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Abstract— This paper addresses the problem of controlling
a single mobile robot to converge smoothly to a pre-specified
closed curve. Once in the curve, the robot remains circulating
along it. The main motivation for this is the control of
unmanned airplanes, where the robot cannot converge to a
single point. Our control law is based on an artificial vector
field that allows for the generalization to time-varying curves
defined in n-dimensional spaces. We also present results that
may be used to control mobile robots moving with constant
speed. We devise convergence proofs and present simulations
that verify the proposed approach.

I. INTRODUCTION

Artificial vector field based approaches have been exten-

sively used to control mobile robots in the execution of

different tasks. This is mainly due to the robustness of such

methods to localization and actuator errors, which allows

for real world applications. Given a domain, Ω ⊂ R
n, a

vector field, g : Ω → Tq(Ω), where Tq(Ω) is the tangent

space of Ω, is defined. The desired task is then accomplished

by enforcing the robots to use such vectors as velocity or

acceleration inputs.

A classical problem in the robotics literature is the problem

of driving a single robot from an initial configuration, q0,

to a final configuration, qf . In this case, the domain, Ω, is

the so-called robot’s configuration space. This problem was

solved by means of several artificial vector fields such as the

ones proposed in [1], [2] and [3].

Another important problem recently considered is the

problem of pattern generation. Different tasks such as,

surveillance, manipulation, and boundary monitoring can be

executed by using solutions of the pattern generation prob-

lem. Given a team of mobile robots, this problem consists

of controlling such a team to converge to and form a pre-

specified static geometrical pattern. In [4], [5], and [6], vector

fields are computed to solve this problem for static two-

dimensional patterns.

In [7], a dynamic vector field is computed to control a

team of mobile robots to converge to and circulate along

the boundary of a desired static two-dimensional geometric

pattern. The basic idea is that the vector field generates a

limit cycle which attracts the system. The vector field is

dynamic in the sense that it changes according to the robots
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Fig. 1. Example of curve and vector field.

relative positions. This is necessary to guarantee collision

avoidance. Other works such as [8], [9], [10], and [11] also

propose to generate limit cycles that attract the system.

In the present work we address the problem of controlling

a single robot, which may be a unmanned airplane, to

converge and circulate along a given curve. This is an

important problem in the case of monitoring or surveillance

tasks performed by a single unmanned airplane. Since only

one agent is considered, one could argue that this problem

seems to be simpler than the one addressed in [7]. However,

differently from previous works, we deal with the general

problem of time-varying boundaries in n-dimensional spaces.

This is interesting in the case of unmanned airplanes because

we can define dynamic curves in R
3. This extension was

possible due to the particular form of the construction of

the target curve: an intersection of level sets. The problem

of convergence is then translated to the problem of driving

a set of functions to zero. The problem statement is given

bellow:

Problem Statement 1 Let Γ be an curve (in this paper,

mainly closed) , which may be static or time-varying, defined

in a n-dimensional space. Compute a static or time-varying

vector field, h, such that its integral curves converge to and

circulate Γ.

Just to clarify the idea in Problem 1, we present in Figure 1

an example of a curve, Γ, in a two-dimensional space and

a vector field h that solves the problem. For simplicity

in the illustration, in this example both the curve and the

vector field are static. In the next section we present our

main mathematical result which solves the stated problem.
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In Section III we discuss some applications in robot con-

trol. Finally, we present our conclusions and discuss future

directions in Section IV.

II. METHODOLOGY

In this section we devise a mathematical result which will

be used later in robotic applications. As stated before, the

problem consists of creating a vector field in R
n that guides

the state variable to a curve that changes with time, and

maintains it circulating along such a curve in a given fixed

direction.

