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Abstract— In this article, a novel nanoscale broadband vis-
coelastic spectroscopy approach is proposed. The proposed
approach utilizes the recently developed model-less inversion-
based iterative control (MIIC) technique for accurate mea-
surement of the material response to the applied excitation
force over a broad frequency band. Current nanomechanical
measurement is slow and narrow-banded and thus not capa-
ble of measuring rate-dependent phenomena of materials. In
the proposed approach, an input force signal with dynamic
characteristics of band-limited white-noise is utilized to rapidly
excite the nanomechanical response of the material over a
broad frequency range. Then, the MIIC technique is used to
compensate for the hardware adverse effects, thereby allowing
the precise applications of such an excitation force and mea-
surement of the material response (to the applied force). The
proposed approach is illustrated by implementing it to measure
the creep compliance of poly(dimethylsiloxane) (PDMS) over a
broad frequency range over 3 orders of magnitude.

I. INTRODUCTION

In this article, a novel nanoscale broadband viscoelastic

spectroscopy (NBVS) methodology is proposed. The pro-

posed NBVS approach utilizes the recently developed model-

less inversion-based iterative control (MIIC) technique [1]

to allow rapid excitation and subsequent measurement of the

nanomechanical behavior of materials over a broad frequency

band. The scanning probe microscope (SPM) has become

an enabling tool to quantitatively measure the mechanical

properties of a wide variety of materials [2]. Current SPM-

based force measurements, however, are limited by the slow

operation of SPM to measure the rate-dependent phenomena

of materials [3], and large measurement (temporal) errors

can be generated when dynamic evolution of the material

is involved during the measurement. Operating speed of

current SPMs is limited by: (1) the excitation force applied,

which is either quasi-static or resonant-oscillation based,

is either too narrow-banded in frequency (quasi-static) or

too slow (resonant oscillation based) to rapidly excite the

nanomechanical behavior of materials over a broad frequency

band; and (2) the hardware adverse effects can be coupled

into the measured data if the measurement is at high-speed

and over a broad frequency range. These adverse effects

include the hysteresis of the piezo actuator (used to position

the probe relative to the sample), the vibrational dynamics of

the piezo actuator and the probe along with the mechanical

parts, and the dynamics uncertainties.
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In usual force-curve measurements, the applied input

force follows a triangle trajectory [2]. Such an excitation

input is quasi-static and does not contain rich frequency

components required to rapidly excite broadband viscoelastic

response of materials. One attempt at addressing the lack

of frequency components in input force has been through

the development of force modulation technique [4], where a

sinusoidal force signal (i.e., ac signal) of small amplitude is

superposed on the triangle input force and applied during

the measurement. During the measurement, the hardware

dynamic response is coupled into the measured data and

must be accounted-for afterwards using a dynamics model

[4]. As a result, the load/unload rate are limited to small

range because the oscillation amplitude (<100 nm) and the

oscillation frequency (a few hundred Hz) have to be kept

small [4] such that dynamics coupling can be adequately

captured by using a simple spring-mass-damper model.

Moreover, force-modulation technique is slow for measuring

material response over a large frequency range, because

the de-modulation process must be applied to accurately

measure the amplitude and the phase shift of the oscillation,

which is inherently time-consuming. During high-speed force

measurements, the SPM dynamics consisting of the piezo

actuator and the probe [5] can be excited, resulting in large

vibrations of the probe relative to the sample, which in turn,

leads to large errors in the obtained force measurements.

Furthermore, substantial dynamics uncertainties exist in the

SPM system due to the change of operation condition (e.g.,

change of the probe), which makes the compensation of such

dynamics effect challenging. When the displacement of the

piezo actuator is large during the force measurement, the

hysteresis effect of the piezo actuator becomes pronounced,

further exacerbating large measurement errors. Therefore,

a measurement technique that can accurately decouple the

hardware dynamics, nonlinear hysteresis, dynamic uncertain-

ties from the high speed force measurements is required for

accurate material characterization.

