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Abstract— This paper studies the problem of fault-tolerant
control (FTC) for a class of uncertain nonlinear systems which
cannot be feedback linearized. These systems are unknown in
their nonlinearities and subject to both lock-in-place and loss of
effectiveness actuator faults. A novel fault-tolerant control ap-
proach is proposed by embedding adaptive fuzzy approximators
into the backstepping design procedure. The designed controller
can guarantee that all signals of the closed-loop system are
uniformly ultimately bounded and the output tracking error
converges to a small neighborhood of zero though there are
uncertainties and actuator faults in the considered system.
Simulation experiment is conducted and the simulation results
demonstrate the effectiveness of the proposed control approach.

I. INTRODUCTION

The design of fault tolerant control (FTC) is very important
for safety and reliability of modern engineering systems. Since
unexpected actuator faults may cause undesired system behavior
and sometimes lead to system instability or even catastrophic
accidents, it is necessary to develop control approaches that can
deal with such faults during operation. So far, remarkable progresses
have been made in controlling systems with actuator faults, and the
developed approaches can be broadly classified as passive ones or
active ones [1].

Active fault-tolerant control has been widely used since it can
obtain better control performance compared with passive ones. As
an effective active fault-tolerant control method, adaptive control
has attracted much attention in recent years to accommodate
unexpected actuator faults. For linear systems, [2] studies adap-
tive actuator failure compensation with redundant structure, [1]
and [3]-[5] developed adaptive fault-tolerant control against loss
of effectiveness of actuator in the framework of linear matrix
inequality (LMI) approach; for nonlinear systems, [6]-[9] presented
several adaptive methods to deal with unknown faults with filter or
observer for fault detection and diagnosis (FDD), [10] presented
a general framework for constructing automated fault diagnosis
and accommodation architectures using on-line approximators and
adaptive schemes, and [11]-[18] gave some adaptive neural network
fault-tolerant control approaches. However, in the above mentioned
works for nonlinear systems, FDD mechanism is needed for fault
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accommodation. The drawback of such designs is that if there
are false alarms or omitted alarms of some faults from the FDD
mechanism, the fault-tolerant control may fail. [2] also provides
adaptive actuator failure compensation without the help of FDD
for feedback linearizable and parametric-strict-feedback nonlinear
systems, but further FTC researches are still demanded for more
general nonlinear systems to accommodate more types of actuator
faults without FDD.

Since adaptive fuzzy systems were proved to be universal ap-
proximators [19], and stable adaptive fuzzy control was developed
for feedback linearizable systems in [20], many researchers have
been interested in studying uncertain nonlinear systems with the
help of fuzzy logic approximation. In recent years, adaptive fuzzy
control for unknown nonlinear systems gets further development
since it has been successfully used to control nonlinear systems
which cannot be linearized by incorporating backstepping design
procedure, see [21]-[26]. But there are still few works on adaptive
fuzzy control for nonlinear systems to accommodate actuator faults
as far as we know.

In this paper, an adaptive fuzzy fault-tolerant controller is de-
signed for unknown nonlinear systems which cannot be feedback
linearized. The designed controller can tolerate both loss of effec-
tiveness and lock-in-place faults of the actuators under redundant
actuation structure. In the backstepping design procedure, adaptive
fuzzy systems are employed to approximate the unknown parts
of the virtue or the real controllers in each step. The controller
is obtained in the last step with fault-tolerant strategy based on
some matching conditions. Though the parameters in the matching
conditions are unknown and may change their values because the
influence of faults, proper adaptive laws can be designed to estimate
them on-line. The proposed controller can guarantee all signals of
the closed-loop system uniformly ultimately bounded and the output
tracking error converge to a small neighborhood of zero though
there are uncertainties and actuator faults in the controlled system.
So this paper develops an FTC scheme without FDD mechanism for
structurally unknown nonlinear systems which cannot be feedback
linearized to accommodate both loss of effectiveness and lock-in-
place actuator faults.

