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Abstract— Lead and lag compensators are commonly used for
classical loop shaping and as weighting functions for automated
controller synthesis algorithms. The existing formulas for these
compensators provide the capability of selecting phase at the
frequency of maximum phase lead such that the phase peak
or notch is symmetrical on the Bode plot phase chart. This
paper develops easy-to-use formulas for lead compensators for
choosing the phase at a frequency that is either before, or
after the frequency of the maximum phase. For second order
compensators, formulas are also provided to specify the degree
of asymmetry of the phase peak. Combining these formulas
leads to a method for choosing the phase at the frequency of
maximum phase for an asymmetric phase peak. An application
to a robust controller design problem is shown.

I. INTRODUCTION

Lead and lag compensators are commonly used for clas-

sical loop shaping (see e.g. [1], [2] ) and as weighting

functions for automated controller synthesis algorithms [3].

The existing formulas for these compensators provide the

capability of selecting the maximum phase lead and the

frequency of maximum phase lead such that the phase peak

or notch is symmetrical on the Bode plot phase chart [4].

However it is sometimes desirable in classical loop shap-

ing to provide a specific phase with a lead or lag compensator

at a frequency that does not correspond to the frequency of

maximum phase lead or phase lag [4]. In other instances,

it may be desirable that the phase peak itself not be sym-

metric. When the phase peak is not symmtric, the associated

magnitude response is also altered, and these changes may

be desirable for creating weighting functions for automated

controller techniques.

This paper is organized as follows. Section II develops

easy-to-use formulas for first and second order lead and

lag compensators to specify the phase at a compensation

frequency that is not the frequency of maximum phase lead

or lag. The formulas retain the symmetry of the phase peak or

notch on the Bode phase chart. Section III extends formulas

for second order lead and lag compensators where the phase

peak or notch is asymmetric by using different damping

ratios for poles and zeros. The phase lead or lag is specified at

a compensation frequency that is not generally the frequency

of maximum phase or lag. This section also develops a

technique to choose both the frequency of maximum phase

lead or lag and the phase at that frequency, even though the

phase peak is asymmetric. Section IV illustrates the effects of

some of the features of these compensators for loop shaping.

Section V shows an application of the new asymmetric lead
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compensator for robust controller design. Section VI contains

concluding remarks.

II. SPECIFYING PHASE AT ANY FREQUENCY

A. Lead compensator background

The form of a first order phase lead compensator is

C(s) =
s+ z

s+ p
. (1)

Convenient formulas for specifying the parameters z and p

are

z = ωm

1− sin(φm)

cos(φm)
(2)

p = ωm
1+ sin(φm)

cos(φm)
, (3)

where ωm is the frequency of maximum phase lead and φm

is the phase at that frequency.

Second order lead compensators have the form

C(s) =
s2 + 2ζωzs+ ω2

z

s2 + 2ζωps+ ω2
p

(4)

where

ωz = ωm

(

−ζ tan(φm)+
√

ζ 2 tan(φm)2 + 1

)

ωp = ωm

(

ζ tan(φm)+
√

ζ 2 tan(φm)2 + 1

)

. (5)

ωm is the frequency of maximum phase, and 2φm is the phase

at that frequency. The parameter ζ is the damping ratio which

can be greater than, equal to, or less than one. Figure 1 shows

examples of the a first order compenstor and second order

lead compensators with ωm = 10 and maximum phase lead

90◦. The damping ratios are ζ = 0.5, 1, and 1.8. Note how

flat the phase response is for ζ = 0.8.

B. Phase contributions of second order zeros and poles

The phase contribution of the zeros of (4) at s = jωm is

given by

φz
△
= arg

(

−ω2
m + 2 jζωzωm + ω2

z

)

. (6)

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThC16.2

978-1-4244-4524-0/09/$25.00 ©2009 AACC 3769



−20

−10

0

10

20
M

a
g

n
it

u
d

e
 (

d
B

)

10
−1

10
0

10
1

10
2

10
3

0

30

60

90

P
h

a
s

e
 (

d
e

g
)

 

 

Bode Diagram

Frequency  (rad/sec)

1st order

2nd order ζ = 0.5

2nd order ζ = 1.0

2nd order ζ = 1.8

Fig. 1. First and second lead compensators with peak phase lead of 90◦

atωm = 10. Damping ratios for second order compenstorsζ = 0.5, 1, and
1.8.

