σm(δ i

σ (t)−ζ i
σm(t))]T

×
M

∑
m=1

[Li
σm(δ i

σ (t)−ζ i
σm(t))]−

M

∑
m=1

1/τmζ i
σm(t)

T
ζ i

σm(t)}

=
lσ

∑
i=1

ηT
i Ξi

σ (t)ηi

where ηi = [δ i
σ (t)T ,ζ i

σ1(t)
T , · · · ,ζ i

σM(t)T ]T . As previously

discussed, it is easy to see that Ξi
σ (t)≤ 0 with rank(Ξi

σ (t)) =

(M +1)di
σ −1 under the condition (9). Then it follows from

(8) that

V̇ (t) ≤ λmax

lσ

∑
i=1

‖δ i
σ (t)−φ i

r j
1‖2 ≤ 0, (10)

where λmax = max
i,σ

{λΞi
σ
} < 0.

Since V̇ (t) ≤ 0, then the system (3) is uniformly stable.

Hence, δ (t) and δ (t − τm) (m = 1,2, · · · ,M) are bounded.

From (3), δ̇ (t) is also bounded. Suppose that |δ̇k(t)| < ω <
+∞ (k = 1,2, · · · ,n). From (6), the absolute value of each

component of δ̇ i
σ (i = 1, · · · , lσ ) is also less than ω .

Step 2) Since V̇ (t) ≤ 0 and V (t) ≥ 0, then V (t) tends to a

nonnegative constant value, denoted by V0, as t → +∞, i.e.,

for any ε > 0 there exists T (ε) < +∞ such that

|V (t)−V0| < ε when t > T (ε). (11)

Suppose that V0 > 0. Since V (t) ≥ V0, we have, for

any interval [t − 2τmax, t], there exist at least a δk(tc) (tc ∈
[t − 2τmax, t], k ∈ {1, · · · ,n}) satisfying that |δk(tc)| ≥ c =
√

2V0

n(2γ+M(
M

∑
m=1

τ2
m)λF )

, where λF = max
σ

{Fσ} with

Fσ =













Lσ1Lσ1 Lσ1Lσ2 · · · Lσ1LσM

∗ Lσ2Lσ2

. . .
...

∗ ∗ . . .
...

∗ ∗ ∗ LσMLσM













.

If not, we have

V (t) = γδ T (t)δ (t)+
M

∑
m=1

∫ 0
−τm

∫ t
t+θ δ̇ T (s)δ̇ (s)dsdθ

< γnc2 +
M

∑
m=1

∫ 0
−τm

∫ t
t+θ [

M

∑
m=1

Lσmδ (t − τm)]T

× [
M

∑
m=1

Lσmδ (t − τm)]dsdθ

< γnc2 +
M

∑
m=1

∫ 0
−τm

∫ t
t+θ λF Mnc2dsdθ ≤V0,

which is a contradiction.

From (6), without loss of generality, we assume that

|δ 1
σ1(tc)| ≥ c, tc ∈ [tr j

, tr j+1
) with tr j

> T (ε) and the corre-

sponding node index is p.

Note that
n

∑
k=1

δk(t) = 0 and then a contradiction can be

obtained if we show that
n

∑
k=1

δk(t) 6= 0. In the following, we

will use the bounds ε and c to estimate δ (t). To achieve this,

we take ε < min{−λmaxω2T 3
2

12
,−λmax

3ω
c3

106n3m3∗
}.

It follows from (10)(11) that

ε > V (tr j
)−V (tr j+1

) ≥−
∫ tr j+1

tr j

λmax

lσ

∑
i=1

‖δ i
σ (s)−φ i

r j
1‖2ds

(12)
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Let ρi = max
k

max
s∈[tr j

,tr j+1
]
(|δ i

σk(s)− φ i
r j
|). (As previously dis-

cussed, δ (t) is continuous in t and hence this maximum also

exists.)

Then we discuss the following cases:

Case 1): there exists i0 ∈ {1, · · · , lσ} such that
ρi0
ω ≥ tr j+1

−
tr j

≥ T2. Suppose that ρi0 = |δ i0
σk(tb)− φ

i0
r j
| (tb ∈ [tr j

, tr j+1
],

k ∈ {1, · · · ,di0
σ }). Since |δ̇ i0

σk(t)| < ω , then it is easy to see

that |δ i0
σk(t)− φ

i0
r j
| > ρi0 + ω(t − tb) ≥ 0 for t ∈ [tr j

, tb], and

|δ i0
σk(t)−φ

i0
r j
| > ρi0 −ω(t − tb) ≥ 0 for t ∈ [tb, tr j+1

]. Also,

∫ tb
tr j

[ρi0 +ω(s− tb)]
2ds+

∫ tr j+1

tb
[ρi0 −ω(s− tb)]

2ds

≥ ∫ tr j+1

tr j
[ρi0 −ω(s− tr j

)]2ds.