The method relies on our ability to find functions

αi(x1, x2, ..., xn, t) (i = 1, 2, 3, ..., n − 1) such that the

desired curve is obtained by the intersection of the level

sets {[x1, x2, ..., xn]T ∈ R
n|αi(x1, x2, ..., xn, t) = 0}. From

now on, the variable t will be a non-negative variable that

represents time. So, all the assumptions (such as differentia-

bility) are required to hold for (and only for) t ≥ 0. All the

vectors are column vectors unless mentioned otherwise, also,

∇q is defined to be the vector [ ∂
∂x1

∂
∂x2

... ∂
∂xn

]T , ∇α =

[ ∂
∂α1

∂
∂α2

... ∂
∂αn−1

]T and q = [x1(t) x2(t) ... xn(t)]T .

Now, we present some major definitions.

Definition 1 A time-varying set of points, C(t), of a dynam-

ical system q̇ = h(q, t) is said to be a repulsive set if there

exists a neighborhood N (C) such that for all q ∈ N we

have Ḋ > 0, where D is the distance between q and C.

Definition 2 Let vi (i = 1, 2, 3, ..., n− 1) n ≥ 2 be vectors

in R
n. The wedge product [12] ∧n−1

i=1 vi is the vector in R
n

such that the i−th element is given by the cofactor of n−th
row and i− th column of the matrix such that the i− th row

is given by the vector vi for i = 1, 2, 3, ..., n − 1 (the last

row is unnecessary, so it is left undefined).

The above definition may be seen as an extension of the

cross product in R
3 to R

n (the reader can note that if n = 3
we reduce to the usual cross product formula). The resulting

vector is orthogonal (i.e., the scalar product is null) to each

vi. The function is an alternating multilinear form, so, it is

linear in each argument and changes sign by swapping two

vectors (this comes directly from determinant properties). As

an implication of their properties, the vector is null whenever

two (or more) vectors are linearly dependent.

In this paper, if n = 3 we will write v1 × v2 instead of

∧2
i=1vi.

Definition 3 Let αi(x1, x2, ..., xn, t) : R
n+1 7→ R (i =

1, 2, 3, ..., n − 1) n ≥ 2 be differentiable functions in all

of their arguments. We denote here by M(α) the matrix in

R
n×n such that its i−th row is given by the vector ∇qαi for

i = 1, 2, ..., n − 1 and ∧n−1
i=1 ∇qαi in the n-th row. Also, we

denote here by a(α) the column vector such that the i − th
row is given by ∂αi

∂t
for i = 1, 2, ..., n − 1 and 0 in the

n − th row. Also, M∗(α) and a∗(α) are matrices obtained

from M(α) and a(α) respectively by removing the last row.

By the definition of M(α), we note that the matrix is

invertible if and only if the vectors ∇qαi , i = 1, 2, 3, ..., n−
1 are linearly independent.

Definition 4 We denote by C(t) the set {q ∈ R
n| ∧n−1

i=1

∇qαi = 0} (i.e., points such that ∇qαi are linearly depen-

dent) and D(t) = {q ∈ R
n|αi(q, t) = 0,∀i ≤ n − 1} (i.e.,

points that lie in the intersection of the level sets αi = 0).

Definition 5 We define four classes of functions:

• αi(x1, x2, ..., xn, t) : R
n+1 7→ R i = 1, 2, 3, ..., n − 1

and n ≥ 2 functions with continuous partial derivatives

and bounded second partial derivatives in all of their

arguments such that D(t) is a connected set.

• V : R
n−1 7→ R a negative definite function with con-

tinuous partial derivatives and bounded second partial

derivatives in all of its arguments such that its gradient

is null only in the origin.

• H(x1, x2, ..., xn, t) : R
n+1 7→ R a function that is

continuous in all its arguments such that it is not null

for all points of D(t).
• G(x1, x2, ..., xn, t) : R

n+1 7→ R a non-negative

function with bounded partial derivatives in all

its arguments, except maybe in points such that

∇qV = 0. Besides, it is only null, possibly

but not obligatory, in points such that ∇qV =
0. Furthermore, limq→D(t) G∇qV = 0 and both

limq→D(t) ∇qG‖∇qV ‖2 and limq→D(t)
∂G
∂t

‖∇qV ‖2

are bounded values.