By taking the tangent of this angle we can determine the

value phase contribution of the zero.

tan(φz) =
2ζωzωm

ω2
z −ω2

m

=
2ζω2

m(−ζ tan(φm)+
√

ζ 2 tan(φm)2 + 1)

ω2
m(−ζ tan(φm)+

√

ζ 2 tan(φm)2 + 1)2 −ω2
m

=
2ζ (−ζ tan(φm)+

√

ζ 2 tan(φm)2 + 1)

2ζ 2 tan(φm)2 + 2ζ tan(φm)
√

ζ 2 tan(φm)2 + 1

=
−1

tan(φm)
= tan(φm + 90◦). (7)

Thus the contribution of the zeros at s = jωm is φm +90◦. A

similar derivation shows that that the phase contribution of

the poles at s = jωm is

φp
△
= − arg

(

−ω2
m + 2 jζωpωm + ω2

p

)

= φm −90◦. (8)

C. Phase contributions of first order zeros and poles

In the special case where ζ = 1, the zeros and the poles

are real. The compensator (4) has the form of a double lead

compensator.

C(s) =
s2 + 2ζωzs+ ω2

z

s2 + 2ζωps+ ω2
p

=
(s+ z)2

(s+ p)2
(9)

where z and p are given by (2) and (3) respectively.

Each real zero contributes half of the total contribution

of the zeros, and each pole contributes half of the total

contribution for the poles. Thus the contribution of the zero

of a single lead compensator is
φm

2
+ 45◦, and contribution

of the pole is
φm

2
−45◦.

D. Formulas for first order compensators

The contributions of the zero and pole of a first order lead

compensator can be used to specify the phase contribution

away from the phase peak using the following variations of

(2) and (3).

z = ωc
1− sin(φc − δ )

cos(φc − δ )
(10)

and

p = ωc
1+ sin(φc + δ )

cos(φc + δ )
, (11)

where ωc is the compensation frequency, and |δ |< 90◦−|φc|.

At s = jωc the contribution of the zero will be
φc−δ

2
+ 45◦,

and the contribution of the pole will be
φc+δ

2
− 45◦. Thus,

the total contribution to the phase at s = jωc will be φc.

Note that the frequency of maximum phase lead (lag) ω m

relates to ωc as

ωm

{

> ωc f or δ > 0

< ωc f or δ < 0.
(12)

Figure 2 shows an example where ωc = 10, φc = 60◦, and

δ = 20◦, and the gain has been normalized to 1 at ωc.

E. Formulas for second order compensators

The same trick applied for first order compensators can

be applied to second order compensators as well. Define

ωz = ωc

(

−ζ tan(φc − δ )+
√

ζ 2 tan(φc − δ )2 + 1

)

ωp = ωc

(

ζ tan(φc + δ )+
√

ζ 2 tan(φc − δ )2 + 1

)

(13)

where |δ | < 90◦−|φc|. For the compensator of the form (4)

the phase contribution of the zeros and poles at s = jω c will

be φc − δ + 90◦ and φc + δ −90◦ respectively, and the total

phase contribution will be 2φc.

