
       
       

  

Abstract—This paper studies the stability of the central 
difference method (CDM) for real-time substructure test 
considering the mass of specimen (i.e., experimental 
substructure). To obtain correct reaction inertia force, an 
explicit acceleration formulation is assumed for the CDM. The 
analytical work shows that the stability of the algorithm 
decreases with increasing specimen mass if the experimental 
substructure is a pure inertia specimen. The algorithm becomes 
unstable whatever the time integration interval, i.e., 
unconditionally unstable, when the mass of specimen equal or 
greater than that of its numerical counterpart. For the case of 
dynamic specimen, the algorithm is unconditionally unstable 
when there is no damping in the whole test structure; a damping 
will make the algorithm stable conditionally. The behavior of 
the CDM for vanishing time integration interval is verified with 
the zero-stability analysis method for coupled integration. Part 
of the analytical results is validated by an actual test. 

I. INTRODUCTION 
EAL-time substructure testing (RSTing) is a hybrid 
simulation technique, in which a structure is split into  

two parts: the critical complex part called experimental 
substructure to be tested physically and in real-time, while the 
remainder called numerical substructure is simulated 
numerically by the computer [1]. As a core element of the 
analytical part of RSTing, numerical integration plays a key 
role in a successful test. Many integration methods popular in 
PDT are explicit only for displacement. When an explicit 
velocity is required for damping specimen (experimental 
substructure) in RSTs, some extra formulation has to be 
assumed. This assumption very possibly does not conform to 
the original velocity formulation and this may change the 
numerical behavior of the integration algorithm. For the 
central difference method (CDM) in RSTing with damping 
specimen, reference [2] showed that the stability decreases 
with increasing damping of the experimental substructure, 
contrasting constant stability limit of standard CDM. Similar 
problem may exist for implicit algorithm implemented in a 
RST. Reference [3] found that Newmark average acceleration 
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method may lose the unconditional stability for damping 
specimen. 

For a dynamic experimental substructure, the loading 
fashion should be explicitly and properly specified to obtain 
correct reaction of the substructures due to its inertia as well 
as stiffness and damping. This may change the numerical 
behavior of integration algorithms which normally do not 
include any explicit expressions for acceleration. Reference 
[4] showed that the Newmark average acceleration method 
became conditionally stable when the loading commands for 
the dynamic substructure were sent off as a linear ramp 
function of time. Although here have been successful 
applications of explicit algorithms to inertia specimen and 
some discussions on stability related to time delay [5] or 
coupling between numerical and experimental substructures 
[6], the impact of specimen mass on the stability of a specific 
integration method has not been explored. This paper will 
focus on the stability issue of the CDM arising in its 
implementation to RSTing with dynamic experimental 
substructure. 

II. FORMULATION OF THE CDM FOR RST 
CONSIDERIING SPECIMEN MASS 

In an RST, the acceleration-dependent force (inertia force) 
and velocity-dependent force (damping force) exhibited by 
the specimen are introduced into the measured reaction force 
together with the static restoring force when the specimen is a 
dynamic substructure. Therefore, the time-discretized 
equations of motion of the numerical substructure at the ith 
time step in an RST can be expressed in a more general and 
precise form as 
  

 N N, N N, N N, E EC, EC, EC,( , , )i i i i i i i+ + + =M a C v K d R a v d F  (1) 
  
and, when the CDM is employed, the velocity and 
acceleration are approximated by 
   

 N, N, 1 N, 1( ) / 2Δi i i t+ −= −v d d  (2) 

 2
N, N, 1 N, N, 1( 2 ) /Δi i i i t+ −= − +a d d d                (3) 

 
where M, C, and K are the mass, damper, and stiffness 
matrices of the numerical substructure respectively; R is the 
reaction force; a, v, and d are acceleration, velocity, and 
displacement vectors; F is external excitation on the
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numerical substructure; Δt is the integration time interval; 
subscripts N, E, and C denote numerical substructure, 
experimental substructure, and coupling degree-of-freedom 
of numerical and experimental substructures, respectively. 
Substituting (2) and(3) into (1) gives 

   

 

( )

( )

2 1
N, 1 N N

2 2
N N N, N

N N, 1 E EC, EC, EC,

[ /Δ / 2Δ ]