At this point, it is important to remark that the definition

of the function G, which seems to be a little bit complex,

will be useful in the next section, when we will use the

methodology to solve a robotic guidance problem where a

constant value of ‖q̇‖ is desired.

We will use the following Lemma presented in [13] to

prove our main result:

Lemma 1 (“Lyapunov-Like Lemma”[13]) If a function

f(q, t) satisfies the following properties:

• f(q, t) is lower bounded

•
d
dt

f(q, t) is negative semidefinite

•
d
dt

f(q, t) is uniformly continuous (ensured if d2

dt2
f(q, t)

is bounded)

then limt→∞
df
dt

= 0.

Proof: This Lemma follows directly from the well-

known Barbalat’s Lemma [14]. The Barbalat’s Lemma states

that if a differentiable function w(t) has a finite limit as

t → ∞, and if ẇ(t) is uniformly continuous, then ẇ(t) → 0
as t → ∞.

The main result of this paper is summarized in the form

of the next Theorem.

Theorem 1 Consider the nonautonomous dynamical sys-

tem:

q̇(t) = G∇qV + H ∧n−1
i=1 ∇qαi − M(α)−1a(α) , (1)
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where V = V (α1, α2, ..., αn−1). Assume that the set C(t)
is a repulsive set, and that C(t) ∩ D(t) = ∅. Therefore,

the system is such that the state variable q asymptotically

converges to the set D(t) and maintains circulating along it

with a given fixed direction for any initial condition (t = 0)

q0 that is not in C(0). Moreover, q̇ is continuous.

Proof: We note that q̇ is continuous for any t because

of the differentiability of the involved functions, the fact

that limq→D(t) G∇qV = 0 (so, the possibly discontinuity

of G on D(t) is not a problem) and that, by hypothesis, the

points on the set C(t) are repulsive points (that guarantees the

existence of M(α)−1). For simplification, we will provide

the proof in two steps: first we will ensure that a given

function f satisfies Lemma 1 hypotheses, and second we

will use this result in the second step to ensure convergence

and circulation.

Step 1 f(q, t) = −V satisfies Lemma 1 hypotheses

The function f is positive definite (so, lower

bounded by 0). Developing the expression we note

that ∇qV T = ∇αV T M∗(α) which implies that df
dt

=
−∇αV T (M∗(α)q̇ + a∗(α)). Substituting the expression of

q̇ and using the fact that ∧n−1
i=1 ∇qαi is orthogonal to ∇qαi

for all the i’s (and so M∗(α)(∧n−1
i=1 ∇qαi) = 0) we have

that df
dt

= −∇αV T (GM∗(αi)∇qV −M∗(α)M(α)−1a(α)+
a∗(α)). Developing the expression, we note that

M∗(α)M(α)−1a(α) = a∗(α) and therefore finally we

have that df
dt

= −G∇αV T M∗(α)∇qV = −G‖∇qV ‖2,

which is negative semidefinite by the hypotheses on G and

∇qV .

We will not develop d2f
dt2

but, the reader may note that

it is bounded for any t since the points which causes

the term M(α)−1 to be unbounded are by hypothesis in

a repulsive set, the derivatives of the involved functions

exist, and the second partial derivatives that appear are

bounded by hypothesis. Furthermore, the problem caused

by the possible absence of bound of the partial derivatives

of G on D(t) is avoided by the two last hypotheses on

G concerning the existence of limits, since dG
dt
‖∇qV ‖2 =

(∇qG‖∇qV ‖2)T q̇ + ∂G
∂t

‖∇qV ‖2. Since the three require-

ments are satisfied, Lemma 1 ensures that df
dt

→ 0.

Step 2 The convergence and circulation is ensured

By the first step −G‖∇qV ‖2 approaches zero. That im-

plies that ∇qV T = ∇αV T M∗(α) or G approaches zero.

