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Abstract— In this paper, we treat the fundamental problem
of state estimation for a class of linear impulsive systems with
time-driven impulsive effects. We show that a strong observabil-
ity property enables an impulsive observer to be constructed
that yields uniformly exponentially stable estimation error
dynamics. This approach accommodates impulsive systems with
arbitrarily-spaced impulse times and singular state transition
matrices in a manner reminiscent of well-known results for
time-varying discrete-time linear systems. As an example, an
observer is constructed for an impulsive system that produces
general cubic spline signals.

I. INTRODUCTION

Impulsive systems evolve according to continuous-time

dynamics and are also subject to impulsive effects governed

by discrete-time dynamics that yield instantaneous changes.

These impulsive effects may occur at prescribed time instants

and/or be triggered by specified events along a particular

trajectory. In this paper, we focus on state estimation for

linear impulsive systems with time-driven impulsive effects

specified by a set of impulse times. The main contribution

is an observer construction for such systems that satisfy a

strong observability property.

It has been shown by several researchers that state estima-

tion and filtering for continuous-time linear systems with dis-

crete [1], [10], mixed continuous-discrete [7], or multirate [9]

measurements leads naturally to observers with an impulsive

structure. Moreover, it has been shown that filter/observer

gains that yield optimal estimation performance (with respect

to various optimality criteria) are derived from differential

Riccati equations with jumps. More general measurement

schemes considered in [8] yield observers and Riccati equa-

tions described by differential equations over distributions.

Here we consider systems with impulsive dynamics as well

as discrete-time measurements which potentially results in a

singular state transition matrix. We also accommodate im-

pulsive systems with arbitrarily-spaced impulse times. These

system characteristics significantly complicate the compu-

tation of observer gains that yield uniformly exponentially

stable error dynamics. Our approach is inspired by the work

of Anderson and Moore in [6] for time-varying discrete-time

linear systems with singular state transition matrices.

The remainder of the paper is organized as follows. In

Section II, the class of linear impulsive systems is specified

for which stability and observability properties are charac-

terized that underpin the ensuing analysis. In Section III,
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an impulsive observer construction is derived that achieves

uniformly exponentially stable error dynamics. In Section IV,

this scheme is applied to an impulsive system that produces

general cubic spline signals. Concluding remarks are offered

in Section V.

II. PRELIMINARIES

We consider linear impulsive systems described by

ẋ(t) = ACx(t) + BCu(t) t ∈ R \ T

x(τk) = AIx(τ−
k ) + EIw[k] τk ∈ T (1)

y[k] = CIx(τ−
k )

where T is a countably infinite set of strictly increasing

impulse times assumed to contain a finite number of elements

on any finite time interval, x(t) is the continuous-time state

that undergoes instantaneous changes at the impulse times,

u(t) is a continuous-time input, w[k] is a discrete-time input,

and y[k] is a discrete-time measurement. The state space for

(1) is denoted by X .

Given an initial time t0 and final time tf > t0, for

notational simplicity we denote the subset of impulse times

T ∩ (t0, tf ) by {τ1, τ2, . . . , τk}. We then define δ0 = τ1− t0
δi = τi+1 − τi for i = 1, . . . , k − 1, and δk = tf − τk. In

terms of this, the state transition matrix of (1) is given by

Φ(tf , t0) = eACδkAIeACδk−1AI · · ·AIeACδ1AIeACδ0 (2)

The state transition matrix is invertible for all tf > t0 if

and only if AI is invertible. In this case, Φ(t0, tf ) can be

defined via Φ(t0, tf ) = Φ−1(tf , t0). The state response of

(1) on [τk, τk+1) given x(t0) = x0 can be compactly written

as

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)BCu(τ) dτ

+

k
∑

j=1

Φ(t, τj)BIw[j]

In the remainder of the paper, we focus on the construction

of an impulsive observer of the form

˙̂x(t) = ACx̂(t) + BCu(t) t ∈ R \ T

x̂(τk) = AI x̂(τ−
k ) + EIw[k] (3)

+ LI [k]
(

CI x̂(τ−
k ) − y[k]

)