{ ( 2 /Δ ) [ /Δ

/ 2Δ ] ( , , )}

i

i i

i i i i

t t

t t

t

−
+

−

= +

⋅ − − −

− −

d M C

F K M d M

C d R a v d

 (4) 

    
To obtain accurate dynamic reaction force, the velocity and 

acceleration on the coupling degree-of-freedom at the (i+1)th 
step, which denoted by vEC,i+1 and aEC,i+1 respectively, have to 
be determined and imposed onto the specimen together with 
dEC,i+1. This just can not be realized through (2) and (3), as the 
displacement at the (i+2)th step is not yet available. For an 
actuator controlled in a traditional displacement mode, the 
achievement of the explicit velocity or acceleration target is 
dependent on how the displacement command is issued with 
respect with time. To this end, we assume a constant 
acceleration in the time interval from ti to ti+1, resulted in by a 
displacement command profile as a quadratic function in 
time: 
    

 ( ) 2
EC, 1 EC, EC, EC, 10.5 ( )i i i i i it t t t t+ += + − + −d d ν a( )  (5) 

     
Note that, for seismic tests, the commands should include the 
ground motion to guarantee an absolute acceleration input to 
the dynamic specimen and hence obtain correctly reaction 
force due to inertia. Letting dEC,i=dNC,i and vEC,i=vNC,i , and 
substituting (2) into the above equation and letting t=ti+1 
entail 
        

 2
EC, 1 NC, 1 NC, NC, 1( 2 ) /Δi i i i t+ + −= − +a d d d  (6) 

        
It is interesting to note that  
  

 EC, 1 NC,i i+ =a a  (7) 
  
according to (3).  

By comparing (6) with (3), we see that the acceleration at 
the coupling degree-of freedom of the experimental 
substructure is obviously no longer consistent to those of 
numerical substructure determined by the standard CDM. 
This raises the issue of possible change of numerical behavior, 
especially the stability, of the modified CDM over the 
standard one, which will be discussed next. 

III. STABILITY ANALYSIS 
We restrain our discussion within linear systems and the 

numerical substructure is of single-degree-of-freedom 
(SDOF). Two cases are considered: one is with a specimen of 

pure mass as shown Fig. 1, and the other with   a SDOF 
dynamic specimen as shown Fig. 2. 

A. Pure Inertia Specimen 
When the experimental substructure is just an inertia 

specimen, its reaction force at the ith step is easily obtained as 
   

 E, E EC,i iR M a=  (8) 
   
where EC,ia  is determined by (6) . Substituting (8) into (4)
yields 
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1 N N
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N N E
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N E N 1
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Based on the above equation, the displacement responses 

of free vibration between two adjacent time steps can be 
related in a recursive form as 
  

 1i i+ =Y AY  (10) 
  

where [ ]T
1 1 1i i i id d d+ + −=Y , 

11 12 13

1 0 0
0 1 0

a a a⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A  with 

2
11 m m N[2 (1 ) ] / (1 )a γ γ ξ= − + Ω − + Ω , 

12 N m N( 2 1) / (1 )a ξ γ ξ= Ω + − + Ω , 13 m N/ (1 )a γ ξ= − + Ω , 

( )N N Et t K M MωΩ = Δ = Δ + , N N N= / (2 )C Mξ ω , 

γm=ME/MN. The matrix A is usually called amplification 
matrix and its eigenvalues determine the numerical behavior 
of an integration algorithm. In particular, the amplification 
matrix defines the stability condition of an integration 
algorithm through 
  

 ( ) 1ρ ≤A  (11) 
  
where ρ(A) is the spectral radius of A, which is defined as ρ 
(A) =max(⎪λi⎪), andλi are the eigenvalues of A. The 
characteristic equation of A can be obtained as 
     

 
( ) ( )

( )

3 2 2
N m m

N m m

1 1 2

1 2 0

ξ λ γ γ λ

ξ γ λ γ

⎡ ⎤+ Ω + + Ω − +⎣ ⎦
+ − Ω − + =

 (12) 

   
We define a stability limit as the maximum of the Ωs values 

such that ρ(A)≤1 for any Ω∈(0, Ωs). Letting [Ω] denote the 
stability limit, one may obtain the stability limit of the 
modified CDM for pure inertia specimen as [7] 
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 [ ] m m2 (1 ) / (1 )γ γΩ = − +  (13) 
  

The above equation indicates that (i) the stability limit only 
exists when γm<1 (the non-existence of stability limit is called 
unconditionally unstable in this paper); (ii) the stability limit 
decreases with increasing γm; and (iii) the stability limit has 
no relationship with damping from numerical substructure. 
The interesting behavior of unconditional instability can also 
be proved through the concept of zero-stability of coupled 
integration. The proof is provided in the appendix. 