We will prove now that in order to this to happen, it is

necessary that q is on D(t). If it is the first case suppose

that there is any non null vector ∇αV T that nulls ∇qV T .

So, as the system is overdetermined for the variable ∇αV T

(we have n − 1 variables and n equations) that implies that

the vectors of the matrix M∗(α) are linearly dependent, and

this doesn’t happen since these points are in a repulsive set

by hypothesis. So, we conclude that ∇αV T is null, but this

implies that the αi’s (the function arguments) are all null for

i = 1, 2, 3, ..., n − 1, so we must be on D(t). If the latter ,

q must be on D(t) by the same argument since G is only

possibly null for points such that ∇qV = 0. Sufficiency that

−G‖∇qV ‖2 → 0 if either (or both) of the cases happen

comes from the fact that limq→D(t) G∇qV = 0 by hypoth-

esis on G, and that implies also that limq→D(t) G‖∇qV ‖2 =
0. So, asymptotical convergence to D(t) is ensured.

Once in D(t), we have only q̇ = −M(α)−1a(α)+H∧n−1
i=1

∇qαi, that implies that dV
dt

= 0 (which means that the point

continues in D(t)). First, it is necessary to note that q̇ is

never null in D(t). To see this, as ∧n−1
i=1 ∇qαi is non null in

D(t) (by the hypothesis C(t) ∩ D(t) = ∅) it is sufficient to

note that the term w = −M(α)−1a(α) obviously satisfies

M(α)w = −a(α), and the n− th row of this equation says

that w is orthogonal to ∧n−1
i=1 ∇qαi (therefore, the sum is

null only if both terms are null, which does not happen with

at least one of the terms). In fact, only the term ∧n−1
i=1 ∇qαi

is responsible to keep the state circulating along the curve,

and the term w is responsible for the instantaneous response

to the shape variation of the curve (so it continues going to

the set D(t) ).

The state circulates D(t) in the same direction (because

q̇ is continuous which implies that changing direction needs

first to become null, and this does not happen). The sign of

H on D(t) defines the motion direction.

Connectedness of D(t) is required so D(t) will be a single

well defined curve (instead of, for example, two disjoint

curves).

For n = 2, except for the last term that provides support

to time-varying boundaries, Equation (1) gives similar results

to those presented in [7] for a single robot.

It should be clear that if the boundary is static (set D(t)
is fixed in time), the term M(α)−1a(α) in (1) vanishes.

However, even if the set is not static, can we use the system

presented in Theorem 1 without this term and ensure that

it works? It turns out that this is possible in a particular

condition, as we show in the following Corollary.

Corollary 1 If

• limt→∞ ‖a‖ = 0 for any trajectory q(t)
• In the system obtained via (1), with term M−1a, the

set C(t) is repulsive

• In the system obtained via (1), without term M−1a,

the set of points such that ∇qV = 0 that is not on D(t)
is repulsive

then convergence and circulation is ensured to the system

without the term M−1a.

First consider the system with the term, so, we note that

‖M−1a‖ ≤ ‖M−1‖‖a‖ . We also note that ‖M−1‖ is

bounded since otherwise it would imply that q approaches

a point that makes M−1 be singular (linearly dependent

∇αi’s), which does not happen by hypothesis. As a result,

the term M−1a approaches to zero as time increases since

limt→∞ ‖a‖ = 0. Therefore, the system with the term

approaches the one without the term since the differing

term will be negligible with time (and the system without

it does not stop in the equilibrium points, i.e. points such
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that ∇qV = 0 which are not in D(t), by hypothesis). Thus,

as convergence is ensured to the system with the term, the

same applies to the system without it.

The term ∧n−1
i=1 ∇qαi maintains the point circulating the

curve.

Qualitatively, the hypothesis of the corollary means that

the curve varies slowly with time. Using this, −V is not

strictly decreasing, but −V goes to 0 as time goes to ∞ in

the same way.

In the next section we will use the obtained results in

robotic applications.