Figure 2 shows examples of the second order lead com-

pensators with ωc = 10, 2φc = 90◦, and ζ = 0.5, 1, 1.8, and

δ = 30◦. The gain at ωc = 10 has been normalized to unity.
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Bode Diagram

Frequency  (rad/sec)

1st order δ = 20

2nd order ζ = 0.5 δ = 30

2nd order ζ = 1.0 δ = 30

2nd order ζ = 1.8 δ = 30

Fig. 2. First and second order lead compensators providing 60◦ at ωc = 10,
which is not the frequency of the maximum phase.
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III. ASYMMETRIC PHASE COMPENSATORS

A. Distinct Damping Ratios

Equations (7) and (8) imply that the phase contribution

of the zeros and the poles at s = jωc depend only on the

the value of φc and not on the damping ratio ζ . Therefore,

one can choose different damping ratios, ζ z �= ζp, for the

numerator and denominator of

C(s) =
s2 + 2ζzωzs+ ω2

z

s2 + 2ζpωps+ ω2
p

(14)

where

ωz = ωc

(

−ζz tan(φc − δ )+
√

ζ 2
z tan(φc − δ )2 + 1

)

ωp = ωc

(

ζp tan(φc + δ )+
√

ζ 2
p tan(φc − δ )2 + 1

)

.(15)

The phase contribution of the zeros at s = jωc does not

depend on ζz, and therefore will be φc − δ + 90◦. Likewise,

the phase contribution of the poles at s = jωc will be φc +
δ −90◦, and the total contribution will be 2φc. However, the

phase plot will no longer be symmetric about the frequency

of maximum phase ωm. Also, when δ = 0, the relation

between the ωc and the maximum phase will be

ωm

{

> ωc f or ζp > ζz

< ωc f or ζp < ζz.
(16)

Figure 3 shows a comparison of a first order lead com-

pensator, a double lead compensator, and two where the

damping ratio of the poles is different from the zeros. All

provide 60◦ of phase at ωc = 10 with unity gain at ωc. The

peaks of the two compensators with unequal damping ratios

are not symmetric. Also note that how the asymmetric lead

compensator with ζz = 0.7, ζp = 5.0, and δ = 44.4◦ exhibits

both lag as well as lead characteristics.

−20

−10

0

10

20

30

M
a

g
n

it
u

d
e

 (
d

B
)

10
−1

10
0

10
1

10
2

10
3

−45

0

45

90

P
h

a
s

e
 (

d
e

g
)

 

 

Bode Diagram

Frequency  (rad/sec)

1st order δ = 0

ζ
z
 = 0.7, ζ

p
 = 2.0 δ = 0

ζ
z
 = 1.0, ζ

p
 = 1.0, δ = 0

ζ
z
 = 0.7, ζ

p
 = 5.0, δ = 44.4

Fig. 3. First order lead compensator, double lead compensator, and two
asymmetric lead compensators providing 60◦ of phase at ωc = 10 with unity
gain at ωc. The δ of the asymmetric lead with δ = 44.4◦ was chosen to
make ωm = ωc for that compensator.

B. Asymmetric compensators with peak at ωc

It is possible to manipulate the frequency of maximum

phase ωm for a given ζz and ζp by choosing δ . In particular

it is possible to choose δ such that ωm = ωc. Selection of

the appropriate δ can be done manually or by automatically

by a bisection search as follows.

1) Choose φc > 0, ωc, ζz, and ζp and a tolerance ε > 0.

2) Initialize δstep = (90◦−|φc|) and δ = 0

3) Let δstep = 1
2
δstep

4) Determine frequency of maximum phase lead ω m for

the compensator defined by (15) for the given δ .

5) If ωm > ωc + ε , let δ = δ − δstep and go to Step 3.

6) If ωm < ωc − ε , let δ = δ + δstep and go to Step 3.

7) If ωc − ε < ωm < ωc + ε , stop.

The δ of the asymmetric lead with δ = 44.4◦ in Figure 3

was chosen to make ωm = ωc by this method. The algorithm

converged to |ωm −ωc| < ε = 0.0001◦ in less than 10 steps.

IV. LOOP SHAPING EFFECTS

To providea a simple illustration of the potential utility

of these new compensator structures, they are applied to

proportional-lead compensation of a double integrator with

a design specification of 60◦ of phase margin at ω = 10.

The phase margin of 60◦ ensures that the open-loop 0 dB

crossover, sensitivity function crossover, and the comple-

mentary sensitivity function crossover all occur at the same

frequency.