The main contribution of this article is the development

of an iterative control-based NBVS methodology that uti-

lizes: system identification based approach for characterizing

broadband response of materials; and advanced control tech-

niques for deconvoluting the hardware induced errors from

the measured data. First, we view the nanomechanical re-

sponse of materials as a dynamic system, which thereby can

be measured by exciting the system (i.e., the material) with

an input force with rich frequency components, and measur-

ing the resulting response of the material. Particularly, we

employ a band-limited white-noise type of input force signal,
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which can rapidly excite the dynamic behavior of materials

over a broadband. Second, the recently-developed model-

less inversion-based iterative control (MIIC) technique [1] is

utilized to eliminate the hardware adverse effects and allow

precise application of such an excitation force to the material,

as well as precise measurement of the consequent response of

the material. The measured input-output data, i.e., the exci-

tation force and the material response (indentation), are then

used to obtain the frequency-dependent viscoelasticity of the

material. The proposed NVBS is illustrated by implementing

it to measure the viscoelasticity of a PDMS sample.

II. FEEDFORWARD CONTROL APPROACH TO

BROADBAND VISCOELASTICITY SPECTRUM ON SPM

A. Nanoscale Material Property Measurement using SPM

SPM is not only a unique tool to obtain nanoscale image

of materials, but also becomes a powerful tool to charac-

terize various nano-scale materials properties through the

measurement of tip-sample interaction force, i.e., the force

curve measurement [6]. To obtain the force curve, a micro-

fabricated cantilever with a nano-size tip (see Fig. 1(a)) is

driven under a piezoelectric actuator to push against the

sample surface until the cantilever deflection (i.e., the tip-

sample interaction force) reaches the setpoint value. Then the

cantilever will retrace from the sample to a pre-determined

distance. The force distance curve is obtained by measuring

the tip-sample interaction force versus the vertical displace-

ment of the SPM-tip during the push-retraction process (see

Fig. 1(b)). The force curve contains the information of tip-

sample interaction force and the indentation and thereby can

be used to explore various material mechanical properties

such as creep compliance, and Young’s modulus [2].
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Fig. 1. The scheme of force curve measurement by SPM

B. Model-less Inversion-based Iterative Control

The MIIC control law, as schematically depicted in Fig. 2,

can be described in frequency domain as follows:

u0( jω) = αzd( jω), k = 0,

uk( jω) =











uk−1( jω)
zk−1( jω) zd( jω), when zk−1( jω) �= 0,

and k ≥ 1,
0 otherwise

(1)

where ‘ f ( jω)’ denotes the Fourier transform of the signal

‘ f (t)’, ‘zd(·)’ denotes the desired output trajectory, ‘zk(·)’
denotes the output obtained by applying the input ‘u k(·)’ to

the system during the kth iteration, and α �= 0 is a pre-chosen

constant (e.g., α can be chosen as the estimated DC-Gain of

the system).
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Fig. 2. The system diagram of the MIIC algorithm.

The convergence of the MIIC algorithm has been analyzed

in [1]. We summarize the main results below.

Theorem 1: Let G( jω) be a stable single-input-single-

output (SISO), linear time invariant (LTI) system, and at each

frequency ω , consider the system output z(t) to be affected

by the disturbance and/or the measurement noise zn(t) as

z( jω) = zl( jω)+ zn( jω), (2)

where zl( jω) denotes the linear part of the system response

to the input u( jω), i.e. zl( jω) = G( jω)u( jω), and zn( jω)
denotes the output component caused by the disturbances

and/or the measurement noise. Then,

1) the ratio of the iterative input uk( jω) to the desired

input ud( jω) is bounded in magnitude and phase,

respectively, as

1− ε(ω)≤ lim
k→∞

∣

∣

∣

∣

uk( jω)

ud( jω)

∣

∣

∣

∣

≤ 1− ε(ω)

1−2ε(ω)
, (3)

lim
k→∞

∣

∣

∣

∣

∠

(

uk( jω)

ud( jω)

)
∣

∣

∣

∣

≤ sin−1

(

ε(ω)

1− ε(ω)

)

, (4)

provided that the noise to signal ratio (NSR) as defined

below, is upper-bounded by a less-than-half constant,

ε(ω),
∣

∣

∣

∣

zk,n( jω)

zd( jω)

∣

∣

∣

∣

≤ ε(ω) < 1/2, ∀ k, (5)

where the desired input ud( jω) enables the linear part

of the system output to exactly track the desired output,

i.e., zd( jω) = G( jω)ud( jω), and zk,n( jω) denotes

the part of the output caused by disturbances and/or

measurement noise in the kth iteration.