III. APPLICATIONS TO ROBOT CONTROL

In this section we will discuss some practical applications

of the main result in robot control. It is clear that the

majority of applications are those where n = 3 or n = 2.

Therefore, we will discuss only applications in three and two

dimensional environments. From now on, we consider that

our robot is a holonomic point robot with dynamics given

by

q̇(t) = u , (2)

where q(t) = [x1(t) x2(t) x3(t)]
T and u is the control

input.

The basic idea is that the right-hand side of Equation (1)

gives us a vector field h(q, t) which solves Problem 1.

Therefore, we use:

u = h(q, t) (3)

as our control law.

Next, we will illustrate the methodology with some exam-

ples.

A. Static Boundaries

At first, we consider time fixed boundaries on R
3. In this

case, the last term of Equation (1) vanishes. The hypothesis

concerning the set C(t) can be then relaxed. First, the

constraint that the points where ∧n−1
i=1 ∇qαi = 0 lie on a

repulsive set are due to the fact that the matrix M(α) must

be invertible. Since a(α) vanishes in time fixed boundaries,

this is no longer necessary.

But one can note that now the points such that ∇qV =
∑n−1

i=1
∂V
∂αi

∇qαi = 0 out of D are also equilibria points of

the system (1): when ∇qV vanishes, then ∧n−1
i=1 ∇qαi = 0.

To see that, we note that ∇qV =
∑n−1

i=1
∂V
∂αi

∇qαi = 0

vanishing out of D implies that at least one of the ∂V
∂αi

is

non null (by hypothesis on V ). This implies that the vectors

∇qαi are linearly dependent, so ∧n−1
i=1 ∇qαi vanishes. Then

we need C to be a unstable set. For an autonomous dynamical

system this is equivalent to say that those points are unstable

points of equilibria.

A desired property in some robotic tasks is to have

constant speed, so the vector field must have a constant norm.

Provided that the target set D is static this is always possible.

We then need to choose G and H such that ‖q̇‖ is constant

(say, unity).

To this end, choose G = J/‖∇qV ‖, with J(x1, x2, ..., t)
such that 0 ≤ J ≤ 1, J is differentiable in all its arguments
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Fig. 2. Convergence to the target curve with the initial condition x1(0) =
0.1, x2(0) = 0.1 and x3(0) = 0.1.
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Fig. 3. Plot of −V versus time for Figure 2: as t → ∞ −V (and so α1

and α2 ) goes to 0.

and limq→D(t) G = 0 (one can see, by developing the

expressions for ∇qG and ∂G
∂t

, that this ensures that the

three limit constraints on G are achieved). Choose also

H =
√

1 − J2/‖ ∧n−1
i=1 ∇qαi‖. Now, it is clear that the

points where ∧n−1
i=1 ∇qαi vanishes give us discontinuities in

the vector field. So, one must ensure that these points (that

in general are not equilibria points of the system (1)) lie on

a repulsive set. Then, one can easily check that the norm is

equal to one (by the orthogonality of the vectors ∇qV and

∧n−1
i=1 ∇qαi) and that q̇ is continuous since both ∇qV and

∧n−1
i=1 ∇qαi vanishing points are in a repulsive set. The choice

of G above justifies the troublesome G requirements: note

that G, as defined, is not differentiable in D(t), in general,

since ‖∇qV ‖ is null in this set.

To illustrate the methodology, we will create a three-

dimensional limit cycle to the curve parameterized as

[x1(τ) x2(τ) x3(τ)]T = [cos(τ) sin(2τ) − sin(τ)]T

for 0 ≤ τ ≤ 2π. This is a closed curve and seen from above

on the x1x2 plane it forms an eight shape. One can note that

this curve is the intersection of the surfaces:

α1(x1, x2, x3, t) =
1

2
(x2

1 + x2
3 − 1) = 0 , (4)

α2(x1, x2, x3, t) = (x2
1 + x2

3)(2x1x3 + x2) = 0. (5)