Thus, we have

ε >−∫ tr j+1

tr j
λmax

lσ

∑
i=1

‖δ i
σ (s)−φ i

r j
1‖2ds

≥−∫ tr j+1

tr j
λmax‖δ

i0
σ (s)−φ

i0
r j

1‖2ds

≥−∫ tr j+1

tr j
λmax(δ

i0
σk(s)−φ

i0
r j

)2ds

≥−∫ tr j+1

tr j
λmax[ρi0 −ω(s− tr j

)]2ds

=−λmax(tr j+1
− tr j

)(ρi0 −
ω(tr j+1

−tr j
)

2
)2

− λmaxω2(tr j+1
−tr j

)3

12

≥−λmaxω2T 3
2

12
> ε,

which yields a contradiction. This means that this case cannot

occur and all
ρi

ω (i = 1, · · · , lσ ) must be less than tr j+1
− tr j

.

Case 2):
ρi

ω < tr j+1
− tr j

for i = 1, · · · , lσ . Similar to the

analysis of case 1), we have

ε > −∫

ρi
ω

0 λmax(ρi −ωs)2ds ≥−λmax
3ω ρ3

i .

Since ε < min{−λmaxω2T 3
2

12
,−λmax

3ω
c3

106n3m3∗
}, then it follows

that ρi = max
k

max
t∈[tr j

,tr j+1
]
(|δ i

σk(t) − φ i
r j
|) < c

102nm∗
. Particu-

larly, |δ 1
σ1(tc)−φ 1

r j
|< c

102nm∗
. Hence, max

k
max

t∈[tr j
,tr j+1

]
(|δ 1

σk(t)−

δ 1
σ1(tc)|) < 2c

102nm∗
. In other words, the states of agents that

are connected to the pth agent (including the pth agent) all

fall in the interval (δ 1
σ1(tc)− 2c

102nm∗
,δ 1

σ1(tc) + 2c
102nm∗

). For

the next subinterval [tr j+1
, tr j+2

), it is easy to see that the

states of agents which are jointly-connected to the pth agent

during [tr j
, tr j+2

) (including the pth agent) fall in the interval

(δ 1
σ1(tc)− 2c

102nm∗
×2,δ 1

σ1(tc)+ 2c
102nm∗

×2). Further, since all

agents are jointly-connected during [tr j
, tr+2], by induction,

we have

max
k

max
t∈[tr+2,tr+3]

(|δk(t)−δ 1
σ1(tc)|) <

2c

102nm∗
3m∗ <

c

10n
.

Since δ 1
σ1(tc)≥ c, it follows that

n

∑
k=1

δk(t) 6= 0, t ∈ [tr+2, tr+3],

which also yields a contradiction. Thus lim
t→+∞

V (t) = 0, and

lim
t→+∞

δ (t) = 0; that is, average consensus can be achieved

under the condition (9). ¤

Now, we will discuss the feasibility of (9). By Lemma 2,

H̄ i
σ

T
Φi

σ H̄ i
σ < 0 is equivalent to













−2γ(Ūdi
σ
)T Li

σŪdi
σ

γ(Ūdi
σ
)T Li

σ1 · · · γ(Ūdi
σ
)T Li

σM

∗ − 1
τ1

I 0 0

∗ ∗
. . . 0

∗ ∗ ∗ − 1
τM

I













+(
M

∑
m=1

τm)[−Li
σŪdi

σ
,Li

σ1, · · · ,Li
σM ]T [−Li

σŪdi
σ
,Li

σ1, · · · ,Li
σM ] < 0

(13)

Noting that (Ūdi
σ
)T Li

σŪdi
σ

> 0, by choosing τmax sufficiently

small, it is easy to see that the inequality (13) holds. Hence

H̄ i
σ

T
Φi

σ H̄ i
σ < 0 is always feasible for sufficiently small τmax.

IV. SIMULATIONS

Numerical simulations will be given to illustrate the theo-

retical results obtained in the previous section. Fig.3 shows

four different graphs each with 6 nodes. All graphs in this

figure are not connected and the weight of each edge is 1.

Moreover, the time-delays corresponding to the edges (1,2),
(1,6), (2,3), (3,4), (4,5) and (5,6) are 0.4 s, 0.4 s, 0.4

s, 0.4 s, 0.2 s, 0.3 s, respectively. In Fig.4, a finite state

machine is shown with four states {Ga,Gb,Gc,Gd} which

denote the states of a network with switching topologies and

time-delays, and it starts at Ga, and switches every 0.1 s to

the next state.
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Fig.3 Four undirected graphs.
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Fig. 4 Finite machine with four states denoting the states of a network

with switching topologies and time-delay

It is solved that one solution for (9) is γ = 1.1012. Fig.5

and Fig.6 show the corresponding state trajectories of all

agents with different initial conditions.
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Fig.5 State trajectories of all agents.
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Fig.6 State trajectories of all agents.

It is clear that all agents asymptotically achieve aver-

age consensus, although the state trajectories are not quite

smooth due to the switching of the network topology.

V. CONCLUSIONS

In this paper, we study the average consensus problem

in networks of continuous-time agents with delayed infor-

mation, where the communication structures vary over time

and the corresponding graphs may not be connected. In the

analysis, we first introduce a common Lyapunov function for

the disagreement dynamics of the network. Then based on

this Lyapunov function, we derive a sufficient condition in

terms of LMIs under which all agents asymptotically reach

average consensus. Finally, simulation results are provided

to demonstrate the effectiveness of our theoretical results.
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