τk ∈ T

in which the observer gain LI [k] is to be determined in order

to yield uniformly exponentially stable error dynamics

˙̃x(t) = ACx̃(t) t ∈ R \ T

x̃(τk) = (AI + LI [k]CI) x̃(τ−
k ) τk ∈ T (4)
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A. Stability

We cast our stability discussion in terms of a homogeneous

linear impulsive state equation with non-constant coefficient

matrices

ż(t) = ÂC(t)z(t) t ∈ R \ T , z(t0) = z0,

z(τk) = ÂI [k]z(τ−
k ) τk ∈ T (5)

and, because the state of an impulsive system evolves in

continuous time, we adopt the usual notion of uniform expo-

nential stability. In order to characterize uniform exponential

stability of (5), we bound the spacing between consecutive

impulse times as follows.

Assumption 2.1: For a countably infinite impulse time set

T , the spacing between consecutive impulse times δk =
τk+1 − τk satisfies

δ := inf
k

δk > 0 and δ := sup
k

δk < ∞

We remark that the lower bound ensures that τk → ∞ as

k → ∞. The following theorem provides a Lyapunov-type

criterion for uniform exponential stability of linear impulsive

systems that is specifically tailored to our needs.
Theorem 2.2: The impulsive system (5) with T satisfying

Assumption 2.1 is uniformly exponentially stable if there ex-
ists a symmetric, piecewise-continuously-differentiable ma-
trix function P (t) such that for finite, positive constants η
and ρ

ηI ≤ P (t) ≤ ρI (6)

Ṗ (t) + Â
T

C (t)P (t) + P (t)ÂC(t) + QC(t) ≤ 0, t ∈ R \ T (7)

Â
T

I [k]P (τk)ÂI [k] − P (τ−

k
) + QI [k] ≤ 0, τk ∈ T , (8)

where QC(t) and QI [k] are bounded, positive semi-definite

matrices, and either QC(t), QI [k], or both, are uniformly

positive definite.

This condition is either similar to or a special case of

other results in the literature [10], [11], [12] and so a proof

is omitted here but is available in [2].

B. Observability

Observability with respect to a continuous-time output is

considered in [4]. We adapt the analysis therein to the case

of a discrete-time output and define the unobservable set on

a finite interval with fixed impulse times as

Qfixed(t0, tf , T ) = {x0 ∈ X | CIΦ(τ−
k , t0)x0 = 0

for all τk ∈ T ∩ (t0, tf ]}

It is clear that Qfixed(t0, tf , T ) is a subspaces of X . The

observer construction we pursue makes use of the following

observability property along with associated properties of an

appropriately defined observability gramian.

Definition 2.3: (Strongly Observable System) An impul-

sive system (1) is said to be strongly observable if there

exists a positive integer ℓ such that for all impulse time

sets T , Qfixed(t0, tf , T ) = 0 for any finite interval (t0, tf ]
containing at least ℓ impulse times in T .

Definition 2.4: For the impulsive system (1), given inte-

gers kf > k0, t0 ∈ [τk0−1, τk0
), and tf ∈ [τkf−1, τkf

) the

observability gramian MO(t0, tf ) is defined by

MO(t0, tf ) =

kf−1
∑

j=k0

ΦT (τ−
j , t0) CT

I CI Φ(τ−
j , t0)

For zero input and x(t0) = x0,

xT
0 MO(t0, tf )x0 =

kf−1
∑

j=k0

‖y[j]‖2

from which it follows that for a strongly observable system,

the observability gramian is positive definite for any impulse

time set and any finite interval containing at least ℓ impulse

times in that set. Conversely, if there exists an integer ℓ

such that the observability gramian is positive definite for

any impulse time set and any finite interval containing at

least ℓ impulse times in that set, then the system is strongly

observable.

Definition 2.5: For the impulsive system (1), given inte-

gers kf > k0, t0 ∈ [τk0−1, τk0
), and tf ∈ [τkf−1, τkf

) the

weighted observability gramian Mα(t0, tf ) is defined by

Mα(t0, tf ) =

kf−1
∑

j=k0

α2(j−k0)ΦT (τ−
j , t0) CT

I CI Φ(τ−
j , t0)

(9)

for a finite constant α > 1.