2015



Therefore, we have

∇qα1 = [x1 0 x3]
T , (6)

∇qα2 =





6x2
1x3 + 2x3

3 + 2x1x2

x2
1 + x2

3

6x2
3x1 + 2x3

1 + 2x3x2



 , (7)

∇qα1 ×∇qα2 =





−x3(x
2
1 + x2

3)
2(x4

3 − x4
1)

x1(x
2
1 + x2

3)



 . (8)

We can verify that ∇qα1×∇qα2 is only null if x1 = x3 =
0. We choose V = − 1

2 (α2
1 + α2

2) and J = ‖∇qV ‖2/(1 +
‖∇qV ‖2), then clearly all the conditions on G holds.

To show that the set C (set of points such that x1 = x3 = 0
) is repulsive, we use the fact that if D(x1, x2, x3) is the

Euclidean distance between q and the set C (x1 = x3 = 0)

then D2 = 2α1 +1. So, dD2

dt
= 2dα1

dt
= 2G( ∂V

∂α1

‖∇qα1‖2 +
∂V
∂α2

∇qαT
1 ∇qα2). If we perform a second order Taylor

expansion on ∂V
∂α1

‖∇qα1‖2 + ∂V
∂α2

∇qαT
1 ∇qα2 near x1 =

x3 = 0 we obtain (x2
1 + x2

3)/2. Since G is positive by

hypothesis, then near C dD2

dt
> 0. Thus, the set is repulsive.

Figure 2 shows the simulation for the initial condition

x1(0) = x2(0) = x3(0) = 0.1. Figure 3 plots −V versus

time, so one can check that in fact −V → 0.

B. Time-Varying Boundaries

A simple example of application of Theorem 1 with time-

varying boundaries is to guide a robot so it can stays in a

circle of radius R parallel to the plane x1x2 with a moving

center given by q̃(t) = [x̃1(t) x̃2(t) x̃3(t)]
T (we suppose

that q̃(t) is differentiable). In real world applications, this

moving center could represent a moving target or intruder

that could be, for example, an enemy robot. We assumed

above that these two robots are point robots, but in real world

applications this assumption may not be valid. So, one could

claim that the robots could collide to each other. However,

we will show that we can use our approach in such a way

that such collisions will be avoided. Assume that the robots

can be modeled as spheres with radius Rrobot and Rtarget,

so, we necessarily have R > Rrobot + Rtarget (one should

choose R with an certain safe margin).

We choose, strategically, that

α1(x1, x2, x3, t) =
1

2
((x1 − x̃1)

2 + (x2 − x̃2)
2 (9)

−R2) , (10)

α2(x1, x2, x3, t) = x3 − x̃3. (11)

The set D(t) is clearly a circle parallel to the plane x1x2

(x3 = 0) , radius R and center q̃. Consider in addition that
∂V
∂α1

> 0 for α1 < 0.

Thus, we have that ∇qα1 = [x1 − x̃1 x2 − x̃2 0]T and

∇qα2 = [0 0 1]T . Therefore, the gradients are orthogonal.

The set C(t) is given by the line with x1 = x̃1(t) and x2 =
x̃2(t) for all x3. We suppose that the initial condition q0 is

not in the cylinder (x1−x̃1(0))2+(x2−x̃2(0))2 ≤ (Rtarget+
Rrobot)

2 (therefore, not in C(0) ).
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Fig. 4. Convergence to the target curve with the initial condition x1(0) =
x2(0) = x3(0) = 0.
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To show that C(t) is a repulsive set, we use again the fact

that if D(x1, x2, x3, t) is the Euclidean distance from q(t) to

C(t), then D2 = 2α1 + R2. We proceed developing dD2

dt
=

d
dt

(

2α1 + R2
)

= 2∇qαT
1 (q̇ − ˙̃q) = 2(G ∂V

∂α1

‖∇qα1‖2 −
∇qαT

1 M(α)−1a(α)−∇qαT
1

˙̃q) (using the fact that ∇qα1 is

orthogonal to ∇qα2 and ∇qα1 ×∇qα2 ).