The spectral radius ρ (A) against Ω is plotted in Fig. 3a with 
ξN=0 and different γm values. The stability limits obtained 
from Fig. 3a are identical to those calculated using (13). Fig. 
3b shows the diagrams of spectral radius ρ (A) against Ω with 
γm=0.5 and different ξN values. The independence of stability 
limit upon ξN is easily seen and is consistent with the 
observation from(13). 

The simulated displacement responses of free vibration 
with various Ω values are shown in Fig. 4 where MN=300kg, 
γm=0.8, ω=2πs-1, ξN=0.2 and initial condition is d0=1cm and 
v0=0. Here ω  is fixed while Δt changes to achieve different Ω 
values. The corresponding [Ω] is 0.67 obtained with (13). 
When Ω>0.67, the unstable response is observed in Fig. 4. It 
is also seen that the simulated result approaches exact one 
with reducing Ω similar to standard CDM. 

B. Dynamic specimen 
For the RST of a structure as shown Fig. 2 subject to 

seismic excitation, RE(t) is only related to the acceleration aEC 
(not dEC or vEC) at the coupling degree-of-freedom through 
following equations. 
  

 E, E E, E E,( ) [ ( ) ( )]i i iR t C v t K d t= − +  (14) 

 E E, E E, E E, E EC, g,( ) ( ) ( ) ( )i i i i iM a t C v t K d t M a a+ + = − +  (15) 
  
in which aE, vE, and dE are the acceleration, velocity, and 
displacement of experimental substructure relative to the 
numerical substructure; ag is the ground acceleration; t∈[ti-1, 
ti]. Free vibration response of the experimental substructure is 
obtained using Duhamel’s integral on (15). Accordingly, the 
analytical solution of reaction force is derived. Its substitution 
together with (6) into (4) gives 
  

 N, 1 1 N, 2 N, 1 3 N, 2 4 E, 5 E,i i i i i id c d c d c d c d c v t+ − −= + + + + Δ  (16) 
  
in which cj’s are constants related to structural parameters and 
Δt; their expressions can be found in [7]. Letting 
  

 
T

1 N, 1 N, N, 1 E, E,i i i i i id d d d v t+ + −⎡ ⎤= Δ⎣ ⎦Y  (17) 

  
one may easily get the corresponding amplification matrix A.  

It is difficult to obtain the analytical expression of spectral 
radius of the matrix A due to mathematical complexity. 

Therefore, the numerical analyses were carried out to 
investigate the spectral characteristics. Fig. 5a shows the 
results of undamped cases with frequency ratio γω equal to 1, 
where E N/ωγ ω ω= , E E E/K Mω = , N N N/K Mω = ; the 

horizontal coordinate is defined as Ω=ωNΔt. It is seen that ρ 
(A) is always greater than unity, indicating unstable response, 
however small the mass ratio and Ω are. This means that the 
CMD is unconditional unstable for a dynamic specimen if 
there is no damping associated in the test structure. This 
contrasts the conditional stability of the case with pure inertia 
specimen and the mass ratio lower than 1. Nonetheless the 
instability in the case of dynamic specimen is not that serious 
for small mass ratio and Ω since the spectral radius is very 
close to unity as shown in Fig. 5a, if only the testing duration 
is not too long. It is also seen in Fig. 5a that the instability is 
improved with reduced γm, as the spectral radius becomes 
closer to 1. The elimination of unconditional instability 
problem can be achieved by adding a damping to the structure. 
This is illustrated in Fig. 5b where damping ratios of 
experimental and numerical substructures are both 5%, and 
γω=1. The damping ratio here are defined as ξE=CE/(2MEωE), 
and ξN=CN/(2MNωN). Fig. 6 shows the simulated and exact 
displacement responses of the free vibrations with  
ξE=ξN=0.05, γm=γω=1. The initial conditions are: dN0=1cm, 
dE0=-1cm, vN0=vE0=0. Different Ω’s are considered in the 
simulation. The stability limit of this case is 0.44 from Fig. 5b. 
It is observed from Fig. 6 that the response is unstable when 
Ω= 0.45, which verifies the result of spectral analysis. 
Although the stable responses of RST are attained for smaller 
Ω’s, the good agreement with the exact solution is seen only 
for an Ω as small as 0.05. 