This paper is organized as follows. The problem formulation
and preliminaries are presented in Section II. Then, a systematic
backstepping procedure for synthesis of the adaptive fuzzy fault-
tolerant controller and the stability analysis are given in Section III.
In Section IV, a simulation example demonstrates the effectiveness
of the proposed scheme. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following nonlinear system with m actuators:

ẋi = fi(x̄i)+gi(x̄i)xi+1 1 ≤ i ≤ n−1

ẋn = fn(x̄n)+ ḡT
n (x̄n)u n ≥ 2

y = x1

(1)

where xi i = 1, · · · ,n are the state variables, x̄i = [x1,x2, · · · ,xi]
T ∈

Ri, u = [u1,u2, · · · ,um]T ∈ Rm is the input vector whose compo-
nents may fail during the operation, y ∈ R is the system output,
ḡn(x̄n) = [gn1(x̄n),gn2,(x̄n), · · · ,gnm(x̄n)]

T ∈ Rm, fi, gi, fn and gn j

for i = 1, · · · ,n−1, j = 1, · · · ,m are unknown continuous nonlinear
functions, gi, gn j are smooth. The state variable xi is measurable,
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the reference output ym and its up to nth order derivatives are
bounded. The actuator faults considered in this paper are lock-in-
place (stuck at some unknown place) and loss of effectiveness which
are modeled as follows respectively.

Lock-in-place fault:

u j(t) = ū j t ≥ t j, j ∈ { j1, j2 · · · , jp} ⊂ {1,2, · · · ,m} (2)

where ū j is the constant value where the jth actuator is stuck at, t j

is the time instant at which the jth lock-in-place fault fault occurs.
Loss of effectiveness fault:

ui(t) = ρivi(t) t ≥ ti i ∈ { j1, j2, · · · , jp}
⋂

{1,2, · · · ,m}

ρi ∈ [ρ
i
,1], 0 < ρ

i
≤ 1

(3)

where vi(t) is the applied control input, and ti is the time when ith
loss of effectiveness fault takes place. ρi is the effective proportion
of the actuator after loss of effectiveness, ρ

i
is the lower bound

of ρi. When ρ
i

is 1, the corresponding actuator is normal (that is

completely effective). So, taking the actuator faults (2) and (3) into
account, the input vector u(t) can be written as

u(t) = ρv(t)+σ(ū−ρv(t)) (4)

where v(t) = [v1(t),v2(t), · · · ,vm(t)]T , ū = [ū1, ū2, · · · , ūm]T , and

ρ = diag{ρ1,ρ2, · · · ,ρm}
σ = diag{σ1,σ2, · · · ,σm}

σ j =

{

1 i f the jth actuator f ails as (2) i.e., u j = ū j

0 otherwise

(5)

The control objective of this paper is to design a state feedback
control law for system (1) to ensure that all signals in the closed-
loop system are bounded and the output y(t) tracks the given
reference signal ym(t) as closely as possible though there are
unknown actuator faults (2) and (3). For the control purpose, it
is required that at least one actuator is not locked as (2), however,
it can lose effectiveness as (3) only if ρi ≥ ρ

i
. Of course there

can be more actuators effective partly or completely. In order to
accomplish the control task, the following assumptions are needed.

Assumption 1: The system (1) is so constructed that for any up
to m− 1 actuators fail as (2) and the effective proportions of the
other actuators meet ρi ∈ [ρ

i
,1], the resulted system can still be

forced to track the given reference signal closely.
The fault-tolerant control scheme for system (1) with faults (2)

and (3) will be developed with the help of the solution to the
nominal plant:

ẋi = fi(x̄i)+gi(x̄i)xi+1 1 ≤ i ≤ n−1
ẋn = fn(x̄n)+gn(x̄n)u0 n ≥ 2
y = x1

(6)

where gn(x̄n) is a smooth unknown nonlinear function.
Assumption 2: There exit some constants gi0 > 0 and gi1 > 0

such that gi0 ≤ |gi(·)| ≤ gi1, ∀x̄i ∈ Ωi ⊂ Ri, i = 1,2, · · · ,n. The
functions g1(·), g2(·), · · · ,gn−1(·) are the same as the ones in
system (1), and gn(·) is defined in the nominal plant (6). Ωi is
a sufficient large compact set in Ri where x̄i is included.

