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Abstract— This work aims at demonstrating potential ben-
efits of applying nonlinear control techniques to electrostatic
micromirrors in order to extend their stable operational range
and enhance the system’s performance. A nonlinear tracking
control based on feedback linearization and trajectory planning
has been developed. Aspects essential to the implementation
of such a system, such as prevention of the device from its
destruction on contact, modeling and sensing schemes allowing
for the removal of on-chip sensors, influence of the dynamics
of the driving circuit on the performance, and characterization
of the device, have been thoroughly addressed and practical
solutions have been proposed. The experimentation is per-
formed on a set-up built with low cost, commercial off-the-shelf
(COTS) instruments and components in an ordinary laboratory
environment. The experimental results show that the developed
control system can achieve a stable operation beyond the pull-in
position for both set-point and scanning controls.

I. INTRODUCTION

The electrostatic micromirror is one of the most popular

microelectromechanical systems (MEMS), which is used in

a variety of scientific, commercial, and defense applications,

such as adaptive optics [15], optical network switching

[4], projection systems [16], and resonant microsensors [1],

among others. However, electrostatic actuation results in

highly nonlinear dynamics, giving rise to a saddle-node bi-

furcation, called “pull-in,” which limits the stable open-loop

operation to a small portion of the whole physically avail-

able range [12]. Extending the stable operation range and

enhancing the performance of electrostatic MEMS constitute

the main motivation of the majority of the works in the appli-

cation of closed-loop control in this area. The work reported

in the literature has addressed the application of a variety

of techniques, in particular nonlinear control methods, to the

control of diverse electrostatic micro-actuators [9], [10], [21],

[19], [13], [11], as well as experimental implementations

of closed-loop control algorithms for micromirrors [4], [3],

[18], [6].

The present work deals with the design of nonlinear

tracking control of a one-degree of freedom (1DOF) scanning

micromirror. It emphasizes particularly issues related to the

experimental implementation. More specifically, in order to

ensure safe and repeatable operations, the micromirror is

designed in such a way as to prevent the destruction of
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the structure due to, e.g., short-circuit when the moveable

and fixed electrodes come into contact (intentionally or ac-

cidently). To this end, stopping mechanisms are considered in

the design of micromirror. We will see later that this structure

will also allow avoiding a singularity in the dynamics of the

device associated to short-circuit, making the system model

more reliable.

Another important issue that affects both micro-actuator

design of and control algorithm development is the choice

of state variable in the dynamic model. In the literature, it is

common to take the charge as a state variable for describing

the dynamics of electrostatic MEMS (see, e.g., [12], [10],

and [20]). However, the implementation of on-chip charge

measurement requires additional structures (see, e.g., [2]),

besides electrical interference between the actuation and the

sensing during the operation. To circumvent this problem,

the actuation voltage across the device is taken instead

as a state variable in the dynamic model. Consequently,

on-chip charge sensing is no longer required. As voltage

measurement is instantaneous and trivial to implement, we

can expect to achieve a simple but reliable implementation

of control systems. A position sensitive detector (PSD) will

be used as angular deflection sensor. This makes it possible

to implement new control systems with existing devices that

are not equipped with on-chip position and charge sensors.

The model used in controller design incorporates also the

dynamics of the driving circuit, including output impedance

of the high-voltage amplifier used in the experimental sys-

tem. Note that the output capacitance of the high voltage

amplifier is usually of several orders of magnitude greater

than that of the device. Therefore, it has an important impact

on the performance of the system and cannot be ignored in

practice.

Finally, to obtain the angular velocity required for con-

troller implementation, we use the discrete derivative in order

to respect the capability offered by the embedded computa-

tion platform. Closed-loop stability and system performance

will be assessed by numerical simulation and experimental

test.

The rest of the paper is organized as follows. Section II

presents the micromirror and its dynamic model. Section III

is dedicated to the control synthesis. Section IV introduces

the experimental setup and the characterization of the mi-

cromirror. The results of the simulation study and the exper-

imental test are reported in Section V. Finally, Section VI

contains some concluding remarks.
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II. THE MICROMIRROR AND ITS DYNAMIC MODEL

The optical microscope graph of the micromirror used in

the present work is shown in Fig. 1(a). This device consists

of a typical rectangular torsional micromirror [17]. Two

metal layers of the same area are deposited, one on the

substrate to form the bottom electrode, and the other on the

surface of the micromirror for light reflection and hinges to

form the top electrode. A main novelty is the inclusion of

a stopping mechanism implemented by a comb extension.