IV. NUMERICAL SIMULATION OF RST WITH 
SHAKING TABLE 

In Sections I and II, the dynamics of physical loading 
system is not considered in order to emphasize the numerical 
behaviors of the algorithm itself. A shaking table is used in 
this section as a transfer system of the RST with dynamic 
specimen, and the stability performance will be investigated 
through some numerical simulations, in which the linear 
model of the Rice university shaking table developed by [8] is 
adopted herein. All the parameters of the shaking table are the 
same as in [8] except the control gains specified in this paper. 
The excitation is the El Centro (NS, 1940) earthquake record. 

A.  Pure Inertia Specimen 
The parameters of the numerical substructure and 

experiment substructures for the numerical simulations are: 
MN=300kg, ω=2πs-1, CN=0, and KE=CE=0. Δt =0.01s. The 
PID control gains are KP=39.4×5V/m, KI=0, KD=8.5V⋅s/m, 
and the feed-forward and differential pressure control gains 
are Kff=1.2 V⋅s/m and Kdp= − 2.15×10-7V⋅m2/N, respectively. 
The sampling frequency of the digital control is 1000 Hz. The 
numerical simulation results with different mass ratios and 
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the exact solution of the displacement responses are shown in 
Fig. 7. The exact solution is calculated by using LSIM 
command in Matlab. It is seen that the response becomes 
unstable when γm =1.003. This is consistent with the results of 
theoretic analysis in Section III. It is also seen that the 
response approaches the exact solution with smaller γm. 

B. Dynamic Specimen 
The parameters of the numerical substructure, as shown in 

Fig. 2, are MN=500kg, ωN=2πs-1, and ξN=0.05. The 
parameters of the experiment substructure are identical to the 
numerical substructure, i.e., γm=γω=γc=1, with γC= CE /CN. 
The PID control gains of the shake table controller are: 
KP=39.4×5V/m, KI=0, KD=7.25V⋅s/m, and the feed-forward 
and differential pressure control gains are Kff=1.25 V⋅s/m and 
Kdp= − 2×10-7 V⋅m2/N, respectively. According the analysis 
of Section III, the stability limit is equal to 0.44 in this case. 
The displacement responses of the numerical substructure 
with different Ω values are shown in Fig. 8. The unstable 
response is clearly seen when Ω=0.471>[Ω]=0.44. The better 
result is obtained as expected with smaller Ω. 

V. VALIDATION TEST 
A validation test was carried out at the Mechanical and 

Structural Testing Center of the Harbin Institute of 
Technology. The schematic diagram of the whole test 
structure is shown in Fig. 1. The experimental substructure 
was a pure mass made of cast iron with ME=116kg. A 
photograph of the experimental substructure installed on the 
MTS servo-hydraulic actuator is shown in Fig. 9. The circular 
frequency of the whole structure was kept 2πs-1 for all test 
cases. The damping from the numerical substructure was 
assumed zero. The integration time interval was 0.01and the 
sampling frequency was 1024 Hz. Figures 10-12 show the 
displacement commands and responses of free vibration with 
different mass ratios. The initial conditions are d0=0, 
v0=3.14cm/s. The stable result was obtained with γm=0.1 and 
the decaying response is observed in Fig. 10, probably due to 
the friction force between the guiding columns and the iron 
mass. With this friction force, the response remained stable 
with γm =1.01>1 as seen in Fig. 11. Further increasing γm by 
reducing MN resulted in an unstable tendency of response as 
seen in Fig. 12. The test was terminated before it went 
violently. Although the test results were not exactly the same 
as predicted by the analytical work in the previous sections, 
the influence of the specimen mass on the stability of RSTing 
with the CDM has been confirmed. 

It is should be noted that, for pure damping specimen, the 
stability is reduced by increasing damping level of the 
specimen [2]. The reason for the different effects of damping 
could be attributed to by the different damping mechanism of 
the experimental substructure. The damping in this paper is 
coulomb-typed friction, while a viscous damping is assumed 
in [2]. 