Assumption 3: There exit constants gid > 0 such that |ġi(·)| ≤
gid , i = 1,2, · · · ,n.

From Assumption 2 it can be seen that the smooth functions gi(·)
are strictly either positive or negative. Without loss of generality,
we think that gi(·) ≥ gi0, ∀x̄i ∈ Ωi ⊂ Ri, i = 1,2, · · · ,n. And based
on Assumption 1, when all but one actuator have been stuck
at zero, that is, u j = ū j = 0, j = 1,2, · · · , i − 1, i + 1, · · · ,m, the
resulted system can still match the nominal plant (6), thus, it can
be concluded that

gni(x̄n)ui = gn(x̄n)u0 (7)

This implies that there exit constants κ∗
1 j such that κ∗

1 jgn j(x̄n) =
gn(x̄n), j = 1,2, · · · ,m. We do not know the value of κ∗

1 j, but

the sign of each κ∗
1 j is needed for the design of stable parameter

adaptive laws.

Assumption 4: The sign of the constant κ∗
1 j which is represented

by sign[κ∗
1 j] is known with j ∈ {1,2, · · · ,m}.

The designed control scheme employs fuzzy logic systems to
approximate the unknown nonlinear functions in the control design
for it had been proved that fuzzy logic systems are universal
approximators in [19]. So the approximation property of fuzzy logic
systems should be presented before giving the detailed controller
design procedure.

Lemma 1: For any given real continuous function F(x), on a
compact set Ω⊂Rn, there exits a fuzzy logic system Y (x) = θ T ξ (x)
such that ∀ε > 0,

∣

∣

∣
F(x)−θ T ξ (x)

∣

∣

∣
< ε (8)

where θ = (θ1,θ2, · · · ,θM)T is the estimate parameter vector,
and ξ (x) = (ξ1(x),ξ2(x), · · · ,ξM(x))T is the vector of fuzzy basis
functions, M is the number of fuzzy rules.

Define the optimal parameter vector θ∗ as:

θ∗ = arg min
θ∈Rn

{sup
x∈Ω

∣

∣

∣
F(x)−θ T ξ (x)

∣

∣

∣
} (9)

which makes the fuzzy logic system θ T ξ (x) approximate the
unknown function F(x) closest.

III. CONTROLLER SYNTHESIS AND ANALYSIS

In this section, the fault-tolerant controller will be synthesized
in detail. With the solution to the nominal plant, the controller
structure can be constructed as

v(t) = ρ−1d∗
1u0 +ρ−1d∗

2 (10)

where d∗
1 ∈ Rm and d∗

2 ∈ Rm are the controller parameter vectors
which are meet some matching conditions for fault-tolerant control.
Suppose that the lock-in-place faults (2) only occur at time instant
tk, k = 1,2, · · · ,q, and t0 < t1 < · · · < tq. Up to tk, there are p (
0 ≤ p ≤ m−1) actuators being locked in some unknown places. In
other words, during the time interval (tk, tk+1), k = 0,1, · · · ,q, with
t0 = 0 and tq+1 = ∞, there are p control signals u j1 , · · · ,u jp

cannot
be available for the controlled system, furthermore, additional
disturbances ū j1 , · · · , ū jp

are introduced into the system. Meanwhile

the other actuators may lose their effectiveness, that is u j(t) = ρ jv j,
j 6= j1, j2, · · · , jp, as long as ρ j ∈ [ρ

j
,1]. From the expression (4)

and (10), one can get

ḡT
n u = ḡT

n (ρv+σ(ū−ρv))
= ḡT

n ρ(I −σ)ρ−1d∗
1u0 + ḡT

n ρ(I −σ)ρ−1d∗
2 + ḡT

n σ ū

= ḡT
n (I −σ)d∗

1u0 + ḡT
n (I −σ)d∗

2 + ḡT
n σ ū

(11)

If the considered system (1) can match the nominal plant (6) in any
case of the faults which are allowed by Assumption 1, the following
equations can be deduced.