Without this structure, every operation beyond the pull-in

position can become destructive if the top electrode crashes

onto the bottom one, which might happen in such operations

as full range characterization and control near the full gap

position. Moreover, the comb structure allows minimizing

the contact surface and the elasticity of the comb fingers will

help restoring the moveable electrode back from the contact

position. This structure allows also reducing the effect of

fringing fields due to the stopping mechanism. Therefore, it

will not introduce significant modeling error.

(a) (b)

Fig. 1. Micromirror: (a) Optical microscope graph of the fabricated device;
(b) schematic representation of the structure.

The fabrication of the prototype is carried out by Mi-

craGem process [17], which is well suited for uniform planar

type devices. The air gap is 12µm and the thickness is 10µm.

Other parameters of this device is given in Sections IV.

A schematic representation of the device is given in

Fig. 1(b). The capacitance due to the electrostatic field

between the two electrodes can be expressed as

Ca = C0γ(θ),

where C0 is a constant representing the capacitance of the

device at zero-voltage position. A dimensionless function of

tilt angle γ(θ) is introduced to represent the variation of

the capacitance. For the considered micromirror, the air gap

is much smaller than the geometrical extent. Therefore the

fringing field effect can be ignored. The capacitance of this

device can then be computed as [20]

Ca = εW

∫ L

0

dx

d − x sin θ
=

εW

sin θ
ln

(

d

d − L sin θ

)

, (1)

where ε is the permittivity of air gap, W and L are, respec-

tively, the width and the length of the electrodes, and d is the

zero-voltage air gap. The capacitance at zero-voltage position

is given by the well-known formula C0 = εWL/d (see, e.g.,

[12]). Therefore the scaling function can be expressed as

γ(θ) = γθ =
d

L sin θ
ln

(

d

d − L sin θ

)

. (2)

It can be verified by applying l’Hôpital’s rule that γ(0) =
1, as expected. Note that γ(θ) has a singularity at contact

position θC = arcsin(d/L). With the stopping mechanism

in the considered device, the actual contact will happen at

position θmax = arcsin(d/(L + l)), where l is the comb

extension length, which corresponds to the maximal tilt angle

allowed by the geometry of the mirror. Since θmax < θC if

l > 0, the singularity in (2) will not occur.

The equation of motion of the micromirror is given by:

Jθ̈ + bθ̇ + kθ = Te, (3)

where J is the mass moment of inertia of the moving

electrode, b is the viscous damping coefficient, k is the

stiffness coefficient, and Te is the electrostatic torque. Te can

be computed by differentiating the stored electrical energy

with respect to angular deflection [12]:

Te =
∂

∂θ

(

1

2
V 2

a Ca

)

=
1

2
V 2

a C0
∂γ(θ)

∂θ
=

1

2
V 2

a C0γ
′

θ (4)

where Va is the voltage across the device. It can be verified

that γ′

θ is well defined for the structure considered except for

the points of contact.

Fig. 2. Equivalent electrical circuit.

The dynamics of the electrical subsystem including output

impedance of the high voltage amplifier can be deduced from

the equivalent circuit of the system shown in Fig. 2 as

Ip + Ia = Q̇p + Q̇a =
1

R
(Vs − Va) , (5)

where Vs is the source voltage, which is the actual control

signal, and Cp is a constant capacitance including output

capacitance of the voltage amplifier and parallel parasitics

due to current leak. Then, the relationship

Qa = CaVa, Qp = CpVa,

yields

Q̇a = CaV̇a + ĊaVa = CaV̇a + C0γ
′

θ θ̇Va, Q̇p = CpV̇a.

It can be deduced from (5) that

V̇a =
Vs − Va

RC0 (Cp/C0 + γ(θ))
−

θ̇γ′(θ)Va

Cp/C0 + γ(θ)
. (6)

Note that the output capacitance of the amplifier has the

effect of slowing down the actuation transient, affecting
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the dynamical behavior of the system. However, the static

behavior of the system, in particular the pull-in position,

remains unchanged.

Letting ω = θ̇ be the angular velocity of deflection and

defining ρ = Cp/C0, then using (3), (4), and (6) the system

model can be expressed in state-space form as:

θ̇ =ω (7a)

ω̇ =
1

J

(

−bω − kθ +
C0

2
γ′

θV
2
a

)

(7b)

V̇a =
1

ρ + γθ

(

Vs − Va

RC0
− ωγ′

θVa

)

(7c)

which is defined in the restricted state space X =
{(θ, ω, Va) ⊂ R

3|θ ∈ (−θmax, θmax)}. Note that the mi-

cromirror will never reach −θmax even if the attractive force

is released at θmax, because the damping of the device

is nonzero. Moreover, for simplicity, we do not take into

account the contact dynamics at which the system exhibits

a switching behavior [9].