C. Implementation of the MIIC Technique in NBVS

As conceptually depicted in Fig. 3, the use of the MIIC

technique in the proposed NBVS is to “learn” and “cancel”

the dynamics of the piezo-cantilever system for the given

desired force signal zd(t), such that the output of the piezo-

cantilever system, i.e., the force exerted onto the sample,

z f (t), follows the desired force signal, z f (t)→ zd(t). Thus the

proposed approach is different from the multi-frequency ex-

citation method [7] where the desired force-signal is applied

to drive the piezo-cantilever system directly (see Fig. 3),

resulting in the dynamics convolution of the piezo-cantilever

system into the measured material response. The MIIC law

can be computed offline (instead of online) directly in

frequency domain—the time-domain iterative control input

is obtained through the inverse Fourier transform, and then

applied as a feedforward, open-loop control input to the

system.

In the proposed NVBS, the MIIC technique is used to exert

a band-limited white-noise type of input force to excite the

1653



3LH]R�FDQWLOHYHU

6\VWHP

Z
f
(t)

6DPSOH

Z
d
(t)

Z
d
(t)

�3LH]R�FDQWLOHYHU���

Z
d
(t)

MIIC

Fig. 3. The control input signal (zd(t)) used by the NBVS and the multi-
frequency excitation method to control the SPM system is input into the
system at different enter points. The latter is represented with dash line.

nanomechanical behavior of soft materials, which is suitable

for indentification of both nonparametric creep compliance

function [2] and the parametric creep compliance model such

as the truncated Prony series [8].

D. Identification of the Creep Compliance Model

We assume that the sample to be measured is a soft mater-

ial. First, the MIIC technique is applied in force measurement

of the soft material and a reference hard material to measure

the indentation (i.e., the soft material’s response). Second,

the obtained input-output data are used in the Hertz contact

mechanics model to obtain the complex compliance of the

material in frequency domain. Finally, the creep compliance

is modeled by a linear model (a truncated Prony series), and

the parameters in the linear model is identified. We start with

describing the indentation measurement.

1) Obtain the Excitation Force and the Indentation Re-

sponse: In order to measure the response of the soft sample

material to the excitation input (force), i.e., the indentation of

the tip into the soft sample, the same control input (obtained

from the use of the MIIC algorithm on the soft sample)

is applied to measure the force curve on a reference hard

material. The force applied from the tip to the sample during

the force measurements can be obtained from the measured

cantilever deflection signal by using the relation [2],

FS = Kt ×Ct ×dS, (6)

where Kt is the stiffness constant of the cantilever, Ct

is the sensitivity constant of the deflection signal vs. the

vertical displacement of the tip (both can be experimentally

calibrated [9]), and dS denotes the cantilever deflection on

the soft sample. Then, the indentation of the tip into the soft

sample can be obtained as [6]

ZI = Ct × (dH −dS), (7)

where dH denotes the deflection on the hard material to

the same control input for which the deflection on the soft

material, dS, is measured.

2) Obtain the Complex Compliance of the Material: Next,

Hertz contact mechanics model [2] is utilized to extract

the viscoelasticity of the material from the experimentally

measured force and indentation data.

J ( jω) =

[

h
3
2 (·)

]

( jω)

C1 ×P( jω)
× 1

jω
, (8)

where P(t) is the interaction force between the tip and the

sample surface, h(t) is the indentation of the tip on the sample

surface, J(t) is the creep compliance of the sample material

in uniaxial compression, and the constant C1 is given by

C1 =
3(1−ν2)

4
√

R
, (9)

where ν is the poisson ratio of the soft sample, and R is the

tip radius.

Note that as commonly occurring in frequency response

measurements, noise-like spikes might appear in the raw data

plot of the complex compliance. Such noise-like spikes can

be removed/filtered by using commercially available signal

processing algorithms (such as the command ‘spafdr’ in

MATLAB). Second, we also note that the residual SPM-

dynamics effect might still appear in the complex compli-

ance at some frequencies, for example, around the resonant

peaks—due to the sensitive variation of the SPM-dynamics

around those frequencies, resulting in significant measure-

ment errors in the creep compliance function. Thus, we

introduce the parameterized-based approach to identify the

creep compliance function.