ḡT
n (I −σ)d∗

1 = ∑
j 6= j1··· jp

d∗
1 jgn j = ∑

j 6= j1··· jp

d∗
1 j

κ∗
1 j

gn = gn (12)

ḡT
n (I −σ)d∗

2 + ḡT
n σ ū = ∑

j 6= j1··· jp

d∗
2 jgn j + ∑

j= j1··· jp

ū jgn j

= ∑
j 6= j1··· jp

d∗
2 j

κ∗
1 j

gn+ ∑
j= j1··· jp

ū j

κ∗
1 j

gn = 0

(13)
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Then the matching conditions for the controller parameters d∗
1 j and

d∗
2 j for j ∈ {1,2, · · · ,m} are needed.

∑
j 6= j1··· jp

d∗
1 j

κ∗
1 j

= 1 (14)

∑
j 6= j1··· jp

d∗
2 j

κ∗
1 j

+ ∑
j= j1··· jp

ū j

κ∗
1 j

= 0 (15)

The choice of d∗
1 j and d∗

2 j for j = j1, j2, · · · , jp is irrelevant to the

closed-loop system, and may be chosen as d∗
1 j = 0, d∗

2 j = 0 for

j ∈ { j| j = j1, j2, · · · , jp}
⋂

{1,2, · · · ,m}.

Now through a backstepping procedure, the adaptive fuzzy
control law for system (1) can be derived step by step to tolerate
both faults (2) and (3).

Step 1: Let x1d = ym, e1 = x1 − x1d , we have

ė1 = f1(x1)+g1(x1)x2 − ẋ1d

= g1(x1)[g
−1
1 (x1) f1(x1)+ x2 −g−1

1 (x1)ẋ1d ]
(16)

The ideal virtual controller x∗2d is

x∗2d = −g−1
1 (x1) f1(x1)+g−1

1 (x1)ẋ1d − k1e1 (17)

with k1 > 0 being a constant. Take (17) into (16) we can get ė1 =
−g1(x1)k1e1, and there is a Lyapunov function V1 = 1

2 e2
1 that V̇1 =

−g1(x1)k1e2
1 ≤−g10k1e2

1 ≤ 0. This shows that e1 is asymptotically
stable. Unfortunately, we can not get x∗2d because the nonlinear
functions f1(x1) and g1(x1) are unknown. A fuzzy logic system is
used to approximate the unknown part of (17), then the estimate of
the virtual control is obtained as

x2d = α1(x1 | θ1) = θ T
1 ξ1(x1)− k1e1 (18)

Let e2 = x2 − x2d , and rewritten (16) as

ė1 = f1(x1)+g1(x1)[e2 +(x2d − x∗2d)+ x∗2d ]− ẋ1d

= g1(x1)e2 +g1(x1)θ̃
T
1 ξ1(x1)−g1(x1)k1e1 +g1(x1)w1

(19)

where θ̃1 = θ1 − θ∗
1 and w1 is the minimal approximation error

defined as

w1 = α1(x1 | θ∗
1 )− x∗2d

= θ∗T
1 ξ1(x1)+g−1

1 (x1) f1(x1)−g−1
1 (x1)ẋ1d

(20)

where α1(x1 | θ∗
1 ) = θ∗T

1 ξ1(x1)−k1e1. From Lemma 1, there exits
a constant ε1 such that |w1| < ε1. Then consider Lyapuov function
candidate

V1 =
1

2g1(x1)
e2

1 +
1

2γ1
θ̃ T

1 θ̃1 (21)

and choose parameter updating law as

θ̇1 = −γ1(ξ1(x1)e1 + r1θ1) (22)

γ1 > 0, r1 > 0 are design constants. One can get that

V̇1 = 1
g1(x1)

e1ė1 −
ġ1(x1)
2g2

1(x1)
e2

1 + 1
γ1

θ̃ T
1 θ̇1

= e1e2 − k1e2
1 + e1w1 −

ġ1(x1)
2g2

1(x1)
e2

1 + θ̃ T
1 (ξ1(x1)e1 + 1

γ1
θ̇1)