Figure 4 shows five open-loop frequency responses of the

compensated double integrator with different lead compen-

sators. The asymmetric lead compensator exhibits the highest

low frequency gain and good high frequency gain drop-off,

but has relatively shallow slope near the 0 dB crossover. The

standard first order lead exhibits the smallest low frequency

gain, but has good high frequency gain drop-off.
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Open−Loop Response

Frequency  (rad/sec)

1st order δ = 0

1st order δ = 20

ζ
z
 = 1.0 ζ

p
 = 1.0 δ = 0

ζ
z
 = 1.0 ζ

p
 = 1.0 δ = 30

ζ
z
 = 0.7 ζ

p
 = 5.0 δ = 44.4

Fig. 4. Open-loop frequency response of the double integrator with five
different lead compensators.

Figures 5 and 6 show the five corresponding sensitivity

function magnitude responses. The asymmetric lead compen-

sator with δ = 44.4◦ exhibits the best disturbance rejection

at the low frequencies by at least 6 dB, but the lowest mid
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Sensitivity Function

Frequency  (rad/sec)

1st order δ = 0

1st order δ = 20

ζ
z
 = 1.0 ζ

p
 = 1.0 δ = 0

ζ
z
 = 1.0 ζ

p
 = 1.0 δ = 30

ζ
z
 = 0.7 ζ

p
 = 5.0 δ = 44.4

Fig. 5. Magnitude response of the sensitivity functions.

frequency rejection. The second order lead with ζ z = ζp = 1

and δ = 30 has the best mid frequency disturbance rejection

and extremely low peaking above the 0 dB crossover.
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Sensitivity Function

Frequency  (rad/sec)

1st order δ = 0

1st order δ = 20

ζ
z
 = 1.0 ζ

p
 = 1.0 δ = 0

ζ
z
 = 1.0 ζ

p
 = 1.0 δ = 30

ζ
z
 = 0.7 ζ

p
 = 5.0 δ = 44.4

Fig. 6. Close-up of magnitude response of the sensitivity functions.

V. APPLICATION TO ROBUST CONTROL DESIGN

The Robust Bode plot (RBode plot) was developed in [6]

and [7]. It allows enables controllers to be designed for robust

performance even when the weighting functions are not the

magnitude responses of realizable transfer functions.

For this example we consider robust controller design for

a nominal system represented with transfer function

Pnom(s) =
7×104

s2 + 593s+ 4.4×104
. (17)

Figure 7 shows the frequency response of the nominal model

The actual model is represented by the multiplicative

uncertainty

P(s) = Pnom(s)(1+ ∆(s)). (18)

The function ∆(s) is a stable transfer function bounded by

the uncertainty weighting Wu(ω) ≥ 0.

|∆( jω)| ≤Wu(ω) (19)
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Fig. 7. Frequency response of the nominal model of the plant.

for all ω ≥ 0. Figure 8 shows Wu(ω). The uncertainty is low

below 1000 rad/sec. The large peak between 3000 and 3500

rad/sec is the frequency range in which a lightly damped

resonance can occur. Note that Wu(ω) is not the magnitude

response of a realizable transfer function in this case. Figure

7 shows the frequency response of the nominal model
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Bode Diagram

Frequency  (rad/sec)

W
u
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s

Fig. 8. The uncertainty weighting function Wu(ω) and the sensitivity
weighting function Ws(ω).

The performance objective is that

S(s)
△
=

1

1+ P(s)C(s)
(20)

satisfies

|S( jω)| ≤W−1
s (ω) (21)

for all ω . Figure 8 shows the sensitivity weighting function

as a function of frequency, which is clearly not the magnitude

of a realizable transfer function.

A necessary and sufficient condition for robust perfor-

mance [8] is that

|Ws(ω)Snom( jω)|+ |Wu(ω)Tnom( jω)| < 1 (22)

for all ω where T (s)
△
= P(s)C(s)

1+P(s)C(s) . The RBode plot translates

this criterion into allowable and forbidden regions on the

open-loop Bode plot. If there are any intersections between

the open-loop response and the forbidden regions, then the
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robust performance criterion is not satisfied. Figure 9 shows

the RBode plot for the system with no compensation. Clearly

robust performance is not achieved
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Nominal model

Fig. 9. RBode plot for open-loop response with no compenation.