III. CONTROL SYNTHESIS

The closed-loop controller design combines techniques of

exact feedback linearization and trajectory planning [7], [5],

[8]. The desired performance and operations can be specified

through appropriate choices of reference trajectories, allow-

ing control system tuning to be carried out in a systematic

way.

A. Feedback Linearization

Here, the standard procedure of feedback control of flat

systems is followed (see, e.g., [5]). First, take the tilt angle θ
as the output of the system and compute its time derivatives

until the input appears:

y =θ (8a)

ẏ =θ̇ = ω (8b)

ÿ =ω̇ =
1

J

(

−bω − kθ +
C0

2
γ′

θV
2
a

)

(8c)

...
y =ω̈ = −

b

J
ω̇ −

k

J
θ̇ +

C0

2J

(

γ′

θ2VaV̇a + V 2
a γ′′

θ θ̇
)

, (8d)

where γ′′

θ = ∂2γ(θ)/∂θ2. Substituting V̇a in (8d) by that

given in (6), System (7) can then be put into the Brunovsky

canonical form in the new coordinates z1 = θ, z2 = θ̇, z3 = θ̈
via a diffeomorphic change of coordinates and a suitable

feedback control. That is

ż1 = z2

ż2 = z3

ż3 = v
y = z1 = θ

(9)

According to (7c) and (8d), the input v is of the form:

v =
...
θ =

C0

J
γ′

θVa

(

1

ρ + γθ

(

Vs − Va

RC0
− ωγ′

θVa

))

−
b

J
ω̇ −

k

J
θ̇ +

C0

2J
V 2

a γ′′

θ θ̇. (10)

After some further computations, the linearizing feedback

control Vs can be expressed as

Vs =
R

γ′

θVa

(ρ + γθ)
(

Jv + bθ̈ + kθ̇
)

+ Va

(

1 + RC0γ
′

θ θ̇ −
RC0γ

′′

θ θ̇ (ρ + γθ)

2γ′

θ

)

. (11)

It can be seen that the control give in (11) is singular when

Va = 0. This is due to the fact that System (7) is not

linearly controllable at this point, because the quadratic term

of the electrical variable in (7b), V 2
a , prevents the control

from influencing ω through the term linear in Va. In the

implementation an ad-hoc artifice for avoiding the singularity

is used, which consists in applying a small bias voltage

to keep the operational point away from the uncontrollable

point. As the deflection is not very sensitive to the applied

voltage near the zero-voltage position, this bias voltage will

not significantly affect the operational range of the device.

B. Closed-Loop Tracking Control

Closed-loop tracking control can be tackled through the

linearized system (9). Let yr(t) be the desired trajectory and

denote by e = y−yr the tracking error. In order to track yr,

it suffices to choose v as

v =
...
y r − k2 (z3 − ÿr)− k1 (z2 − ẏr)− k0 (z1 − yr) . (12)

Then the dynamics of the tracking error satisfy
...
e + k2ë + k1ė + k0e = 0, (13)

which is asymptotically stable at e = 0 provided s3 +k2s
2 +

k1s + k0 is a Hurwitz polynomial. This can be achieved by

appropriate choice of the gain of the tracking controller.

In practice, measurement of the angular velocity of the

deflection is not available. Due to computational power

limitation, simple angular velocity estimation is preferred

over complex observer algorithms. The reconstruction of

the angular velocity is then performed by the first order

backward difference

ωk =
θk − θk−1

Ts

, (14)

where Ts is the sample time. The closed-loop stability and

the performance of this control scheme will be verified

through numerical simulation and experimental test.

Fig. 3. Diagram of the closed-loop tracking control system.

Figure 3 shows the developed nonlinear tracking control

scheme. The input and output signals of every block are

indicated to illustrate the implementation procedure.
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IV. EXPERIMENTAL SETUP AND CHARACTERIZATION OF

THE MICROMIRROR

A. Description of the Experimental Setup

A schematic representation of the experimental setup is

shown in Fig. 4, which consists of an xPC Target-based

control unit, a National Instruments 12bits DAQ (6025E),

a high voltage (HV) amplifier (Apex PA97), an infrared

laser source (900nm wavelength), and a PSD (S1880 of

Hamamatsu). The electronic interfaces between the sensor,

the actuator, and the DAQ board are custom-made circuits.