= e1e2 − (k10 +
ġ1(x1)

2g2
1(x1)

)e2
1 − k11e2

1 + e1w1 − r1θ̃ T
1 θ1

≤ e1e2 − k∗10e2
1 +

ε2
1

4k11
− r1

2 θ̃ T
1 θ̃1 + r1

2 θ∗
1

T θ∗
1

(23)

where ˙̃θ1 = θ̇1, e1w1 − k11e2
1 ≤ |e1w1| − k11e2

1 ≤
ε2

1

4k11
and

−r1θ̃ T
1 θ1 = −r1θ̃ T

1 (θ̃1 + θ∗
1 ) ≤ − r1

2 θ̃ T
1 θ̃1 + r1

2 θ∗
1

T θ∗
1 are consid-

ered, k1 = k10 + k11 with k11 > 0 and k∗10 = k10 −
g1d

2g2
10

> 0.

Step i (2 ≤ i ≤ n− 1): The ith step is to make ei = xi − xid as
small as possible with x(i+1)d . Conduct the similar procedure, we
can get the virtual control law and parameter updating law.

x(i+1)d = αi(x̄i|θi) = θ T
i ξi(x̄i)− ei−1 − kiei (24)

θ̇i = −γi(ξi(x̄i)ei + riθi) (25)

γi > 0, ri > 0. Let ei+1 = xi+1−x(i+1)d and choose Lyapuov function
candidate

Vi = Vi−1 +
1

2gi(x̄i)
e2

i +
1

2γi
θ̃ T

i θ̃i (26)

The following expression can be obtained.

V̇i ≤ eiei+1 −
i

∑
l=1

k∗l0e2
l +

i

∑
l=1

ε2
l

4kl1
−

i

∑
l=1

rl

2
θ̃ T

l θ̃l +
i

∑
l=1

rl

2
θ∗

l
T θ∗

l

(27)

ki = ki0 + ki1 with ki1 > 0 and ki0 −
gid

2g2
i0

= k∗i0 > 0.

Step n: The controller structure (10) cannot be applied because
d∗

1 , d∗
2 and ρ j are all unknown. There might be a great challenge

to estimate d∗
i (i = 1,2) and ρ j ( j = 1,2, · · · ,m) together since they

are multiplied to each other. Let ρ−1d∗
1 = β ∗

1 and ρ−1d∗
2 = β ∗

2 , the
applied control input vector is taken as

v(t) = β1u0 +β2 (28)

with β1 and β2 being the estimate values of β ∗
1 and β ∗

2 respectively.
Since there are p actuators stuck at some unknown places in
(tk, tk+1), that is, u j(t) = ū j , j = j1, j2, · · · , jp, 1 ≤ p ≤ m−1, and
the others may lose effectiveness or be normal.

Take the derivative of en = xn − xnd , one can get

ėn = fn(x̄n)+ ḡT
n (x̄n)[ρv+σ(ū−ρv)]− ẋnd

= fn(x̄n)+ ḡT
n (x̄n)ρ(I −σ)β1u0 + ḡT

n (x̄n)ρ(I −σ)β2

+ ḡT
n (x̄n)σ ū− ẋnd

= fn(x̄n)+ ∑
j 6= j1··· jp

ρ jgn j(x̄n)β1 ju0 + ∑
j 6= j1··· jp

ρ jgn j(x̄n)β2 j

+ ∑
j= j1··· jp

gn j ū j − ẋnd

= fn(x̄n)+gn(x̄n)u0 − ẋnd + ∑
j 6= j1··· jp

ρ j β̃1 j

κ∗
1 j

gn(x̄n)u0

+ ∑
j 6= j1··· jp

ρ j β̃2 j

κ∗
1 j

gn(x̄n)

(29)

where β̃1 = β1 −β ∗
1 and β̃2 = β2 −β ∗

2 are the parameter estimate
errors.