The displacement responses tracked the commands very 
well in all these cases as shown in Fig. 10-12. The time delay 
of the displacement responses to the corresponding 
commands was around 22ms. The focus of this paper was the 
effects of mass ratio on the stability, and all the test cases 
were subject to the same time delay, therefore the issues about 
time delay were not discussed. Nevertheless, the effects of 
errors such as those due to time delay from testing facilities 
and relevant improve techniques are apparently important and 
thus should be investigated further in future study. 

It is worth noting that Neild et al. [9] has carried out a 
similar inertia specimen test using shaking-table as the 
transfer system and looked at the mass division from control 
point of view. It was shown there that the division method of 
the emulated system into the substructure and the numerical 
model is highly significant to the overall performance of the 
system. 

VI. CONCLUSION  
The CDM is modified with an explicit acceleration 

formulation to obtain correct reaction force of dynamic 
specimen in a RST. The analytical work, numerical 
simulation of the RST with a shaking table and actual test 
have all shown that the stability of the algorithm decreases 
with increasing mass ratio of experimental over numerical 
substructures. 

VII. APPENDIX: ZERO-STABILITY OF COUPLED 
CDM 

In a hybrid simulation of dynamic system, the solution 
relies on the two integrations in the time domain: one is 
numerical and the other is physical. The numerical integration 
is coupled with physical integration through the interface 
between the numerical and experimental substructures. A 
necessary condition for stable solution of the discrete coupled 
system is zero-stability, i.e., the system is stable as the time 
integration interval approaches to zero [10]. The objective of 
this appendix is to confirm the behaviour of the CDM 
revealed in the third section in this paper, using the method of 
zero-stability analysis for coupled integration. 

For the case of the pure inertia specimen, the outputs of the 
numerical and experimental substructures at the ith step can 
be expressed as 
  

 N, N, 1i iy a −=  (A1) 

  E, E E,iiy M u=  (A2) 
  
and the inputs are related to the outputs by 
  

 N, E,i iu y=  (A3) 

  E, N,i iu y=  (A4) 
  
With (1), and (A1)- (A4) we get 
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 1i i+ = +y G H y  (A5) 

  
in which  
  

 N N N N
N,

E N N E N N

/ /
/ / i

K M C M
M K M M C M
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
G X  (A6) 

           N
2

E N

0 1/
/ 0

M
M M

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

H  (A7) 

           T
N, N, N,[ ]i i id v=X , and  T

N. E.[ ]i i iy y=y    
  
As it is not difficult to prove that XN,i is a constant for 
vanishing Δt, G is apparently a constant vector with (A6). 
Therefore the stability of the system output is determined by 
ρ(H), the spectral radius of H. This is easily obtained as 
  

 ( ) E N m/M Mρ γ= =H  (A8) 
  
Therefore the output is zero-stable only when 
  

 m 1γ ≤  (A9) 
  
This means that any γm greater than unity will lead to unstable 
response, which comply with what (13) indicates. 

For the case of dynamic specimen, the matrices of G and H 
are obtained as 

  

 

N N N N
N,

E, 1
E E

/ /
0 0

0 0

i

i

K M C M

K C +

− −⎡ ⎤
= ⎢ ⎥

⎣ ⎦
⎡ ⎤

+ ⎢ ⎥− −⎣ ⎦

G X

X
 (A10) 

  N0 1/
0 0

M−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
H  (A11) 

   
For the physical substructure with continuous motion, XE,i+1 
remains constant for vanishing Δt. Then G is again a constant 
vector. ρ(H) is calculated as zero with (A11), which means 
that zero-stability is ensured no matter how great γm is. This 
matches the result as shown in Fig.5, where ρ(A)=1 for Ω=0, 
indicating a stable response. 
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Fig. 1.  Computation schematic of structure in RST with pure inertia 

specimen 

 

Fig. 2.  Computation schematic of structure in RST with dynamic specimen 
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Fig. 4.  Free vibration responses with pure inertia specimen 
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Fig. 5.  Spectral radius of CDM for RST with dynamic specimen 
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Fig. 6.  Free vibration responses with dynamic specimen 
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Fig. 7.  Numerical Simulation result of RST using shaking table (pure inertia 

specimen) 
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Fig. 8.  Numerical Simulation result of RST using shaking table (dynamic 

specimen) 
 

 
Fig. 9.  Photograph of test setup for RST 
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Fig. 10.  Test result with γm=0.1 
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Fig. 11.  Test result with γm=1.01 
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Fig. 12.  Test result with γm=1.3 
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