The procedure for designing a robust controller with the

RBode plot is to address low frequency intersections first.

Design proceeds by iteratively modifying the compensators

as intersections are eliminated at the lower frequencies and

new ones appear at higher frequencies. Intersections can

either be addressed on the magnitude chart or on the phase

chart. If an intersection is eliminated on one chart, it is

automatically eliminated on the other.

Figure 10 shows the RBode plot afer applying the PI

compensator CPI = 16 s+100
s

. The low frequency intersections

are eliminated, but two more appear at higher frequencies.
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Fig. 10. RBode plot for open-loop response with PI compenation.

The next iteration attempts to address intersections be-

tween 900 and 1600 rad/sec by simultaneously lifting the

phase over forbidden region on the magnitude plot using lead

compensation and tucking the magnitude response under the

forbidden region on the magnitude response. The phase must

rise about 30 degrees to avoid the forbidden region on the

phase plot.

Figure 11 shows the frequency response of an asymmetric

lead compenator where ωc = 1800 rad/sec, φc = 40◦, ζz =
0.7, ζp = 3, and δ = −49◦. Note that the compensator

exhibits lag properties at lower frequencies even though

φc > 0 at ωc. Alternatively, the compensator with these

parameters has the form of an asymmetric notch, where the

phase is not zero at the frequency of the notch.
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Fig. 11. Frequency response for asymmetric lead compenator where ωc =
1800 rad/sec, φc = 40◦ , ζz = 0.7, ζp = 3, and δ = −49◦.

Figure 12 shows the RBode plot with PI compensation,

asymmetric lead compensation, and gain adjustment. Only

an intersection between 3000 and 3500 rad/sec.
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Fig. 12. RBode plot for the open loop with PI and asymmetric lead
compensation.
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For the final intersection, we apply a phase adjustable

notch [9]. Figure 13 shows the frequency response of a phase

adjustable with ωnotch = 3233 rad/sec, a notch depth of 120

dB, φnotch = 45◦, and ζp = 0.26 for the damping ratio of the

poles of the compensator.
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Fig. 13. Frequency response of a phase adjustable notch with ωnotch = 3233
rad/sec, a notch depth of 120 dB, φnotch = 45◦ , and ζp = 0.26.

Figure 14 shows the RBode plot after the application of

the phase adjustable notch. All intersections with forbidden

regions have been eliminated. The final compensator is

C(s) = 85
(s+ 100)(s2 + 645.6s+ 2.127×105)

s(s+ 2891)
×

(s2 + 0.001891s+ 1.045×107)

(s+ 91.46)(s2 + 2280s+×107)
, (23)

which is only 5th order. Figure 15 shows the plot of

|Ws(ω)S( jω)|+ |Wu(ω)T ( jω)| confirming that robust per-

formance is achieved.
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Fig. 14. RBode plot after phase adjustable notch compensation. All
intersection have been eliminated.
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Fig. 15. Plot |Ws(ω)S( jω)|+ |Wu(ω)T( jω)| confirming robust perfor-
mance has been achieved.

VI. CONCLUSIONS AND FUTURE WORK

This paper developed new formulas for lead and lag

compensators that allow the design engineer to specify the

phase lead or lag at frequencies other than the frequency

of maximum phase lead or lag. Formulas for lead and lag

compensators where the phase peak or phase notch is not

symmetric were also presented. An algorithm was presented

for ensuring that the maximum phase lead or lag occurs at the

specified compensation frequency, even when the phase peak

is not symmetric. A proportional lead compensator design

provided a simple illustration of some of the properties of

these compensators. The paper also showed an application to

a robust performance controller design problem employing

the RBode plot. It is believed that these formulas will be

very useful to practioners of who use loop shaping.
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