Then the ideal control law can be obtained as

u∗0 = −g−1
n (x̄n) fn(x̄n)+g−1

n (x̄n)ẋnd − en−1 − knen (30)

However, u∗0 cannot be applied, so a adaptive fuzzy system is used
to approximate the unknown part of u∗0, and the real control law is
designed as

u0 = αn(x̄n|θn) = θ T
n ξn(x̄n)− en−1 − knen (31)

The parameter updating law is chosen as

θ̇n = −γn(ξn(x̄n)en + rnθn) (32)

where γn > 0, rn > 0. And the adaptive laws for the controller
parameters β1 and β2 are established as

β̇1 j = −sign[κ∗
1 j]

1
τ1 j

u0en −
1

τ1 j
q1 jβ1 j,

β̇2 j = −sign[κ∗
1 j]

1
τ2 j

en −
1

τ2 j
q2 jβ2 j, j = 1,2, · · · ,m

(33)

τi j > 0 and qi j > 0 for i = 1,2 and j = 1,2, · · · ,m. Then the main
results can be summarized in the following theorem.
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Theorem 1: The proposed control scheme which is constructed
by the control structure (28), the control law (31), the adaptive laws
(32) and (33), together with the virtual control variables (18) and
(24) whose parameters are updated by (22) and (25) respectively,
can guarantee the system (1) the following properties though there
are unknown nonlinearities and actuator faults.

1) all signals in the closed-loop system remain bounded for
bounded initial conditions;

2)The output tracking error e = y(t) − ym(t) converges to a
small neighborhood of zero by choosing the design parameters
appropriately.

Proof: Taking the control law (31) into account, we can rewrite
ėn as

ėn = gn(x̄n)(−en−1 − knen +wn + θ̃ T
n ξnx̄n

+ ∑
j 6= j1··· jp

β̃1 j

κ∗
1 j

u0 + ∑
j 6= j1··· jp

β̃2 j

κ∗
1 j

) (34)

with the minimal approximation error wn being defined as

wn = αn(x̄n | θ∗
n )−u∗0

= θ∗T
n ξn(x̄n)+g−1

n (x̄n) fn(x̄n)−g−1
n (x̄n)ẋnd

(35)

Consider the Lyapunov function candidate of the nth step as

V = Vn = Vn−1 + 1
2gn(x̄n)

e2
n + 1

2γn
θ̃ T

n θ̃n + ∑
j 6= j1··· jp

ρ j

2|κ∗
1 j |

τ1 jβ̃
2
1 j

+ ∑
j 6= j1··· jp

ρ j

2|κ∗
1 j |

τ2 jβ̃
2
2 j

(36)

Take we can get

V̇ = V̇n−1 + 1
gn(x̄n)

enėn +
ġn(x̄n)
2g2

n(x̄n)
e2

n + 1
γn

θ̃ T
n θ̇n+

∑
j 6= j1··· jp

ρ j

|κ∗
1 j |

τ1 jβ̃1 jβ̇1 j + ∑
j 6= j1··· jp

1
|κ∗

1 j |
τ2 jβ̃2 jβ̇2 j

≤−
n−1

∑
i=1

k∗i0e2
i +

n−1

∑
i=1

ε2
i

4ki1
+ en−1en −

n−1

∑
i=1

ri

2 θ̃ T
i θ̃i

+
n−1

∑
i=1

ri

2 θ∗
i

T θ∗
i − en−1en − kne2

n + enwn + θ̃ T
n ξn(x̄n)en

+ ∑
j 6= j1··· jp

β̃1 j

κ∗
1 j

u0en + ∑
j 6= j1··· jp

β̃2 j

κ∗
1 j

en + gnd

2g2
n0

e2
n + 1

γn
θ̃ T

n θ̇n

+ ∑
j 6= j1··· jp

ρ j

|κ∗
1 j |

τ1 jβ̃1 jβ̇1 j + ∑
j 6= j1··· jp

ρ j

|κ∗
1 j |

τ2 jβ̃2 jβ̇2 j

≤−
n

∑
i=1

k∗i0e2
i +

n

∑
i=1

ε2
i

4ki1
−

n

∑
i=1

ri

2 θ̃ T
i θ̃i +

n

∑
i=1

ri

2 θ∗
i

T θ∗
i

− ∑
j 6= j1··· jp

ρ jq1 j

2|κ∗
1 j |

β̃ 2
1 j + ∑

j 6= j1··· jp

ρ jq1 j

2|κ∗
1 j |

β ∗
1 j

2

− ∑
j 6= j1··· jp

ρ jq2 j

2|κ∗
1 j |

β̃ 2
2 j + ∑

j 6= j1··· jp

ρ jq2 j

2|κ∗
1 j |

β ∗
2 j

2

(37)