Similar conclusions can be drawn relating strong ob-

servability of (1) and positive definiteness of the weighted

observability gramian. Additionally, under our assumption

on the impulse time set, the following lemma establishes

important uniform positive definiteness and boundedness

properties of the observability gramian and its weighted

variant.

Lemma 2.6: The weighted observability gramian of a

strongly observable linear impulsive system (1) is such that,

for any finite α > 1, Mα(t0, tf ) is uniformly positive definite

and bounded on any interval (t0, tf ] containing ℓ impulse

times for all impulse time sets T satisfying Assumption 2.1.

Proof. We first show that Mα(τ−
k−ℓ, τk−1) is uniformly

positive definite and bounded with respect to k ∈ Z for any

impulse time set T satisfying Assumption 2.1. In terms of

the indeterminates δ1, δ2, . . . , δℓ−1, we define

Φj(δ1, . . . , δj) = eACδj AI · · · eACδ1AI

for j = 1, . . . , ℓ − 1 and

Mα(δ1, . . . , δℓ−1) = CT
I CI

+
ℓ−1
∑

j=1

α2jΦ
T

j (δ1, . . . , δj) CT
I CI Φj(δ1, . . . , δj) (10)

on the compact domain D := [δ, δ] × [δ, δ] × · · · × [δ, δ] ⊂
R

ℓ−1 from which

Mα(τ−
k−ℓ, τk−1) = Mα(δk−ℓ, . . . , δk−2)

The strong observability hypothesis implies that

Mα(δ1, . . . , δℓ−1) is positive definite and bounded at each
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point in D. Since the elements of Mα(δ1, . . . , δℓ−1), and

therefore its pointwise-defined eigenvalues, are continuous

functions on D, it follows that the maximum eigenvalue

of Mα(δ1, . . . , δℓ−1) attains its finite maximum value and

the minimum eigenvalue of Mα(δ1, . . . , δℓ−1) attains its

positive minimum value on D. We refer to these extrema as

λmax and λmin, respectively, and conclude that

λminI ≤ Mα(δ1, . . . , δℓ) ≤ λmaxI

on D and so these bounds hold for Mα(τ−
k−ℓ, τk) for all

k ∈ Z and for all impulse time sets T satisfying Assumption

2.1.

Now, for any impulse time set T satisfying Assumption

2.1 and any interval (t0, tf ] containing ℓ impulse times

denoted τk−ℓ, . . . , τk−1 we can write

Mα(t0, tf ) = Mα(t0, τk−1)

= eAT
C

(τk−ℓ−t0)Mα(τ−
k−ℓ, τk−1)e

AC(τk−ℓ−t0)

From this we conclude that

e−2‖AC‖δλminI ≤ Mα(t0, tf ) ≤ e2‖AC‖δλmaxI (11)

which completes the proof.

III. ERROR DYNAMICS

We show that strong observability of the linear impulsive

system (1) is sufficient for the existence of an impulsive

observer (3) yielding uniformly exponentially stable error

dynamics (4). Specifically, we use the weighted observability

gramian (9) to construct an observer gain and to demonstrate

uniform exponential stability via Theorem 2.2. We now

formally state the main result of the paper.

Theorem 3.1: For a strongly observable linear impulsive

system (1) with impulse time set T satisfying Assumption

2.1 and positive integer ℓ as in Definition 2.3, the observer

gain defined by

LI [k] =

− α2(ℓ−1)Φ(τk, τk−ℓ)M
−1
α (τk−ℓ, τk)ΦT (τ−

k , τk−ℓ)C
T
I

(12)

specifies a linear impulsive observer (3) for which the

associated impulsive error dynamics (4) are uniformly ex-

ponentially stable.