3) Identification of the Creep Compliance Function Based

on a Linear Prony Series Model: A linear creep compliance

model is utilized to identify the time-domain creep com-

pliance function. The use of the creep compliance model

allows a substantial removal of the residual SPM dynamics

effect from the measured data, and thereby obtaining a

more accurate creep compliance function J(t). In this article,

we use a truncated Prony series (i.e., a series of discrete

exponential terms) to model the creep compliance [8].

J(t) =

[

J0 +
n

∑
i=1

Ji · e−t/τi

]

·1(t), (10)

where J0 is the fully relaxed compliance, Jis are the compli-

ance coefficients, τis are the discrete retardation times, and

1(t) is a unit step function

The corresponding complex compliance model J(jω), can

be obtained from the Fourier transform of Eq. (10) as

J( jω) =
J0

jω
+

n

∑
i=1

Ji

jω + 1/τi

, (11)

which can be further rewritten as the summation of the real

part and the imaginary part.

J( jω) =

(

n

∑
i=1

Ji · τi ·ω
1+ τ2

i ·ω2

)

1

ω
+

[

J0 +
n

∑
i=1

Ji · τ2
i ·ω2

1+ τ2
i ·ω2

]

−1

ω
j.

(12)

The parameters in the creep compliance model, J is and τis,

are identified via curve-fitting the experimentally measured

storage and loss compliance (i.e., the real and the imaginary

part in Eq. (8), respectively) with respect to the counterparts

in Eq. (12), respectively.

Particularly, to reduce the numerical error in the fitting,

we, priori to the fitting, remove the frequency scale effect

of the ‘ jω’ term by multiplying ‘ jω’ on both sides of the

Eq. (8) (when using it to plot the experimental data) and

the model Eq. (12) (In the following, we call ‘ jω · J( jω)’
the frequency-scaled complex compliance). Also note that

the compliance coefficient Jis and the retardation constants

τis for i=1, · · · , 4 appear in the fitting of both the real part

and the imaginary part. Thus the average value of the fitting

results is used for these parameters. Once the parameters of

the linear creep compliance model are identified, the creep

compliance function can be plotted according to Eq. (10).
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III. EXPERIMENTAL EXAMPLE: FREQUENCY-DEPENDENT

VISCOELASTIC MEASUREMENT OF PDMS

The implementation of the proposed method is similar as

in [6] and is omitted due to the space limit.

A. Experimental Results & Discussion

1) Tracking of the Band-limited White-noise Trajectory:

First, the MIIC algorithm was applied to enable exerting,

from the cantilever, a band-limited white-noise type of ex-

citation force to the PDMS sample (Readers are referred to

Ref. [6] for the preparation of the PDMS sample). A band-

limited white-noise with a cut-off frequency of 4.5 KHz was

generated in MATLAB for a time period of 6 seconds. Note

that the bandwidth of the z-axis SPM dynamics (measured by

3dB drop of the gain) was at 1.27 kHz. Then the generated

force trajectory was used as the desired trajectory in the

MIIC algorithm and applied in the force measurement on the

PDMS sample along with a small normal force. The small

normal load was used to avoid the pull-off of the tip from

the sample surface during the measurements. The iteration

was converged in 3-5 iterations, and the converged output

along with the desired trajectories and the tracking error are

shown in Fig. 4. In addition, the tracking performance was

also quantified in terms of the relative RMS error E2(%) and

the relative maximum error E∞(%), as shown in Table I.
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Fig. 4. (a) The experimental tracking result (i.e., the force applied to the
PDMS sample, which was converted from the cantilever deflection) of the
band-limited white-noise trajectory with a period of 6 sec., (b) the zoomed-
in view of the tracking result for time t ∈ [2, 2.01] sec., and (c) the tracking
error within the zoomed-in time window.

The experimental results show that by using the MIIC

technique, precise output tracking of complex desired tra-

jectories can be achieved. For the cut-off frequency of 4.5

kHz, the output tracking trajectory converged to the desired

trajectories within 4 iterations. The precise exertion of such

a complex excitation input force in the force measurement

was difficult to achieve by using feedback control—if not

entirely impossible, because the band-limit of the trajectory

TABLE I

TRACKING PERFORMANCE OF THE MIIC TECHNIQUE.