where kn = kn0 + kn1 with kn1 > 0 and k∗n0 = kn0 −
gnd

2g2
n0

> 0, (32),

(33) and (34) have been taken into account.
For any given µ > 0, choose parameters such that k∗i0 > µ

2gi0
,

ri > µ
γi

, q1 j > µτ1 j and q2 j > µτ2 j , i = 1,2, · · · ,n, j = 1,2, · · · ,m,

we have

V̇ ≤−
n

∑
i=1

µ( 1
2gn0

e2
i + 1

2γi
θ̃ T

i θ̃i + ∑
j 6= j1··· jp

ρ j

2|κ∗
1 j |

τ1 jβ̃
2
1 j

+ ∑
j 6= j1··· jp

ρ j

2|κ∗
1 j |

τ2 jβ̃
2
2 j)+δ

≤−µV +δ

(38)

with δ =
n

∑
i=1

ε2
i

4ki1
+

n

∑
i=1

ri

2 θ∗
i

T θ∗
i +

m

∑
j=1

µq1 j

2|κ∗
1 j |

β ∗
1 j

2 +
m

∑
=1

µq2 j

2|κ∗
1 j |

β ∗
2 j

2. It

follows that

V ≤ (V (0)−
δ

µ
)e−µt +

δ

µ
(39)

So, it can be obtained V ≤ max(V (0), δ
µ ), δ is a finite constant

from its definition. Therefore, if V (0) is bounded, the signals

ei, θ̃i, β̃1 j and β̃2 j are all bounded and belong to the compact

set Ω = {(ei, θ̃i, β̃1 j, β̃2 j)|V ≤ max(V (0), δ
µ )}. Furthermore, it is

obvious that θi, β1 j and β2 j are bounded, which implies xid and u0

are bounded, thus xi and v(t) can be concluded bounded.

Besides, it can be obtained from (39) that lim
t→∞

V = δ
µ , and for

any given small positive constant ε , one can appropriately choose

µ , ki, ri, q1 j and q2 j such that lim
t→∞

V = δ
µ ≤ ε It is obvious that

lim
t→∞

e2
1 ≤ 2g1(x1) lim

t→∞
V1 ≤ 2g1(x1) lim

t→∞
V ≤ 2g1(x1)ε

From Assumption 2, there exists a constant g11 such that g1(x1) ≤
g11. So the output tracking error e1 satisfies

lim
t→∞

|e1| ≤
√

2g11ε (40)

Therefore, if ε is chosen small enough, e1 will converge to a
neighborhood which is very close to zero.

So far, we have showed that during the time interval (tk, tk+1),
the results in Theorem 1 are ensured. At t = tk+1, some actuators are
stuck. This will cause a new pair of parameters (d∗

1 j,d
∗
2 j) for j ∈

{ j| j 6= j1, j2, · · · , jp}
⋂

{1,2, · · · ,m} to match the conditions (14)
and (15), consequently, β1 j and β2 j will be adapted to estimate

new β ∗
1 j and β ∗

2 j, then the estimate errors β̃1 j and β̃2 j will have a

sudden jump, which will cause a finite change of V . However, from
the above analysis, V (t−

k+1) is bounded if V (t+
k

) is bounded. After a

finite change, the value of V at (t+
k+1) is still bounded, which implies

that the control task can be achieved in (tk+1, tk+2). Thus in turn,
the closed-loop stability and the convergence of the tracking error
to a small neighborhood of zero can be realized in (0,+∞) as long
as V (0) is chosen bounded though there are lock-in-place actuator
faults. Similar analysis can be made for loss of effectiveness faults
and the same results can be obtained. Then results in Theorem 1
are ensured. This completes the proof.
Remark 1: Using backstepping design procedure, adaptive fuzzy
approach is introduced to deal with actuator faults in nonlinear
systems with unknown structures. So the fault tolerant control
technique in [2] for nonlinear systems can be applicable to more
general systems. This development is obviously important because
most real physical systems are nonlinear and uncertain in their
structures. Furthermore, the fault set which can be tolerated has
been enlarged to one that contains both lock-in-place and loss of
effectiveness of actuators.