During experimentation, the host controls and monitors the

execution on the target. The main properties of the actuation

system are listed in Table I. The value of the output resistance

R is provided by the manufacturer and the output capacitance

Cp is modeled by finding the time constant of a RC
circuit that would deliver the same slew rate specified by

the manufacturer. The acquisition of actuation voltage is

implemented by a voltage divider.

Fig. 4. Schematic representation of the experimental setup.

TABLE I

PARAMETERS OF THE PA97 AMPLIFIER.

Parameter Value

Supply voltage ±300 (V)

Input impedance, DC 1011 (Ω)

Gain-bandwidth product 1 (Mhz)

Control voltage swing ±20 (V)

Output current 10 (mA)

Slew rate 8 (V/µs)

Output resistance R 100 (Ω)

Output capacitance Cp 2.0 × 10−7 (F)

B. Device Characterization

The characteristic of the micromirror is resumed in Ta-

ble II. Geometrical parameters can be measured directly,

while determining those related to the system dynamics, such

as k, ωn, ζ, θPIN , and VPIN requires a more elaborated

procedure. The aforementioned experimental setup is used

for this purpose.

Figure 5 shows angular deflection of the micromirror to

step inputs measured with a 100Mhz oscilloscope. Note that

the rate of the applied voltage is limited by the slew rate of

the HV amplifier.

The theoretical pull-in angle can be computed from ([14]):

γ′(θ)|θ=θP IN
− θPINγ′′(θ)|θ=θP IN

= 0 (15)
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Fig. 5. Mirror response to step input: (a) tilt angles; (b) actuation signals.

TABLE II

PARAMETERS OF THE ELECTROSTATIC MICROMIRROR.

Parameter Value

Mirror width W 250 (µm)

Mirror length L 300 (µm)

Mirror comb length l 50 (µm)

Air gap d 12 (µm)

Damping ratio ζ 0.06

Natural frequency ωn 11 (KHz)

Stiffness coefficient k 2.1 10−7 (N/rad)

Contact angle θC 2.29◦

Maximal angle θmax 1.96◦

Pull-in angle θPIN 1.0◦

Pull in voltage VPIN 70.6V

Permittivity ε 8.85 × 10−12 (F/m)

using the capacitance model (2), resulting in θPIN = 1.01◦.

Note that this result agrees almost perfectly with the experi-

mental pull-in angle shown in Table II. However, due to the

dynamics of the electrical sub-system, open-loop control can

only achieve a safe operation until 0.75◦.

In order to obtain the value of the stiffness coefficient k,

the pull-in voltage VPIN is determined based on laboratory

tests. The value of k is computed by [14]

VPIN =

√

2kθPIN

C0γ′(θ)|θ=θP IN

. (16)

It is noted that the value of k must be particularly accurate

since the pull-in voltage is very sensitive to this parameter.

From (3) it can be seen that around the equilibrium points

the system behaves like a second order linear system. The

damping ratio ζ and the undamped natural frequency ωn can

be determined in a straightforward manner from open-loop

responses, using the well known relationships J = k/ω2
n and

b = 2Jζωn.

V. SIMULATION STUDY AND EXPERIMENTAL

VALIDATION

A. Simulation

The control law developed is firstly validated by means

of numerical simulations with Matlab/Simulink. In order to
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make the simulation as realistic as possible, the effect of

quantization and measurement noise was taken into account

with values similar to those used in practice. The angle

resolution and the voltage resolution were set to 1.2mdeg

and 0.2V, respectively. Uniformly distributed white noises

varying between ±10mdeg and ±2V, respectively, were

added to the outputs θ and Va.

The generation of set-point control reference trajectories

is based on the algorithm described in [8], which results in

a polynomial of the following form:

yr(t) = θ(ti) + (θ(tf ) − θ(ti))τ
5(t)

4
∑

i=0

aiτ
i(t), (17)

where θ(ti) is the initial tilt angle at time ti, θ(tf ) is the

desired tilt angle at time tf , and τ(t) � (t − ti)/(tf − ti).
The coefficients in (17) can be determined by imposing the

initial and final conditions

θ̇(ti) = θ̇(tf ) = θ̈(ti) = θ̈(tf ) = θ(3)(ti) = θ(3)(tf ) = 0,

which yields a0 = 126, a1 = −420, a2 = 540, a3 = −315,

and a4 = 70.