Now, as w = M(α)−1a(α) satisfies the equation

M(α)w = a(α) for all the points that are not in C(t)
(otherwise the matrix M(α)−1 does not exist), we have that

∇qαT
1 w = ∂α1

∂t
= −∇qαT

1
˙̃q. So, dD2

dt
= 2G ∂V

∂α1

‖∇qα1‖2.

If the point is at a distance smaller than R from C(t),
α1 < 0 and D2 grows (by the hypothesis on ∂V

∂α1

). Therefore,

C(t) is a repulsive set. Since the initial condition is not in

the cylinder described above, the collision of the two robots

will never occur. If, for any value of t, the robot approaches

very near to the cylinder boundary, an evasive maneuver is

necessary.

Figure 4 shows a simulation with x̃1(t) = x̃2(t) =
x̃3(t) = 0.2t − 3 , initial condition q0 = 0, V = − 1

2 (α2
1 +

α2
2), G = J/‖∇qV ‖ , J = ‖∇qV ‖2/(1 + ‖∇qV ‖2) ,

H =
√

1 − J2/‖∇qα1 ×∇qα2‖ and R = 1. Figure 5 plots

−V versus time, so one can check that in fact −V → 0.

Our last example is an illustration of Corollary 1: a time-

varying boundary without the term M(α)−1a(α). The target

curve is

α1(x1, x2, t) =
1

2
(x2

1 + x2
2 −

√

0.22 + t). (12)
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Fig. 6. Convergence to the target curve with the initial condition x1(0) =
x2(0) = 0.1.
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Fig. 7. Plot of −V versus time for Figure 7: as t → ∞ −V (and so α1)

goes to 0.

We use V = − 1
2α2

1, G = J/‖∇qV ‖ , J = ‖∇qV ‖2/(1+

‖∇qV ‖2) and H =
√

1 − J2/‖ ∧1
i=1 ∇qα1‖. The set C(t)

is the same set of points such that ∇qV = 0 and not in

D(t) : x1 = x2 = 0 , which can be shown to be repulsive in

both systems (with and without the term M(α)−1a(α)) in

an analogous way to the others using the time derivative of

the square of the Euclidean distance D(x1, x2)
2 = x2

1 + x2
2.

Since

lim
t→∞

‖a‖ = lim
t→∞

1

2
√

0.22 + t
= 0 (13)

for all q, the Corollary can be used. Figure 6 shows a

simulation with x1(0) = x2(0) = 0.1. Figure 7 plots −V
versus time, so one can check that in fact −V → 0, but note

that in this case −V is not strictly decreasing.

IV. CONCLUSIONS AND FUTURE WORK

We propose a vector field based controller that generates

an attractive limit cycle to the system. Our vector field is

defined in a n-dimensional space and may be time-varying.

Therefore, we present a solution to the general problem of

driving a single kinematically controlled robot to converge

to and circulate along a time-varying boundary in a n-

dimensional space. The main motivation for our work is the

control of unmanned airplanes and we present simulations

of curves in three-dimensional spaces. We also present some

derivations that allow for robots with constant speed. In the

case of static boundaries it is always possible to use constant

speed. We also present a condition in which even in the

dynamic case we can have constant speed.

Our approach relies on the computation of functions that

are equal to zero exactly at the desired shape and also attend

some further constraints. An important future direction is an

automatic strategy to compute such functions.

Future work includes the use of the proposed approach to

control an actual unmanned airplane. This would require the

consideration of the airplane dynamics and also trajectories

with bounded curvature. It would be also interesting to

extend this work to consider obstacles. We would then be

able to control robots in generic free configuration spaces.

We also intend to extend the proposed approach to devise de-

centralized controllers for swarms of unmanned airplanes. In

this case we need to include inter-agent collision avoidance

strategies such as in [7].
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