The remainder of this section is devoted to a proof of

Theorem 3.1. We begin by writing the error dynamics (4)

with observer gain (12) as

˙̃x(t) = ACx̃(t) t ∈ R \ T

x̃(τk) = ÃI [k]x̃(τ−
k ) τk ∈ T (13)

in which, with Γ[k] = α(ℓ−1)CI Φ(τ−
k , τk−ℓ),

ÃI [k] = AI + LI [k]CI

= AI − α(ℓ−1)Φ(τk, τk−ℓ)M
−1
α (τk−ℓ, τk)ΓT [k]CI

Uniform exponential stability of (13) will be established

by proving uniform exponential stability of a related state

equation defined as follows. First, we define, for a given

impulse time set T and positive integer ℓ, the map

ρℓ : [τk−1, τk) −→ [τk−ℓ−1, τk−ℓ) k ∈ Z

via

ρℓ(t) = τk−ℓ−1 +
δk−ℓ−1

δk−1
(t − τk−1)

The mapping ρℓ(t) defines a past time instant that represents

the same proportion of elapsed time with respect to the

interval [τk−ℓ−1, τk−ℓ) that t does with respect to the interval

[τk−1, τk). That is,

ρℓ(t) − τk−ℓ−1

δk−ℓ−1
=

t − τk−1

δk−1

Note that this mapping satisfies ρi+j(t) = ρi(ρj(t)) =
ρj(ρi(t)) for all i, j ∈ Z. We then define the impulsive state

equation

ż(t) = ÂC(t)z(t) t ∈ R \ T

z(τk) = ÂI [k]z(τ−
k ) τk ∈ T (14)

where

ÂC(t) =
δk−ℓ−1

δk−1
AC t ∈ (τk−1, τk) (15)

ÂI [k] = AI − α(ℓ−1)M−1
α (τk−ℓ, τk)ΓT [k]CIΦ(τ−

k , τ−
k−ℓ)

It is not difficult to show that (13) and (14) are related via

the open-loop state transition matrix as follows. If x̃(t0) =
Φ(t0, ρℓ(t0))z(t0) then x̃(t) = Φ(t, ρℓ(t))z(t) for all t ≥ t0.

Although this relationship is in general not invertible, it is

still possible to establish the following connection between

(13) and (14) with respect to uniform exponential stability.

Lemma 3.2: For an impulse time set T satisfying As-

sumption 2.1, the state equation (13) is uniformly exponen-

tially stable if and only if the state equation (14) is uniformly

exponentially stable.

This lemma is similar in spirit to Lemma 4.2 appearing

in [6] for time-varying discrete-time linear systems with

singular transition matrices, and a similar result used to

address feedback stabilization of linear impulsive systems

is available in [2], so a proof is omitted here. It remains

to be shown that the impulsive system (14) is uniformly

exponentially stable, which we accomplish by showing that

the conditions of Theorem 2.2 hold for

P (t) = Mα(ρℓ(t), t)

Assuming that (1) is strongly observable, it follows from

Lemma 2.6 that the bounds in (11) also apply to P (t) so the

first condition in Theorem 2.2 is satisfied.

Next, we have for t ∈ (τk−1, τk)

Ṗ (t) = −AT
C P (t)ρ̇ℓ(t) − P (t)AC ρ̇ℓ(t)

= −

(

δk−ℓ−1

δk−1
AT

C

)

P (t) − P (t)

(

δk−ℓ−1

δk−1
AC

)

= −ÂT
C (t)P (t) − P (t)ÂC(t)

from which the second condition in Theorem 2.2 is satisfied

for QC(t) ≡ 0.
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For the final step, using

P (τk) = Mα(τk−ℓ, τk)

=

k
∑

j=k−ℓ+1

α2(j−k+ℓ−1)ΦT (τ−
j , τk−ℓ)C

T
I CIΦ(τ−

j , τk−ℓ)

along with

P (τ−
k ) = Mα(τ−

k−ℓ, τ
−
k )

=
k

∑

j=k−ℓ

α2(j−k+ℓ)ΦT (τ−
j , τ−

k−ℓ) CT
I CI Φ(τ−

j , τ−
k−ℓ)

we compute

AT
I P (τk)AI = α−2P (τ−

k ) − α−2CT
I CI

+ α2(ℓ−1)ΦT (τ−
k , τ−

k−ℓ)C
T
I CIΦ(τ−

k , τ−
k−ℓ)