Iter.No. 1 2 3 4 5

E∞ (%) 44.05 15.85 6.09 6.13 4.31

E2 (%) 7.14 4.52 5.12 5.25 4.69

at 4.5 kHz was significantly higher than the bandwidth of

the z-axis dynamics at 1.27 kHz, as shown in Fig. 5.
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Fig. 5. The experimentally measured frequency response of the SPM
dynamics in the z-axis direction.

The tracking precision of such complex trajectories can

also be evaluated by comparing the power spectrum of

the tracking result with the desired one in the frequency-

domain. As can be seen from Fig. 6, the desired trajectory

has rich frequency components across the entire frequency

spectrum (Fig. 6 (a)), and the error of the power spectrum

was maintained very small with no conspicuous difference at

all frequency components (Fig. 6 (b)). Therefore, the exper-

imental results show that the MIIC technique can be used to

track complex force trajectory in force curve measurements.

2) The Force and the Indentation Measurements: The

force applied on the PDMS sample was computed by Eq. (6),

where the sensitivity constant of the cantilever of 85 nm/V

was experimentally measured by following the method out-

lined in [9], and the cantilever spring constant of 0.065 N/m

was calibrated by using the thermal noise method [9]. To

measure the indentation, the converged iterative control input

(obtained in Sec. 3.1.1 on the PDMS sample) was applied

in the force measurement on the hard sapphire reference

sample. The indentation of the SPM-tip into the PDMS

sample was then calculated from the difference between the

cantilever deflection on the PDMS sample and that on the

sapphire sample (see Eq. (7)). The comparison of these two

output deflection signals after the normal load being removed

and the obtained indentation are shown in Fig. 7. We also

plot the frequency components (the magnitude part) in the

applied force and those in the corresponding indentation, i.e.,

the input and the output data in the identification experiment,

in Fig. 8(a) and (b), respectively.

The experimentally measured force-indentation data reveal

the frequency-dependent viscoelastic characteristics of the

PDMS material. We note that compared to PDMS, sapphire

sample can be practically regarded as “infinitely hard”.

Therefore, under the same control input to the z-axis piezo
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trajectory with the tracking result, and (b) the power spectrum of the error
signal.

actuator (i.e., the same excitation force), the cantilever deflec-

tion obtained on the sapphire sample should be always larger

than that on the PDMS sample. Such a prediction agreed

with our experimental results: the indentation obtained in

the experiments was always greater than zero (see Fig. 7

(c)). Furthermore, the experimental results also show that

the indentation response of the PDMS sample was fre-

quency dependent. As shown in Fig. 8 (b), the amplitude of

the frequency components in the corresponding indentation

presented a trend towards becoming smaller as frequency

increased—except two spikes at around 1.4 kHz and 2.9

kHz. Such a trend also agreed with the rate-dependent

viscoelastic properties of PDMS: as the excitation frequency

increased, the movements of the molecules of the PDMS

sample were significantly retarded since they cannot follow

the external deformation fast enough, hence, a faster external

deformation rate transitioned the viscoelastic response of

PDMS from being rubbery toward being glassy. We note

that the spikes in the indentation frequency plot (Fig. 8(b))

occurred around the frequencies where the z-axis SPM

dynamics has resonant peaks (see Fig. 5), thus such spikes

might be due to the residual SPM dynamics effect on the

measured result. However, the trend of the rate-dependence

of the indentation response was still pronounced in the

experiments. Therefore, the experiment results demonstrate

that the proposed NVBS technique can be used to measure

frequency-dependent viscoelastic properties of materials over

a large frequency range.