Figure 6(a) shows the output θ for different set-points

when a fixed-step solver cycling at 20µs is used. Note that

this is the sampling rate used in experimental test. It can be

seen that the developed controller makes the mirror angle

follow the reference trajectory flawlessly up to a deflection

of 1.4◦. The simulation results also show that to further

increase the amplitude of deflection, faster sampling rate

is required. This is mainly due to the fast dynamics of the

device. Figure 6(b) shows the corresponding control signals

Vs. To avoid the singularity at zero-voltage position, a small

bias voltage of 10V is applied, making the initial angle

unnoticeably greater than zero (see beginning of the curves in

Fig. 6(a)). Although quite smooth, it is seen that the control

signal shows some variations near the uncontrollable point.

B. Experimental Test

The designed control system has been validated using

the aforementioned experimental setup for both set-point

control and scanning control. Every parameter has been set

to the same as in numerical simulation. After some code

optimizations the execution cycle has been brought down to

20µs, which is crucial for achieving a good performance for

the system considered.

Figure 7(a) shows experimental results for different set-

points below the pull-in position. The transition time for

the reference was set to 20ms. It can be seen that the con-

troller makes the micromirror follow the reference trajectory

closely, hence delivering a satisfactory dynamic response.

Figure 7(b) shows the control signals corresponding to

different set-points. Similar to the simulation, the control

signals show some vibrations near the uncontrollable point

and are quite smooth elsewhere.

Figure 7(c) shows that stable operations beyond the pull-

in position have been achieved with the developed closed-

loop nonlinear control up to 1.4◦, which represents 70.1% of
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Fig. 6. Closed-loop control simulation: (a) reference trajectories and system
responses; (b) actuation signals.
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Fig. 7. Experimental test of the closed-loop set-point control: (a) system
responses for set-points below the pull-in position; (b) actuation signals for
set-points below the pull-in position; (c) system responses for set-points
beyond the pull-in position; (d) actuation signals for set-points beyond the
pull-in position.

the maximal deflection physically allowed by the structure

or 87% of augmentation of the stable operational range

compared to the open-loop control. It has been observed

that for set-points beyond 1.5◦, the system response becomes

oscillating. This is mainly due to the limitation of sampling

rate supported by our current setup. Therefore further im-

provements are still foreseen.

Despite the essentially satisfactory performance, there

exists a small steady-state error for set-points corresponding

to small and large deflections. The main reason for this is

that the controller is tuned around the pull-in position. It

is observed that the steady-state errors can be reduced by

adequate parameter adjustment, in particular the stiffness

coefficient which is assumed to be a constant in the model

(3). Therefore, for further performance improvement, one

should consider the use of more accurate models and control

algorithms less sensitive to parameter variations. Another

observation is the rather noisy system response for operations

beyond the pull-in position as the open-loop system is not

stable in this range. A great effort has been dedicated to

decrease such noise as much as possible, but it is an un-

avoidable burden that real systems have to bear. Furthermore,

stabilization beyond the pull-in position for the tested device
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cannot be achieved for sampling rates slower than 28µs.

Figure 8 shows scanning operations that go beyond and

below the pull-in position alternatively up to 1.3◦ with

periods of 25ms, 50ms, and 100ms. Once again tracking

controller exhibits a good performance managing the highly

nonlinear control signals needed to achieve the prescribed

trajectories. This confirms the versatility of the designed

controller. Note that, however, as there is no guarantee that

the control signal will be bounded away from 0, tracking

of a faster reference trajectory might lead the system to a

singularity.
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Fig. 8. Closed-loop scanning control beyond pull-in: (a) system responses,
(b) actuation signals.

Finally, it is worth noting that all the presented results

have been obtained using the same controller with the same

tuning, which indicates a satisfactory robustness.

VI. CONCLUSIONS

This work addressed the control of a micromirror in order

to obtain enhanced performance, in particular the capability

of operating beyond the pull-in position. For this aim, a

micromirror with short-circuit prevention mechanism has

been designed and fabricated. A model with the actuation

voltage as a state variable has been established which drasti-

cally simplified control system implementation. A nonlinear

tracking controller has been developed, which can support

diverse operations, such as set-point control and scanning

control. Experimental tests show that the developed system

can achieve a stable operation beyond the pull-in position and

deliver a satisfactory performance. However, it is observed

that to further improve the performance of the system, one

needs to tackle modelling errors and parametric variations

and to use more powerful real-time computational platform.

The experience of the present work confirms that consider-

ations on control system design and implementation have an

important impact on the design, the manufacturing process,

the ease of integration, the reliability, and the cost of MEMS.

Therefore this aspect must be taken into account at various

stages of MEMS development.
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