Remark 2: Because we do not use the inverse of ĝi(x̄i) =
θ T

giξgi(x̄i) to construct the control law as some existing adaptive

fuzzy control approaches did, the singularity problem of the de-
signed controller is avoided effectively.

IV. SIMULATION EXAMPLE

An example is given to show the effectiveness of the proposed
fault-tolerant control scheme in this paper. The considered system
is

ẋ1 = f1(x1)+g1(x1)x2

ẋ2 = f2(x̄2)+g21(x̄2)u1 +g22(x̄2)u2

y = x1

(41)

where x1 and x2 are states, y is the output of the system. The non-
linear functions of (41) for simulation are: f1(x1) = 0.5x1, f2(x̄2) =
x1x2, g1(x1) = (1 + 0.1x2

1), g21(x̄2) = (2 + cos(x1)), g22(x̄2) = 6 +
3sin(x1)). The initial conditions are chosen as x(0) = [1,0]T and
the reference signal is ym(t) = sin(t).

Selecting fuzzy membership functions as µF1
i
(xi) = 1/(1 +

exp(5(xi +2))), µF2
i
(xi) = exp(−(xi +1.5)2), µF3

i
(xi) = exp(−(xi +

0.5)2), µF4
i
(xi) = exp(−0.5x2

i ), µF5
i
(xi) = exp(−(xi − 0.5)2),

µF6
i
(xi) = exp(−(xi − 1.5)2), µF7

i
(xi) = 1/(1 + exp(−5(xi − 2))).
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Design the adaptive fuzzy controller by the procedure presented
above with the parameters k1 = 8, k2 = 10, γi = 0.2, ri = 0.05,
β1 j(0) = 0.7, β2 j(0) = 0, τi j = 0.01, qi j = 0.001 for i = 1,2 and
j = 1,2. The initial parameters of the fuzzy approximate systems
are θ1 = 07×1 and θ2 = 01×49. The actuator faults introduced for
simulation are u2(t) = 2 when t ≥ 4, and u1(t) = 0.4v1(t) for t ≥ 10.
Figures 1-3 show the simulation results of applying the proposed
control scheme to system (41) for tracking the reference signal
ym(t). We can see that all the closed-loop signals are bounded
and good tracking performance is obtained though the nonlinear
system functions and the actuator fault information are all unknown.
In order to emphasize the fault-tolerant capability of the control
scheme, we also plot the output tracking curve of x1 to the reference
sinal ym without fault-tolerant control strategy in Figure 4. It can
be seen from Figure 4 that the controlled system becomes unstable
after the first considered actuator fault, but in Figure 1, the output
tracks the reference signal smoothly and closely after both the
considered faults.
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V. CONCLUSION

In this paper, a novel fault-tolerant control approach based on
the combination of adaptive fuzzy approximation and backstepping
design procedure is proposed for structural unknown nonlinear
system with redundant actuators. Each actuator may be stuck at
some place or lose its effectiveness as long as the resulted system
can still be driven to get the desired control performance. The
designed control scheme can guarantee that all signals of the closed-
loop system uniformly ultimately bounded and the tracking error
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Fig. 3. The curves of u: u1 (solid); u2 (dash)
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Fig. 4. The curves of x1 (dash) and ym (solid) without fault-tolerant control
strategy

between the system output and the reference signal converge to an
arbitrarily small neighborhood of zero, though the nonlinearities of
the controlled system and the information of the occurred faults are
all unknown. Besides, the controller singularity problem is avoided
perfectly. The results of simulation example show the effectiveness
of the control scheme.
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