This yields

ÂT
I [k]P (τk)ÂI [k] = α−2P (τ−

k ) − α−2CT
I CI

− AT
I ΓT [k]

(

I − Γ[k]M−1
α (τk−ℓ, τk)ΓT [k]

)

Γ[k]AI

From well-known results on Schur complements, positive

semi-definiteness of

I − Γ[k]M−1
α (τk−ℓ, τk)ΓT [k]

is equivalent to positive semi-definiteness of

Mα(τk−ℓ, τk) − ΓT [k]Γ[k] =
k−1
∑

j=k−ℓ+1

α2(j−k+ℓ−1)ΦT (τ−
j , τk−ℓ)C

T
I CIΦ(τ−

j , τk−ℓ) ≥ 0

This allows us to conclude that

AT
I P (τk)AI − P (τ−

k ) + (1 − α−2)P (τ−
k ) ≤ 0

Since α > 1, the third condition of Theorem 2.2 is satisfied

for bounded, uniformly positive definite

QI [k] = (1 − α−2)P (τ−
k )

We therefore conclude that the state equation (14) is uni-

formly exponentially stable, implying, by Lemma 2.6, the

same for the impulsive error dynamics (13). This proves our

main result.

IV. EXAMPLE

We consider the linear impulsive state equation (1) speci-

fied by

AC =









0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









BC =









0
0
0
0









AI =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









EI =









0
0
0
1









CI =
[

1 0 0 0
]

(16)

This system is capable of generating twice-continuously-

differentiable cubic splines by properly selecting the initial

conditions, the impulse times, and the discrete-time input

signal.

Given an impulse time set T and initial time t0 ∈
[τk0−1, τk0

), the initial state

x(t0) =
[

− 1
6 (τk0

− t0)
3 1

2 (τk0
− t0)

2 −(τk0
− t0) 1

]T

yields a zero-input response for which

x(τ−
k0

) =
[

0 0 0 1
]T

This gives y[k0] = 0 along with x(τk0
) = 0 ∈ R

4. The latter

yields x(t) ≡ 0 for all t ≥ τk0
from which y[k] = 0 for all

k ≥ k0. It follows that for any tf ≥ τk0
, Qfixed(t0, tf , T )

is a nonzero subspace and, consequently, this impulsive

system is not strongly observable. However, we will show

that this system possesses a detectability property in that

it is still possible to construct an observer gain using the

techniques presented in this paper for which the associated

error dynamics are uniformly exponentially stable.

To proceed, we consider observer gain vectors whose last

component is zero

LI [k] =

[

L
(1)
I [k]
0

]

and partition the state estimation error accordingly

x̃(t) =

[

x̃(1)(t)
x̃4(t)

]

along with the state equation coefficients

AC =

[

A
(1,1)
C A

(1,2)
C

0 0

]

AI =

[

A
(1,1)
I 0
0 0

]

CI =
[

C
(1)
I 0

]

This, in turn, leads to the following error dynamics with

block triangular coupling
[

˙̃x(1)(t)
˙̃x4(t)

]

=

[

A
(1,1)
C A

(1,2)
C

0 0

] [

x̃(1)(t)
x̃4(t)

]

t ∈ R \ T

[

x̃(1)(τk)
x̃4(τk)

]

=

[

A
(1,1)
I + L

(1)
I [k]C

(1)
I 0

0 0

] [

x̃(1)(τ−
k )

x̃4(τ
−
k )

]

It is clear that, again with t0 ∈ [τk0−1, τk0
), the fourth state

variable exhibits the dead-beat response x̃4(t) = x̃4(t0) for

t ∈ [t0, τk0
) and x̃4(t) = 0 for all t ≥ τk0

.

We next focus our attention on the construction of a

3−dimensional observer gain vector L
(1)
I [k] for which

˙̃x(1)(t) = A
(1,1)
C x̃(1)(t) t ∈ R \ T

x̃(1)(τk) =
(

A
(1,1)
I + L

(1)
I [k]C

(1)
I

)

x̃(1)(τ−
k ) τk ∈ T

is uniformly exponentially stable. For then, since x̃(t) re-

mains bounded on [t0, τk0
) for any initial error x̃(t0),
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uniform exponential stability of the entire error dynamics

follows.