3) Complex Compliance Identification: By using the ex-

citation force and the indentation data obtained from the

experiments, the complex compliance J(jω) of the PDMS

sample , as plotted in Fig. 9, can be calculated according to

Eq. (8), where the probe radius of 57 nm was experimen-

tally characterized by imaging a standard probe calibration

sample (porous aluminum PA01) [9]. The improved complex

compliance obtained by removing the “spikes” was used to

identify the parameters. Particularly, a fourth-order Prony

series model was used (n=4 in Eq. (12)), and the real part

and the imaginary part of the frequency-scaled complex
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Fig. 7. (a) The comparison of the experimentally measured deflection
signals on PDMS and that on a sapphire sample, (b) the zoomed-in view
of plot (a) for time t ∈ [2, 2.01] sec., and (c) the difference between these
two deflection signals within the zoomed-in time window.
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Fig. 8. (a) The tip-sample interaction force that shows the band-limited
white-noise characteristic, and (b) the indentation into PDMS sample
obtained under the force of (a).

compliance, jωJ( jω), were fitted separately by using the

MATLAB command ‘nlinfit’ (see Eq. (12)), and the

averaged values from these two fittings (the real-part and

the imaginary part) were used for the parameters in the

linear viscoelasticity model Eq. (12). The fitting results are

compared with the averaged values in Table II, and also in

Fig. 10 along with the experimental data. The fitting was

quite well as the fitting errors were small. Table II also shows

that the four fitted relaxation time constants occupied four

different time orders, spanning from 0.01 ms to 0.01 s. The

averaged parameters were used in the linear viscoelasticity

model to plot the real-part and imaginary-part of the complex

compliance, and compared to those of the experimental data,

as shown in Fig. 10 with logarithmic-scale in frequency.

After all the parameters Ji and τi in the 4th-order Prony series

model were estimated, the creep compliance in time domain

was calculated from Eq. (10), and is shown in Fig. 11.

4) Discussion: According to calculated creep compliance,

the instantaneous modulus of PDMS is about 1.33 MPa and it
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TABLE II

THE PARAMETERS GENERATED FROM THE CURVE FITTING OF THE REAL

PART AND IMAGINARY PART OF THE COMPLEX COMPLIANCE, AND

THEIR AVERAGE.

Param. Real Part Imag. Part Average

J0 (Pa−1) 9.11×10−6 NA 9.11×10−6

J1 (Pa−1) -3.06×10−6 -1.68×10−6 -2.37×10−6

J2 (Pa−1) -1.60×10−6 -1.42×10−6 -1.51×10−6

J3 (Pa−1) -1.53×10−6 -1.54×10−6 -1.53×10−6

J4 (Pa−1) -2.25×10−6 -1.91×10−6 -2.08×10−6

τ1 (sec.) 3.55×10−5 6.61×10−5 5.08×10−5

τ2 (sec.) 4.73×10−4 4.57×10−4 4.65×10−4

τ3 (sec.) 3.13×10−3 2.67×10−3 2.90×10−3

τ4 (sec.) 2.43×10−2 2.63×10−2 2.53×10−2
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Fig. 9. The approximation of (a) the real part, (b) the imaginary part of
the experimentally measured compliance of PDMS sample.
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Fig. 10. The curve fitting results for (a) the real part, (b) the imaginary
part of the experimentally measured compliance of the PDMS sample (i.e.,
without the frequency scale factor, jω).
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Fig. 11. The calculated compliance of PDMS sample in time domain by
using the parameters obtained from the curve fitting with Eq. (10).

quickly relaxes to 0.2 MPa. The instantaneous and the static

modulus were computed by setting time t → 0 and t → ∞ in

the creep compliance model Eq. (10), respectively, and taking

the inverse. Magnitude of the instantaneous and the fully

relaxed modulus compare well with DMA tests on the same

samples [6]. At room temperature, PDMS is above its glass

temperature and displays a clear viscoelastic solid response.

Our proposed characterization technique clearly captures the

rate dependent viscoelastic nature of PDMS polymer. These

results demonstrate the efficacy of our technique for rapid

broadband viscoelastic characterization.

IV. CONCLUSION

In this paper, a novel nanoscale broadband viscoelas-

ticity spectroscopy was proposed. In the proposed NBVS

approach, the recently developed MIIC technique is used

to I) the exertion of excitation force with broad frequency

components onto the sample, and II) the measurement of

the material response for such excitation (i.e., the material

indentation). The frequency-dependent viscoelasticity of the

material was then obtained by using the measured excitation

force and the indentation in a contact mechanics model

that describes the dynamics interaction between the probe

and the sample. The proposed NVBS was illustrated by

implementing it to measure the viscoelasticity of a PDMS

sample.
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