To demonstrate strong observability of the

x̃(1)−subsystem, we take ℓ = 3 and for notational

simplicity write T ∩ (t0, tf ] = {τ1, τ2, τ3}. A direct

computation facilitated by A
(1,1)
I = I gives

Q
(1)
fixed(t0, tf , T ) =

Ker









1 0 0
1 (τ2 − τ1)

1
2 (τ2 − τ1)

2

1 (τ3 − τ1)
1
2 (τ3 − τ1)

2



 eA
(1,1)
C

(τ1−t0)





The left factor has nonzero determinant 1
2 (τ3 − τ1)(τ2 −

τ1)(τ3 − τ2) ≥
1
2δ3 indicating that Q

(1)
fixed(t0, tf , T ) = 0 for

any impulse time set T and any interval (t0, tf ] containing

ℓ = 3 impulse times. Hence the x̃(1)−subsystem is strongly

observable.

A direct application of (12) to the x̃(1)−subsystem yields

L
(1)
I [k] = −







1
(τk−τk−1)+(τk−τk−2)
(τk−τk−1)(τk−τk−2)

2
(τk−τk−1)(τk−τk−2)







which happens to be independent of α and is applicable for

any impulse time set.

We simulate the impulsive system given by (16) and

the associated impulsive observer for the spline shown in

Fig. 1 that approximates a trapezoidal signal, also shown.

The impulse times are taken to be the interior knots:

T = {τk, k = 1, . . . , 13} = {0.1, 0.5, 0.9, 1.0, 1.1, 1.2,

2.0, 2.8, 2.9, 3.0, 3.1, 3.5, 3.9}

The discrete-time input signal w[k] is derived from the spline

as follows. For the cubic polynomial segment on [τk, τk+1)

pk(t) = ak(t − τk)3 + bk(t − τk)2 + ck(t − τk) + dk

we take w[k] = 6ak so that x4(τk) = w[k] =
...
pk(τk). With

the aid of MATLAB, this produces












































w[1]
w[2]
w[3]
w[4]
w[5]
w[6]
w[7]
w[8]
w[9]
w[10]
w[11]
w[12]
w[13]













































=
























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

Finally, in order for the impulsive system specified by (16)

to generate the spline in Fig. 1, the initial state must be set

to

x(0) =
[

0 −0.9836 21.6068 −58.0338
]T

The impulsive observer is initialized with

x̂(0) =
[

0 0 0 100
]T

where the value for x̂4(0) was chosen so as to highlight the

dead-beat response described above.

The state variable responses for the impulsive system and

impulsive observer are shown in Figs. 2–5. We observe that

not only does x̃4(t) exhibit a dead-beat response (after τ1 =
0.1s, as expected), so do x̃1(t), x̃2(t), and x̃3(t) after τ3 =
0.9s.

V. CONCLUDING REMARKS

This paper has presented the construction of an impulsive

observer for a class of linear impulsive systems featuring

arbitrarily-spaced impulse times and possibly singular state

transition matrices. As an illustration of the main ideas,

an observer has been constructed for an impulsive system

that produces general cubic spline signals for which the

resulting observer gain is given explicitly in terms of the

impulse times. Future work shall focus on output feedback

stabilization using impulsive compensators featuring the im-

pulsive observers derived herein together with the stabilizing

state feedback laws developed in [3]. It is expected that

these results for state feedback and state estimation shall

also permit a more in depth treatment of the compensator

synthesis framework initiated in [5].
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Fig. 1. Trapezoidal signal, spline approximation, and knots.
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Fig. 2. x1(t) (solid) and x̂1(t) (dashed) vs. t.
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Fig. 3. x2(t) (solid) and x̂2(t) (dashed) vs. t.
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Fig. 4. x3(t) (solid) and x̂3(t) (dashed) vs. t.
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Fig. 5. x4(t) (solid) and x̂4(t) (dashed) vs. t.
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